//=- ARMSchedCyclone.td - ARM64 Cyclone Scheduling Defs ------*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for ARM64 Cyclone to support // instruction scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// def CycloneModel : SchedMachineModel { let IssueWidth = 6; // 6 micro-ops are dispatched per cycle. let MicroOpBufferSize = 192; // Based on the reorder buffer. let LoadLatency = 4; // Optimistic load latency. let MispredictPenalty = 16; // 14-19 cycles are typical. } //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available on Cyclone. // 4 integer pipes def CyUnitI : ProcResource<4> { let BufferSize = 48; } // 2 branch units: I[0..1] def CyUnitB : ProcResource<2> { let Super = CyUnitI; let BufferSize = 24; } // 1 indirect-branch unit: I[0] def CyUnitBR : ProcResource<1> { let Super = CyUnitB; } // 2 shifter pipes: I[2..3] // When an instruction consumes a CyUnitIS, it also consumes a CyUnitI def CyUnitIS : ProcResource<2> { let Super = CyUnitI; let BufferSize = 24; } // 1 mul pipe: I[0] def CyUnitIM : ProcResource<1> { let Super = CyUnitBR; let BufferSize = 32; } // 1 div pipe: I[1] def CyUnitID : ProcResource<1> { let Super = CyUnitB; let BufferSize = 16; } // 1 integer division unit. This is driven by the ID pipe, but only // consumes the pipe for one cycle at issue and another cycle at writeback. def CyUnitIntDiv : ProcResource<1>; // 2 ld/st pipes. def CyUnitLS : ProcResource<2> { let BufferSize = 28; } // 3 fp/vector pipes. def CyUnitV : ProcResource<3> { let BufferSize = 48; } // 2 fp/vector arithmetic and multiply pipes: V[0-1] def CyUnitVM : ProcResource<2> { let Super = CyUnitV; let BufferSize = 32; } // 1 fp/vector division/sqrt pipe: V[2] def CyUnitVD : ProcResource<1> { let Super = CyUnitV; let BufferSize = 16; } // 1 fp compare pipe: V[0] def CyUnitVC : ProcResource<1> { let Super = CyUnitVM; let BufferSize = 16; } // 2 fp division/square-root units. These are driven by the VD pipe, // but only consume the pipe for one cycle at issue and a cycle at writeback. def CyUnitFloatDiv : ProcResource<2>; //===----------------------------------------------------------------------===// // Define scheduler read/write resources and latency on Cyclone. // This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1. let SchedModel = CycloneModel in { //--- // 7.8.1. Moves //--- // A single nop micro-op (uX). def WriteX : SchedWriteRes<[]> { let Latency = 0; } // Move zero is a register rename (to machine register zero). // The move is replaced by a single nop micro-op. // MOVZ Rd, #0 // AND Rd, Rzr, #imm def WriteZPred : SchedPredicate<[{TII->isGPRZero(MI)}]>; def WriteImmZ : SchedWriteVariant<[ SchedVar, SchedVar]>; def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>; // Move GPR is a register rename and single nop micro-op. // ORR Xd, XZR, Xm // ADD Xd, Xn, #0 def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(MI)}]>; def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(MI)}]>; def WriteMov : SchedWriteVariant<[ SchedVar, SchedVar, SchedVar]>; def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>; // Move non-zero immediate is an integer ALU op. // MOVN,MOVZ,MOVK def : WriteRes; //--- // 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional, // Shifts and Bitfield Operations //--- // ADR,ADRP // ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri // ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr // ADC(S),SBC(S) // Aliases: CMN, CMP, TST // // Conditional operations. // CCMNi,CCMPi,CCMNr,CCMPr, // CSEL,CSINC,CSINV,CSNEG // // Bit counting and reversal operations. // CLS,CLZ,RBIT,REV,REV16,REV32 def : WriteRes; // ADD with shifted register operand is a single micro-op that // consumes a shift pipeline for two cycles. // ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs // EXAMPLE: ADDrs Xn, Xm LSL #imm def : WriteRes { let Latency = 2; let ResourceCycles = [2]; } // ADD with extended register operand is the same as shifted reg operand. // ADD(S)re,SUB(S)re // EXAMPLE: ADDXre Xn, Xm, UXTB #1 def : WriteRes { let Latency = 2; let ResourceCycles = [2]; } // Variable shift and bitfield operations. // ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM def : WriteRes; // EXTR Shifts a pair of registers and requires two micro-ops. // The second micro-op is delayed, as modeled by ReadExtrHi. // EXTR Xn, Xm, #imm def : WriteRes { let Latency = 2; let NumMicroOps = 2; } // EXTR's first register read is delayed by one cycle, effectively // shortening its writer's latency. // EXTR Xn, Xm, #imm def : ReadAdvance; //--- // 7.8.6. Multiplies //--- // MUL/MNEG are aliases for MADD/MSUB. // MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL def : WriteRes { let Latency = 4; } // MADDX,MSUBX,SMULH,UMULH def : WriteRes { let Latency = 5; } //--- // 7.8.7. Divide //--- // 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient. // The ID pipe is consumed for 2 cycles: issue and writeback. // SDIVW,UDIVW def : WriteRes { let Latency = 10; let ResourceCycles = [2, 10]; } // 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient. // The ID pipe is consumed for 2 cycles: issue and writeback. // SDIVX,UDIVX def : WriteRes { let Latency = 13; let ResourceCycles = [2, 13]; } //--- // 7.8.8,7.8.10. Load/Store, single element //--- // Integer loads take 4 cycles and use one LS unit for one cycle. def : WriteRes { let Latency = 4; } // Store-load forwarding is 4 cycles. // // Note: The store-exclusive sequence incorporates this // latency. However, general heuristics should not model the // dependence between a store and subsequent may-alias load because // hardware speculation works. def : WriteRes { let Latency = 4; } // Load from base address plus an optionally scaled register offset. // Rt latency is latency WriteIS + WriteLD. // EXAMPLE: LDR Xn, Xm [, lsl 3] def CyWriteLDIdx : SchedWriteVariant<[ SchedVar, // Load from scaled register. SchedVar]>; // Load from register offset. def : SchedAlias; // Map ARM64->Cyclone type. // EXAMPLE: STR Xn, Xm [, lsl 3] def CyWriteSTIdx : SchedWriteVariant<[ SchedVar, // Store to scaled register. SchedVar]>; // Store to register offset. def : SchedAlias; // Map ARM64->Cyclone type. // Read the (unshifted) base register Xn in the second micro-op one cycle later. // EXAMPLE: LDR Xn, Xm [, lsl 3] def ReadBaseRS : SchedReadAdvance<1>; def CyReadAdrBase : SchedReadVariant<[ SchedVar, // Read base reg after shifting offset. SchedVar]>; // Read base reg with no shift. def : SchedAlias; // Map ARM64->Cyclone type. //--- // 7.8.9,7.8.11. Load/Store, paired //--- // Address pre/post increment is a simple ALU op with one cycle latency. def : WriteRes; // LDP high register write is fused with the load, but a nop micro-op remains. def : WriteRes { let Latency = 4; } // STP is a vector op and store, except for QQ, which is just two stores. def : SchedAlias; def : InstRW<[WriteST, WriteST], (instrs STPQi)>; //--- // 7.8.13. Branches //--- // Branches take a single micro-op. // The misprediction penalty is defined as a SchedMachineModel property. def : WriteRes {let Latency = 0;} def : WriteRes {let Latency = 0;} //--- // 7.8.14. Never-issued Instructions, Barrier and Hint Operations //--- // NOP,SEV,SEVL,WFE,WFI,YIELD def : WriteRes {let Latency = 0;} // ISB def : InstRW<[WriteI], (instrs ISB)>; // SLREX,DMB,DSB def : WriteRes; // System instructions get an invalid latency because the latency of // other operations across them is meaningless. def : WriteRes {let Latency = -1;} //===----------------------------------------------------------------------===// // 7.9 Vector Unit Instructions // Simple vector operations take 2 cycles. def : WriteRes {let Latency = 2;} // Define some longer latency vector op types for Cyclone. def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;} def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;} def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;} def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;} // Simple floating-point operations take 2 cycles. def : WriteRes {let Latency = 2;} //--- // 7.9.1 Vector Moves //--- // TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently // generates expensive int-float conversion instead: // FMOVDi Dd, #0.0 // FMOVv2f64ns Vd.2d, #0.0 // FMOVSi,FMOVDi def : WriteRes {let Latency = 2;} // MOVI,MVNI are WriteV // FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV // Move FPR is a register rename and single nop micro-op. // ORR.16b Vd,Vn,Vn // COPY is handled above in the WriteMov Variant. def WriteVMov : SchedWriteVariant<[ SchedVar, SchedVar]>; def : InstRW<[WriteVMov], (instrs ORRv16i8)>; // FMOVSr,FMOVDr are WriteF. // MOV V,V is a WriteV. // CPY D,V[x] is a WriteV // INS V[x],V[y] is a WriteV. // FMOVWSr,FMOVXDr,FMOVXDHighr def : WriteRes { let Latency = 5; } // FMOVSWr,FMOVDXr def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>; // INS V[x],R def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>; def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>; // SMOV,UMOV R,V[x] def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>; def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>; // DUP V,R def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>; // DUP V,V[x] is a WriteV. //--- // 7.9.2 Integer Arithmetic, Logical, and Comparisons //--- // BIC,ORR V,#imm are WriteV def : InstRW<[CyWriteV3], (instregex "ABSv")>; // MVN,NEG,NOT are WriteV def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>; // ADDP is a WriteV. def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;} def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>; def : InstRW<[CyWriteV3], (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>; def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>; // ADD,SUB are WriteV // Forward declare. def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;} // Add/Diff and accumulate uses the vector multiply unit. def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;} def CyReadVAccum : SchedReadAdvance<1, [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>; def : InstRW<[CyWriteVAccum, CyReadVAccum], (instregex "SADALP","UADALP")>; def : InstRW<[CyWriteVAccum, CyReadVAccum], (instregex "SABAv","UABAv","SABALv","UABALv")>; def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>; def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>; def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>; // WriteV includes: // AND,BIC,CMTST,EOR,ORN,ORR // ADDP // SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD // SADDL,SSUBL,UADDL,USUBL // SADDW,SSUBW,UADDW,USUBW def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv", "CMLEv","CMLTv", "CMHIv","CMHSv")>; def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv", "SMAXPv","SMINPv","UMAXPv","UMINPv")>; def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv", "SABDLv","UABDLv")>; //--- // 7.9.3 Floating Point Arithmetic and Comparisons //--- // FABS,FNEG are WriteF def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>; def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>; def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i", "FMINPv2i","FMINNMPv2i")>; def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>; def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32, FSUBSrr,FSUBv2f32,FSUBv4f32, FADDPv2f32,FADDPv4f32, FABD32,FABDv2f32,FABDv4f32)>; def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64, FSUBDrr,FSUBv2f64, FADDPv2f64, FABD64,FABDv2f64)>; def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>; def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT", "FMAXS","FMAXD","FMAXv", "FMINS","FMIND","FMINv", "FMAXNMS","FMAXNMD","FMAXNMv", "FMINNMS","FMINNMD","FMINNMv", "FMAXPv2f","FMAXPv4f", "FMINPv2f","FMINPv4f", "FMAXNMPv2f","FMAXNMPv4f", "FMINNMPv2f","FMINNMPv4f")>; // FCMP,FCMPE,FCCMP,FCCMPE def : WriteRes {let Latency = 4;} // FCSEL is a WriteF. //--- // 7.9.4 Shifts and Bitfield Operations //--- // SHL is a WriteV def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;} def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>; def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;} def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>; // Shift and accumulate uses the vector multiply unit. def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;} def CyReadVShiftAcc : SchedReadAdvance<1, [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>; def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc], (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>; // SSHL,USHL are WriteV. def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>; // SQSHL,SQSHLU,UQSHL are WriteV. def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>; // WriteV includes: // SHLL,SSHLL,USHLL // SLI,SRI // BIF,BIT,BSL // EXT // CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN // XTN2 def : InstRW<[CyWriteV4], (instregex "RSHRNv","SHRNv", "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv", "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>; //--- // 7.9.5 Multiplication //--- def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;} def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv", "SQDMULLv","SQDMULHv","SQRDMULHv")>; // FMUL,FMULX,FNMUL default to WriteFMul. def : WriteRes { let Latency = 4;} def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;} def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed, FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>; def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>; def : InstRW<[CyWriteVMul, CyReadVMulAcc], (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL", "SQDMLAL","SQDMLSL")>; def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;} def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;} def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>; def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>; def : InstRW<[CyWriteSMul, CyReadSMul], (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr, FMLAv2f32,FMLAv4f32, FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>; def : InstRW<[CyWriteDMul, CyReadDMul], (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr, FMLAv2f64,FMLAv2i64_indexed, FMLSv2f64,FMLSv2i64_indexed)>; def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; } def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>; //--- // 7.9.6 Divide and Square Root //--- // FDIV,FSQRT // TODO: Add 64-bit variant with 19 cycle latency. // TODO: Specialize FSQRT for longer latency. def : WriteRes { let Latency = 17; let ResourceCycles = [2, 17]; } def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>; def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; } def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>; def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; } def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; } def : InstRW<[WriteFRECPS], (instregex "FRECPSv")>; def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>; //--- // 7.9.7 Integer-FP Conversions //--- // FCVT lengthen f16/s32 def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>; // FCVT,FCVTN,FCVTXN // SCVTF,UCVTF V,V // FRINT(AIMNPXZ) V,V def : WriteRes {let Latency = 4;} // SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles. def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>; def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>; // FCVT Rd, S/D = V6+LD4: 10 cycles def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>; def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>; // FCVTL is a WriteV //--- // 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup //--- def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;} def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr, AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr, SHA1SU0rrr)>; def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;} def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>; def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;} def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr, SHA256Hrrr,SHA256H2rrr)>; // TRN,UZP,ZUP are WriteV. // TBL,TBX are WriteV. //--- // 7.9.11-7.9.14 Load/Store, single element and paired //--- // Loading into the vector unit takes 5 cycles vs 4 for integer loads. def : WriteRes { let Latency = 5; } // Store-load forwarding is 4 cycles. def : WriteRes { let Latency = 4; } // WriteVLDPair/VSTPair sequences are expanded by the target description. //--- // 7.9.15 Load, element operations //--- // Only the first WriteVLD and WriteAdr for writeback matches def operands. // Subsequent WriteVLDs consume resources. Since all loaded values have the // same latency, this is acceptable. // Vd is read 5 cycles after issuing the vector load. def : ReadAdvance; def : InstRW<[WriteVLD], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[WriteVLD, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; // Register writes from the load's high half are fused micro-ops. def : InstRW<[WriteVLD], (instregex "LD1Twov(8b|4h|2s|1d)$")>; def : InstRW<[WriteVLD, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVLD, WriteVLD], (instregex "LD1Twov(16b|8h|4s|2d)$")>; def : InstRW<[WriteVLD, WriteAdr, WriteVLD], (instregex "LD1Twov(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLD, WriteVLD], (instregex "LD1Threev(8b|4h|2s|1d)$")>; def : InstRW<[WriteVLD, WriteAdr, WriteVLD], (instregex "LD1Threev(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVLD, WriteVLD, WriteVLD], (instregex "LD1Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD], (instregex "LD1Threev(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLD, WriteVLD], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; def : InstRW<[WriteVLD, WriteAdr, WriteVLD], (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD], (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD], (instregex "LD1i(8|16|32)$")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr], (instregex "LD1i(8|16|32)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD], (instrs LD1i64)>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>; def : InstRW<[WriteVLDShuffle], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[WriteVLDShuffle, WriteV], (instregex "LD2Twov(8b|4h|2s)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV], (instregex "LD2Twov(8b|4h|2s)_POST$")>; def : InstRW<[WriteVLDShuffle, WriteVLDShuffle], (instregex "LD2Twov(16b|8h|4s|2d)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle], (instregex "LD2Twov(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV], (instregex "LD2i(8|16|32)$")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV], (instregex "LD2i(8|16|32)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV], (instregex "LD2i64$")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV], (instregex "LD2i64_POST")>; def : InstRW<[WriteVLDShuffle, WriteV], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV], (instregex "LD3Threev(8b|4h|2s)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV], (instregex "LD3Threev(8b|4h|2s)_POST")>; def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle], (instregex "LD3Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle], (instregex "LD3Threev(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV], (instregex "LD3i(8|16|32)$")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV], (instregex "LD3i(8|16|32)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV], (instregex "LD3i64$")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV], (instregex "LD3i64_POST")>; def : InstRW<[WriteVLDShuffle, WriteV, WriteV], (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV], (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>; def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV], (instrs LD3Rv1d,LD3Rv2d)>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV], (instrs LD3Rv2d_POST,LD3Rv2d_POST)>; def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV], (instregex "LD4Fourv(8b|4h|2s)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV], (instregex "LD4Fourv(8b|4h|2s)_POST")>; def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle, WriteVLDPairShuffle, WriteVLDPairShuffle], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle, WriteVLDPairShuffle, WriteVLDPairShuffle], (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV], (instregex "LD4i(8|16|32)$")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV], (instregex "LD4i(8|16|32)_POST")>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV], (instrs LD4i64)>; def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV], (instrs LD4i64_POST)>; def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV], (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV], (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>; def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV], (instrs LD4Rv1d,LD4Rv2d)>; def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV], (instrs LD4Rv1d_POST,LD4Rv2d_POST)>; //--- // 7.9.16 Store, element operations //--- // Only the WriteAdr for writeback matches a def operands. // Subsequent WriteVLDs only consume resources. def : InstRW<[WriteVST], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVST], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTShuffle], (instregex "ST1Twov(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1Twov(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVST, WriteVST], (instregex "ST1Twov(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVST, WriteVST], (instregex "ST1Twov(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTShuffle, WriteVST], (instregex "ST1Threev(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST], (instregex "ST1Threev(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVST, WriteVST, WriteVST], (instregex "ST1Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST], (instregex "ST1Threev(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instregex "ST1Fourv(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST], (instregex "ST1Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST], (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTShuffle], (instregex "ST1i(8|16|32)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>; def : InstRW<[WriteVSTShuffle], (instrs ST1i64)>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>; def : InstRW<[WriteVSTShuffle], (instregex "ST2Twov(8b|4h|2s)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2Twov(8b|4h|2s)_POST")>; def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instregex "ST2Twov(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instregex "ST2Twov(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTShuffle], (instregex "ST2i(8|16|32)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>; def : InstRW<[WriteVSTShuffle], (instrs ST2i64)>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>; def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instregex "ST3Threev(8b|4h|2s)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instregex "ST3Threev(8b|4h|2s)_POST")>; def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle], (instregex "ST3Threev(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle], (instregex "ST3Threev(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTShuffle], (instregex "ST3i(8|16|32)$")>; def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>; def :InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64)>; def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>; def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle], (instregex "ST4Fourv(8b|4h|2s|1d)$")>; def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle], (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>; def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle, WriteVSTPairShuffle, WriteVSTPairShuffle], (instregex "ST4Fourv(16b|8h|4s|2d)$")>; def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle, WriteVSTPairShuffle, WriteVSTPairShuffle], (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>; def : InstRW<[WriteVSTPairShuffle], (instregex "ST4i(8|16|32)$")>; def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>; def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST4i64)>; def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>; } // SchedModel = CycloneModel