//===- ADCE.cpp - Code to perform aggressive dead code elimination --------===// // // This file implements "aggressive" dead code elimination. ADCE is DCe where // values are assumed to be dead until proven otherwise. This is similar to // SCCP, except applied to the liveness of values. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Type.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/Writer.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/Support/CFG.h" #include "Support/STLExtras.h" #include "Support/DepthFirstIterator.h" #include #include using std::cerr; #define DEBUG_ADCE 1 namespace { //===----------------------------------------------------------------------===// // ADCE Class // // This class does all of the work of Aggressive Dead Code Elimination. // It's public interface consists of a constructor and a doADCE() method. // class ADCE : public FunctionPass { Function *Func; // The function that we are working on std::vector WorkList; // Instructions that just became live std::set LiveSet; // The set of live instructions bool MadeChanges; //===--------------------------------------------------------------------===// // The public interface for this class // public: const char *getPassName() const { return "Aggressive Dead Code Elimination"; } // doADCE - Execute the Aggressive Dead Code Elimination Algorithm // virtual bool runOnFunction(Function *F) { Func = F; MadeChanges = false; doADCE(getAnalysis(DominanceFrontier::PostDomID)); assert(WorkList.empty()); LiveSet.clear(); return MadeChanges; } // getAnalysisUsage - We require post dominance frontiers (aka Control // Dependence Graph) virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(DominanceFrontier::PostDomID); } //===--------------------------------------------------------------------===// // The implementation of this class // private: // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning // true if the function was modified. // void doADCE(DominanceFrontier &CDG); inline void markInstructionLive(Instruction *I) { if (LiveSet.count(I)) return; #ifdef DEBUG_ADCE cerr << "Insn Live: " << I; #endif LiveSet.insert(I); WorkList.push_back(I); } inline void markTerminatorLive(const BasicBlock *BB) { #ifdef DEBUG_ADCE cerr << "Terminat Live: " << BB->getTerminator(); #endif markInstructionLive((Instruction*)BB->getTerminator()); } // fixupCFG - Walk the CFG in depth first order, eliminating references to // dead blocks. // BasicBlock *fixupCFG(BasicBlock *Head, std::set &VisitedBlocks, const std::set &AliveBlocks); }; } // End of anonymous namespace Pass *createAggressiveDCEPass() { return new ADCE(); } // doADCE() - Run the Aggressive Dead Code Elimination algorithm, returning // true if the function was modified. // void ADCE::doADCE(DominanceFrontier &CDG) { #ifdef DEBUG_ADCE cerr << "Function: " << Func; #endif // Iterate over all of the instructions in the function, eliminating trivially // dead instructions, and marking instructions live that are known to be // needed. Perform the walk in depth first order so that we avoid marking any // instructions live in basic blocks that are unreachable. These blocks will // be eliminated later, along with the instructions inside. // for (df_iterator BBI = df_begin(Func), BBE = df_end(Func); BBI != BBE; ++BBI) { BasicBlock *BB = *BBI; for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) { Instruction *I = *II; if (I->hasSideEffects() || I->getOpcode() == Instruction::Ret) { markInstructionLive(I); ++II; // Increment the inst iterator if the inst wasn't deleted } else if (isInstructionTriviallyDead(I)) { // Remove the instruction from it's basic block... delete BB->getInstList().remove(II); MadeChanges = true; } else { ++II; // Increment the inst iterator if the inst wasn't deleted } } } #ifdef DEBUG_ADCE cerr << "Processing work list\n"; #endif // AliveBlocks - Set of basic blocks that we know have instructions that are // alive in them... // std::set AliveBlocks; // Process the work list of instructions that just became live... if they // became live, then that means that all of their operands are neccesary as // well... make them live as well. // while (!WorkList.empty()) { Instruction *I = WorkList.back(); // Get an instruction that became live... WorkList.pop_back(); BasicBlock *BB = I->getParent(); if (AliveBlocks.count(BB) == 0) { // Basic block not alive yet... // Mark the basic block as being newly ALIVE... and mark all branches that // this block is control dependant on as being alive also... // AliveBlocks.insert(BB); // Block is now ALIVE! DominanceFrontier::const_iterator It = CDG.find(BB); if (It != CDG.end()) { // Get the blocks that this node is control dependant on... const DominanceFrontier::DomSetType &CDB = It->second; for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live bind_obj(this, &ADCE::markTerminatorLive)); } // If this basic block is live, then the terminator must be as well! markTerminatorLive(BB); } // Loop over all of the operands of the live instruction, making sure that // they are known to be alive as well... // for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) if (Instruction *Operand = dyn_cast(I->getOperand(op))) markInstructionLive(Operand); } #ifdef DEBUG_ADCE cerr << "Current Function: X = Live\n"; for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I) for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { if (LiveSet.count(*BI)) cerr << "X "; cerr << *BI; } #endif // After the worklist is processed, recursively walk the CFG in depth first // order, patching up references to dead blocks... // std::set VisitedBlocks; BasicBlock *EntryBlock = fixupCFG(Func->front(), VisitedBlocks, AliveBlocks); // Now go through and tell dead blocks to drop all of their references so they // can be safely deleted. Also, as we are doing so, if the block has // successors that are still live (and that have PHI nodes in them), remove // the entry for this block from the phi nodes. // for (Function::iterator BI = Func->begin(), BE = Func->end(); BI != BE; ++BI){ BasicBlock *BB = *BI; if (!AliveBlocks.count(BB)) { // Remove entries from successors PHI nodes if they are still alive... for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) if (AliveBlocks.count(*SI)) { // Only if the successor is alive... BasicBlock *Succ = *SI; for (BasicBlock::iterator I = Succ->begin();// Loop over all PHI nodes PHINode *PN = dyn_cast(*I); ++I) PN->removeIncomingValue(BB); // Remove value for this block } BB->dropAllReferences(); } } cerr << "Before Deleting Blocks: " << Func; // Now loop through all of the blocks and delete them. We can safely do this // now because we know that there are no references to dead blocks (because // they have dropped all of their references... // for (Function::iterator BI = Func->begin(); BI != Func->end();) { if (!AliveBlocks.count(*BI)) { delete Func->getBasicBlocks().remove(BI); MadeChanges = true; continue; // Don't increment iterator } ++BI; // Increment iterator... } if (EntryBlock && EntryBlock != Func->front()) { // We need to move the new entry block to be the first bb of the function Function::iterator EBI = find(Func->begin(), Func->end(), EntryBlock); std::swap(*EBI, *Func->begin()); // Exchange old location with start of fn } while (PHINode *PN = dyn_cast(EntryBlock->front())) { assert(PN->getNumIncomingValues() == 1 && "Can only have a single incoming value at this point..."); // The incoming value must be outside of the scope of the function, a // global variable, constant or parameter maybe... // PN->replaceAllUsesWith(PN->getIncomingValue(0)); // Nuke the phi node... delete EntryBlock->getInstList().remove(EntryBlock->begin()); } } // fixupCFG - Walk the CFG in depth first order, eliminating references to // dead blocks: // If the BB is alive (in AliveBlocks): // 1. Eliminate all dead instructions in the BB // 2. Recursively traverse all of the successors of the BB: // - If the returned successor is non-null, update our terminator to // reference the returned BB // 3. Return 0 (no update needed) // // If the BB is dead (not in AliveBlocks): // 1. Add the BB to the dead set // 2. Recursively traverse all of the successors of the block: // - Only one shall return a nonnull value (or else this block should have // been in the alive set). // 3. Return the nonnull child, or 0 if no non-null children. // BasicBlock *ADCE::fixupCFG(BasicBlock *BB, std::set &VisitedBlocks, const std::set &AliveBlocks) { if (VisitedBlocks.count(BB)) return 0; // Revisiting a node? No update. VisitedBlocks.insert(BB); // We have now visited this node! #ifdef DEBUG_ADCE cerr << "Fixing up BB: " << BB; #endif if (AliveBlocks.count(BB)) { // Is the block alive? // Yes it's alive: loop through and eliminate all dead instructions in block for (BasicBlock::iterator II = BB->begin(); II != BB->end()-1; ) if (!LiveSet.count(*II)) { // Is this instruction alive? // Nope... remove the instruction from it's basic block... delete BB->getInstList().remove(II); MadeChanges = true; } else { ++II; } // Recursively traverse successors of this basic block. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { BasicBlock *Succ = *SI; BasicBlock *Repl = fixupCFG(Succ, VisitedBlocks, AliveBlocks); if (Repl && Repl != Succ) { // We have to replace the successor Succ->replaceAllUsesWith(Repl); MadeChanges = true; } } return BB; } else { // Otherwise the block is dead... BasicBlock *ReturnBB = 0; // Default to nothing live down here // Recursively traverse successors of this basic block. for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { BasicBlock *RetBB = fixupCFG(*SI, VisitedBlocks, AliveBlocks); if (RetBB) { assert(ReturnBB == 0 && "At most one live child allowed!"); ReturnBB = RetBB; } } return ReturnBB; // Return the result of traversal } }