//===- JumpThreading.cpp - Thread control through conditional blocks ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Jump Threading pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jump-threading" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Pass.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/Loads.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Target/TargetData.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; STATISTIC(NumThreads, "Number of jumps threaded"); STATISTIC(NumFolds, "Number of terminators folded"); STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); static cl::opt Threshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden); // Turn on use of LazyValueInfo. static cl::opt EnableLVI("enable-jump-threading-lvi", cl::desc("Use LVI for jump threading"), cl::init(false), cl::ReallyHidden); namespace { /// This pass performs 'jump threading', which looks at blocks that have /// multiple predecessors and multiple successors. If one or more of the /// predecessors of the block can be proven to always jump to one of the /// successors, we forward the edge from the predecessor to the successor by /// duplicating the contents of this block. /// /// An example of when this can occur is code like this: /// /// if () { ... /// X = 4; /// } /// if (X < 3) { /// /// In this case, the unconditional branch at the end of the first if can be /// revectored to the false side of the second if. /// class JumpThreading : public FunctionPass { TargetData *TD; LazyValueInfo *LVI; #ifdef NDEBUG SmallPtrSet LoopHeaders; #else SmallSet, 16> LoopHeaders; #endif public: static char ID; // Pass identification JumpThreading() : FunctionPass(ID) {} bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { if (EnableLVI) AU.addRequired(); } void FindLoopHeaders(Function &F); bool ProcessBlock(BasicBlock *BB); bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl &PredBBs, BasicBlock *SuccBB); bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, const SmallVectorImpl &PredBBs); typedef SmallVectorImpl > PredValueInfo; bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result); bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB); bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); bool ProcessBranchOnPHI(PHINode *PN); bool ProcessBranchOnXOR(BinaryOperator *BO); bool SimplifyPartiallyRedundantLoad(LoadInst *LI); }; } char JumpThreading::ID = 0; INITIALIZE_PASS(JumpThreading, "jump-threading", "Jump Threading", false, false); // Public interface to the Jump Threading pass FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } /// runOnFunction - Top level algorithm. /// bool JumpThreading::runOnFunction(Function &F) { DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); TD = getAnalysisIfAvailable(); LVI = EnableLVI ? &getAnalysis() : 0; FindLoopHeaders(F); bool Changed, EverChanged = false; do { Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E;) { BasicBlock *BB = I; // Thread all of the branches we can over this block. while (ProcessBlock(BB)) Changed = true; ++I; // If the block is trivially dead, zap it. This eliminates the successor // edges which simplifies the CFG. if (pred_begin(BB) == pred_end(BB) && BB != &BB->getParent()->getEntryBlock()) { DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() << "' with terminator: " << *BB->getTerminator() << '\n'); LoopHeaders.erase(BB); DeleteDeadBlock(BB); Changed = true; } else if (BranchInst *BI = dyn_cast(BB->getTerminator())) { // Can't thread an unconditional jump, but if the block is "almost // empty", we can replace uses of it with uses of the successor and make // this dead. if (BI->isUnconditional() && BB != &BB->getParent()->getEntryBlock()) { BasicBlock::iterator BBI = BB->getFirstNonPHI(); // Ignore dbg intrinsics. while (isa(BBI)) ++BBI; // If the terminator is the only non-phi instruction, try to nuke it. if (BBI->isTerminator()) { // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the // block, we have to make sure it isn't in the LoopHeaders set. We // reinsert afterward if needed. bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); BasicBlock *Succ = BI->getSuccessor(0); if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { Changed = true; // If we deleted BB and BB was the header of a loop, then the // successor is now the header of the loop. BB = Succ; } if (ErasedFromLoopHeaders) LoopHeaders.insert(BB); } } } } EverChanged |= Changed; } while (Changed); LoopHeaders.clear(); return EverChanged; } /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to /// thread across it. static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { /// Ignore PHI nodes, these will be flattened when duplication happens. BasicBlock::const_iterator I = BB->getFirstNonPHI(); // FIXME: THREADING will delete values that are just used to compute the // branch, so they shouldn't count against the duplication cost. // Sum up the cost of each instruction until we get to the terminator. Don't // include the terminator because the copy won't include it. unsigned Size = 0; for (; !isa(I); ++I) { // Debugger intrinsics don't incur code size. if (isa(I)) continue; // If this is a pointer->pointer bitcast, it is free. if (isa(I) && I->getType()->isPointerTy()) continue; // All other instructions count for at least one unit. ++Size; // Calls are more expensive. If they are non-intrinsic calls, we model them // as having cost of 4. If they are a non-vector intrinsic, we model them // as having cost of 2 total, and if they are a vector intrinsic, we model // them as having cost 1. if (const CallInst *CI = dyn_cast(I)) { if (!isa(CI)) Size += 3; else if (!CI->getType()->isVectorTy()) Size += 1; } } // Threading through a switch statement is particularly profitable. If this // block ends in a switch, decrease its cost to make it more likely to happen. if (isa(I)) Size = Size > 6 ? Size-6 : 0; return Size; } /// FindLoopHeaders - We do not want jump threading to turn proper loop /// structures into irreducible loops. Doing this breaks up the loop nesting /// hierarchy and pessimizes later transformations. To prevent this from /// happening, we first have to find the loop headers. Here we approximate this /// by finding targets of backedges in the CFG. /// /// Note that there definitely are cases when we want to allow threading of /// edges across a loop header. For example, threading a jump from outside the /// loop (the preheader) to an exit block of the loop is definitely profitable. /// It is also almost always profitable to thread backedges from within the loop /// to exit blocks, and is often profitable to thread backedges to other blocks /// within the loop (forming a nested loop). This simple analysis is not rich /// enough to track all of these properties and keep it up-to-date as the CFG /// mutates, so we don't allow any of these transformations. /// void JumpThreading::FindLoopHeaders(Function &F) { SmallVector, 32> Edges; FindFunctionBackedges(F, Edges); for (unsigned i = 0, e = Edges.size(); i != e; ++i) LoopHeaders.insert(const_cast(Edges[i].second)); } /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see /// if we can infer that the value is a known ConstantInt in any of our /// predecessors. If so, return the known list of value and pred BB in the /// result vector. If a value is known to be undef, it is returned as null. /// /// This returns true if there were any known values. /// bool JumpThreading:: ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){ // If V is a constantint, then it is known in all predecessors. if (isa(V) || isa(V)) { ConstantInt *CI = dyn_cast(V); for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) Result.push_back(std::make_pair(CI, *PI)); return true; } // If V is a non-instruction value, or an instruction in a different block, // then it can't be derived from a PHI. Instruction *I = dyn_cast(V); if (I == 0 || I->getParent() != BB) { // Okay, if this is a live-in value, see if it has a known value at the end // of any of our predecessors. // // FIXME: This should be an edge property, not a block end property. /// TODO: Per PR2563, we could infer value range information about a /// predecessor based on its terminator. // if (LVI) { // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if // "I" is a non-local compare-with-a-constant instruction. This would be // able to handle value inequalities better, for example if the compare is // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. // Perhaps getConstantOnEdge should be smart enough to do this? for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; // If the value is known by LazyValueInfo to be a constant in a // predecessor, use that information to try to thread this block. Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); if (PredCst == 0 || (!isa(PredCst) && !isa(PredCst))) continue; Result.push_back(std::make_pair(dyn_cast(PredCst), P)); } return !Result.empty(); } return false; } /// If I is a PHI node, then we know the incoming values for any constants. if (PHINode *PN = dyn_cast(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { Value *InVal = PN->getIncomingValue(i); if (isa(InVal) || isa(InVal)) { ConstantInt *CI = dyn_cast(InVal); Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i))); } } return !Result.empty(); } SmallVector, 8> LHSVals, RHSVals; // Handle some boolean conditions. if (I->getType()->getPrimitiveSizeInBits() == 1) { // X | true -> true // X & false -> false if (I->getOpcode() == Instruction::Or || I->getOpcode() == Instruction::And) { ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals); ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals); if (LHSVals.empty() && RHSVals.empty()) return false; ConstantInt *InterestingVal; if (I->getOpcode() == Instruction::Or) InterestingVal = ConstantInt::getTrue(I->getContext()); else InterestingVal = ConstantInt::getFalse(I->getContext()); // Scan for the sentinel. If we find an undef, force it to the // interesting value: x|undef -> true and x&undef -> false. for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) { Result.push_back(LHSVals[i]); Result.back().first = InterestingVal; } for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) { // If we already inferred a value for this block on the LHS, don't // re-add it. bool HasValue = false; for (unsigned r = 0, e = Result.size(); r != e; ++r) if (Result[r].second == RHSVals[i].second) { HasValue = true; break; } if (!HasValue) { Result.push_back(RHSVals[i]); Result.back().first = InterestingVal; } } return !Result.empty(); } // Handle the NOT form of XOR. if (I->getOpcode() == Instruction::Xor && isa(I->getOperand(1)) && cast(I->getOperand(1))->isOne()) { ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result); if (Result.empty()) return false; // Invert the known values. for (unsigned i = 0, e = Result.size(); i != e; ++i) if (Result[i].first) Result[i].first = cast(ConstantExpr::getNot(Result[i].first)); return true; } } // Handle compare with phi operand, where the PHI is defined in this block. if (CmpInst *Cmp = dyn_cast(I)) { PHINode *PN = dyn_cast(Cmp->getOperand(0)); if (PN && PN->getParent() == BB) { // We can do this simplification if any comparisons fold to true or false. // See if any do. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PredBB = PN->getIncomingBlock(i); Value *LHS = PN->getIncomingValue(i); Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); if (Res == 0) { if (!LVI || !isa(RHS)) continue; LazyValueInfo::Tristate ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, cast(RHS), PredBB, BB); if (ResT == LazyValueInfo::Unknown) continue; Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); } if (isa(Res)) Result.push_back(std::make_pair((ConstantInt*)0, PredBB)); else if (ConstantInt *CI = dyn_cast(Res)) Result.push_back(std::make_pair(CI, PredBB)); } return !Result.empty(); } // If comparing a live-in value against a constant, see if we know the // live-in value on any predecessors. if (LVI && isa(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy() && // Not vector compare. (!isa(Cmp->getOperand(0)) || cast(Cmp->getOperand(0))->getParent() != BB)) { Constant *RHSCst = cast(Cmp->getOperand(1)); for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { BasicBlock *P = *PI; // If the value is known by LazyValueInfo to be a constant in a // predecessor, use that information to try to thread this block. LazyValueInfo::Tristate Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), RHSCst, P, BB); if (Res == LazyValueInfo::Unknown) continue; Constant *ResC = ConstantInt::get(Cmp->getType(), Res); Result.push_back(std::make_pair(cast(ResC), P)); } return !Result.empty(); } } return false; } /// GetBestDestForBranchOnUndef - If we determine that the specified block ends /// in an undefined jump, decide which block is best to revector to. /// /// Since we can pick an arbitrary destination, we pick the successor with the /// fewest predecessors. This should reduce the in-degree of the others. /// static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { TerminatorInst *BBTerm = BB->getTerminator(); unsigned MinSucc = 0; BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); // Compute the successor with the minimum number of predecessors. unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { TestBB = BBTerm->getSuccessor(i); unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); if (NumPreds < MinNumPreds) MinSucc = i; } return MinSucc; } /// ProcessBlock - If there are any predecessors whose control can be threaded /// through to a successor, transform them now. bool JumpThreading::ProcessBlock(BasicBlock *BB) { // If the block is trivially dead, just return and let the caller nuke it. // This simplifies other transformations. if (pred_begin(BB) == pred_end(BB) && BB != &BB->getParent()->getEntryBlock()) return false; // If this block has a single predecessor, and if that pred has a single // successor, merge the blocks. This encourages recursive jump threading // because now the condition in this block can be threaded through // predecessors of our predecessor block. if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { if (SinglePred->getTerminator()->getNumSuccessors() == 1 && SinglePred != BB) { // If SinglePred was a loop header, BB becomes one. if (LoopHeaders.erase(SinglePred)) LoopHeaders.insert(BB); // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(BB); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); return true; } } // Look to see if the terminator is a branch of switch, if not we can't thread // it. Value *Condition; if (BranchInst *BI = dyn_cast(BB->getTerminator())) { // Can't thread an unconditional jump. if (BI->isUnconditional()) return false; Condition = BI->getCondition(); } else if (SwitchInst *SI = dyn_cast(BB->getTerminator())) Condition = SI->getCondition(); else return false; // Must be an invoke. // If the terminator of this block is branching on a constant, simplify the // terminator to an unconditional branch. This can occur due to threading in // other blocks. if (isa(Condition)) { DEBUG(dbgs() << " In block '" << BB->getName() << "' folding terminator: " << *BB->getTerminator() << '\n'); ++NumFolds; ConstantFoldTerminator(BB); return true; } // If the terminator is branching on an undef, we can pick any of the // successors to branch to. Let GetBestDestForJumpOnUndef decide. if (isa(Condition)) { unsigned BestSucc = GetBestDestForJumpOnUndef(BB); // Fold the branch/switch. TerminatorInst *BBTerm = BB->getTerminator(); for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { if (i == BestSucc) continue; RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD); } DEBUG(dbgs() << " In block '" << BB->getName() << "' folding undef terminator: " << *BBTerm << '\n'); BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); BBTerm->eraseFromParent(); return true; } Instruction *CondInst = dyn_cast(Condition); // If the condition is an instruction defined in another block, see if a // predecessor has the same condition: // br COND, BBX, BBY // BBX: // br COND, BBZ, BBW if (!LVI && !Condition->hasOneUse() && // Multiple uses. (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition. pred_iterator PI = pred_begin(BB), E = pred_end(BB); if (isa(BB->getTerminator())) { for (; PI != E; ++PI) { BasicBlock *P = *PI; if (BranchInst *PBI = dyn_cast(P->getTerminator())) if (PBI->isConditional() && PBI->getCondition() == Condition && ProcessBranchOnDuplicateCond(P, BB)) return true; } } else { assert(isa(BB->getTerminator()) && "Unknown jump terminator"); for (; PI != E; ++PI) { BasicBlock *P = *PI; if (SwitchInst *PSI = dyn_cast(P->getTerminator())) if (PSI->getCondition() == Condition && ProcessSwitchOnDuplicateCond(P, BB)) return true; } } } // All the rest of our checks depend on the condition being an instruction. if (CondInst == 0) { // FIXME: Unify this with code below. if (LVI && ProcessThreadableEdges(Condition, BB)) return true; return false; } if (CmpInst *CondCmp = dyn_cast(CondInst)) { if (!LVI && (!isa(CondCmp->getOperand(0)) || cast(CondCmp->getOperand(0))->getParent() != BB)) { // If we have a comparison, loop over the predecessors to see if there is // a condition with a lexically identical value. pred_iterator PI = pred_begin(BB), E = pred_end(BB); for (; PI != E; ++PI) { BasicBlock *P = *PI; if (BranchInst *PBI = dyn_cast(P->getTerminator())) if (PBI->isConditional() && P != BB) { if (CmpInst *CI = dyn_cast(PBI->getCondition())) { if (CI->getOperand(0) == CondCmp->getOperand(0) && CI->getOperand(1) == CondCmp->getOperand(1) && CI->getPredicate() == CondCmp->getPredicate()) { // TODO: Could handle things like (x != 4) --> (x == 17) if (ProcessBranchOnDuplicateCond(P, BB)) return true; } } } } } } // Check for some cases that are worth simplifying. Right now we want to look // for loads that are used by a switch or by the condition for the branch. If // we see one, check to see if it's partially redundant. If so, insert a PHI // which can then be used to thread the values. // Value *SimplifyValue = CondInst; if (CmpInst *CondCmp = dyn_cast(SimplifyValue)) if (isa(CondCmp->getOperand(1))) SimplifyValue = CondCmp->getOperand(0); // TODO: There are other places where load PRE would be profitable, such as // more complex comparisons. if (LoadInst *LI = dyn_cast(SimplifyValue)) if (SimplifyPartiallyRedundantLoad(LI)) return true; // Handle a variety of cases where we are branching on something derived from // a PHI node in the current block. If we can prove that any predecessors // compute a predictable value based on a PHI node, thread those predecessors. // if (ProcessThreadableEdges(CondInst, BB)) return true; // If this is an otherwise-unfoldable branch on a phi node in the current // block, see if we can simplify. if (PHINode *PN = dyn_cast(CondInst)) if (PN->getParent() == BB && isa(BB->getTerminator())) return ProcessBranchOnPHI(PN); // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. if (CondInst->getOpcode() == Instruction::Xor && CondInst->getParent() == BB && isa(BB->getTerminator())) return ProcessBranchOnXOR(cast(CondInst)); // TODO: If we have: "br (X > 0)" and we have a predecessor where we know // "(X == 4)", thread through this block. return false; } /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that /// block that jump on exactly the same condition. This means that we almost /// always know the direction of the edge in the DESTBB: /// PREDBB: /// br COND, DESTBB, BBY /// DESTBB: /// br COND, BBZ, BBW /// /// If DESTBB has multiple predecessors, we can't just constant fold the branch /// in DESTBB, we have to thread over it. bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *BB) { BranchInst *PredBI = cast(PredBB->getTerminator()); // If both successors of PredBB go to DESTBB, we don't know anything. We can // fold the branch to an unconditional one, which allows other recursive // simplifications. bool BranchDir; if (PredBI->getSuccessor(1) != BB) BranchDir = true; else if (PredBI->getSuccessor(0) != BB) BranchDir = false; else { DEBUG(dbgs() << " In block '" << PredBB->getName() << "' folding terminator: " << *PredBB->getTerminator() << '\n'); ++NumFolds; ConstantFoldTerminator(PredBB); return true; } BranchInst *DestBI = cast(BB->getTerminator()); // If the dest block has one predecessor, just fix the branch condition to a // constant and fold it. if (BB->getSinglePredecessor()) { DEBUG(dbgs() << " In block '" << BB->getName() << "' folding condition to '" << BranchDir << "': " << *BB->getTerminator() << '\n'); ++NumFolds; Value *OldCond = DestBI->getCondition(); DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()), BranchDir)); // Delete dead instructions before we fold the branch. Folding the branch // can eliminate edges from the CFG which can end up deleting OldCond. RecursivelyDeleteTriviallyDeadInstructions(OldCond); ConstantFoldTerminator(BB); return true; } // Next, figure out which successor we are threading to. BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); SmallVector Preds; Preds.push_back(PredBB); // Ok, try to thread it! return ThreadEdge(BB, Preds, SuccBB); } /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that /// block that switch on exactly the same condition. This means that we almost /// always know the direction of the edge in the DESTBB: /// PREDBB: /// switch COND [... DESTBB, BBY ... ] /// DESTBB: /// switch COND [... BBZ, BBW ] /// /// Optimizing switches like this is very important, because simplifycfg builds /// switches out of repeated 'if' conditions. bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB) { // Can't thread edge to self. if (PredBB == DestBB) return false; SwitchInst *PredSI = cast(PredBB->getTerminator()); SwitchInst *DestSI = cast(DestBB->getTerminator()); // There are a variety of optimizations that we can potentially do on these // blocks: we order them from most to least preferable. // If DESTBB *just* contains the switch, then we can forward edges from PREDBB // directly to their destination. This does not introduce *any* code size // growth. Skip debug info first. BasicBlock::iterator BBI = DestBB->begin(); while (isa(BBI)) BBI++; // FIXME: Thread if it just contains a PHI. if (isa(BBI)) { bool MadeChange = false; // Ignore the default edge for now. for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) { ConstantInt *DestVal = DestSI->getCaseValue(i); BasicBlock *DestSucc = DestSI->getSuccessor(i); // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if // PredSI has an explicit case for it. If so, forward. If it is covered // by the default case, we can't update PredSI. unsigned PredCase = PredSI->findCaseValue(DestVal); if (PredCase == 0) continue; // If PredSI doesn't go to DestBB on this value, then it won't reach the // case on this condition. if (PredSI->getSuccessor(PredCase) != DestBB && DestSI->getSuccessor(i) != DestBB) continue; // Do not forward this if it already goes to this destination, this would // be an infinite loop. if (PredSI->getSuccessor(PredCase) == DestSucc) continue; // Otherwise, we're safe to make the change. Make sure that the edge from // DestSI to DestSucc is not critical and has no PHI nodes. DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI); DEBUG(dbgs() << "THROUGH: " << *DestSI); // If the destination has PHI nodes, just split the edge for updating // simplicity. if (isa(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){ SplitCriticalEdge(DestSI, i, this); DestSucc = DestSI->getSuccessor(i); } FoldSingleEntryPHINodes(DestSucc); PredSI->setSuccessor(PredCase, DestSucc); MadeChange = true; } if (MadeChange) return true; } return false; } /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant /// load instruction, eliminate it by replacing it with a PHI node. This is an /// important optimization that encourages jump threading, and needs to be run /// interlaced with other jump threading tasks. bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { // Don't hack volatile loads. if (LI->isVolatile()) return false; // If the load is defined in a block with exactly one predecessor, it can't be // partially redundant. BasicBlock *LoadBB = LI->getParent(); if (LoadBB->getSinglePredecessor()) return false; Value *LoadedPtr = LI->getOperand(0); // If the loaded operand is defined in the LoadBB, it can't be available. // TODO: Could do simple PHI translation, that would be fun :) if (Instruction *PtrOp = dyn_cast(LoadedPtr)) if (PtrOp->getParent() == LoadBB) return false; // Scan a few instructions up from the load, to see if it is obviously live at // the entry to its block. BasicBlock::iterator BBIt = LI; if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { // If the value if the load is locally available within the block, just use // it. This frequently occurs for reg2mem'd allocas. //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; // If the returned value is the load itself, replace with an undef. This can // only happen in dead loops. if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); LI->replaceAllUsesWith(AvailableVal); LI->eraseFromParent(); return true; } // Otherwise, if we scanned the whole block and got to the top of the block, // we know the block is locally transparent to the load. If not, something // might clobber its value. if (BBIt != LoadBB->begin()) return false; SmallPtrSet PredsScanned; typedef SmallVector, 8> AvailablePredsTy; AvailablePredsTy AvailablePreds; BasicBlock *OneUnavailablePred = 0; // If we got here, the loaded value is transparent through to the start of the // block. Check to see if it is available in any of the predecessor blocks. for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); PI != PE; ++PI) { BasicBlock *PredBB = *PI; // If we already scanned this predecessor, skip it. if (!PredsScanned.insert(PredBB)) continue; // Scan the predecessor to see if the value is available in the pred. BBIt = PredBB->end(); Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); if (!PredAvailable) { OneUnavailablePred = PredBB; continue; } // If so, this load is partially redundant. Remember this info so that we // can create a PHI node. AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); } // If the loaded value isn't available in any predecessor, it isn't partially // redundant. if (AvailablePreds.empty()) return false; // Okay, the loaded value is available in at least one (and maybe all!) // predecessors. If the value is unavailable in more than one unique // predecessor, we want to insert a merge block for those common predecessors. // This ensures that we only have to insert one reload, thus not increasing // code size. BasicBlock *UnavailablePred = 0; // If there is exactly one predecessor where the value is unavailable, the // already computed 'OneUnavailablePred' block is it. If it ends in an // unconditional branch, we know that it isn't a critical edge. if (PredsScanned.size() == AvailablePreds.size()+1 && OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { UnavailablePred = OneUnavailablePred; } else if (PredsScanned.size() != AvailablePreds.size()) { // Otherwise, we had multiple unavailable predecessors or we had a critical // edge from the one. SmallVector PredsToSplit; SmallPtrSet AvailablePredSet; for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) AvailablePredSet.insert(AvailablePreds[i].first); // Add all the unavailable predecessors to the PredsToSplit list. for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); PI != PE; ++PI) { BasicBlock *P = *PI; // If the predecessor is an indirect goto, we can't split the edge. if (isa(P->getTerminator())) return false; if (!AvailablePredSet.count(P)) PredsToSplit.push_back(P); } // Split them out to their own block. UnavailablePred = SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), "thread-pre-split", this); } // If the value isn't available in all predecessors, then there will be // exactly one where it isn't available. Insert a load on that edge and add // it to the AvailablePreds list. if (UnavailablePred) { assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && "Can't handle critical edge here!"); Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, LI->getAlignment(), UnavailablePred->getTerminator()); AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); } // Now we know that each predecessor of this block has a value in // AvailablePreds, sort them for efficient access as we're walking the preds. array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); // Create a PHI node at the start of the block for the PRE'd load value. PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin()); PN->takeName(LI); // Insert new entries into the PHI for each predecessor. A single block may // have multiple entries here. for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E; ++PI) { BasicBlock *P = *PI; AvailablePredsTy::iterator I = std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), std::make_pair(P, (Value*)0)); assert(I != AvailablePreds.end() && I->first == P && "Didn't find entry for predecessor!"); PN->addIncoming(I->second, I->first); } //cerr << "PRE: " << *LI << *PN << "\n"; LI->replaceAllUsesWith(PN); LI->eraseFromParent(); return true; } /// FindMostPopularDest - The specified list contains multiple possible /// threadable destinations. Pick the one that occurs the most frequently in /// the list. static BasicBlock * FindMostPopularDest(BasicBlock *BB, const SmallVectorImpl > &PredToDestList) { assert(!PredToDestList.empty()); // Determine popularity. If there are multiple possible destinations, we // explicitly choose to ignore 'undef' destinations. We prefer to thread // blocks with known and real destinations to threading undef. We'll handle // them later if interesting. DenseMap DestPopularity; for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) if (PredToDestList[i].second) DestPopularity[PredToDestList[i].second]++; // Find the most popular dest. DenseMap::iterator DPI = DestPopularity.begin(); BasicBlock *MostPopularDest = DPI->first; unsigned Popularity = DPI->second; SmallVector SamePopularity; for (++DPI; DPI != DestPopularity.end(); ++DPI) { // If the popularity of this entry isn't higher than the popularity we've // seen so far, ignore it. if (DPI->second < Popularity) ; // ignore. else if (DPI->second == Popularity) { // If it is the same as what we've seen so far, keep track of it. SamePopularity.push_back(DPI->first); } else { // If it is more popular, remember it. SamePopularity.clear(); MostPopularDest = DPI->first; Popularity = DPI->second; } } // Okay, now we know the most popular destination. If there is more than // destination, we need to determine one. This is arbitrary, but we need // to make a deterministic decision. Pick the first one that appears in the // successor list. if (!SamePopularity.empty()) { SamePopularity.push_back(MostPopularDest); TerminatorInst *TI = BB->getTerminator(); for (unsigned i = 0; ; ++i) { assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); if (std::find(SamePopularity.begin(), SamePopularity.end(), TI->getSuccessor(i)) == SamePopularity.end()) continue; MostPopularDest = TI->getSuccessor(i); break; } } // Okay, we have finally picked the most popular destination. return MostPopularDest; } bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) { // If threading this would thread across a loop header, don't even try to // thread the edge. if (LoopHeaders.count(BB)) return false; SmallVector, 8> PredValues; if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues)) return false; assert(!PredValues.empty() && "ComputeValueKnownInPredecessors returned true with no values"); DEBUG(dbgs() << "IN BB: " << *BB; for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { dbgs() << " BB '" << BB->getName() << "': FOUND condition = "; if (PredValues[i].first) dbgs() << *PredValues[i].first; else dbgs() << "UNDEF"; dbgs() << " for pred '" << PredValues[i].second->getName() << "'.\n"; }); // Decide what we want to thread through. Convert our list of known values to // a list of known destinations for each pred. This also discards duplicate // predecessors and keeps track of the undefined inputs (which are represented // as a null dest in the PredToDestList). SmallPtrSet SeenPreds; SmallVector, 16> PredToDestList; BasicBlock *OnlyDest = 0; BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { BasicBlock *Pred = PredValues[i].second; if (!SeenPreds.insert(Pred)) continue; // Duplicate predecessor entry. // If the predecessor ends with an indirect goto, we can't change its // destination. if (isa(Pred->getTerminator())) continue; ConstantInt *Val = PredValues[i].first; BasicBlock *DestBB; if (Val == 0) // Undef. DestBB = 0; else if (BranchInst *BI = dyn_cast(BB->getTerminator())) DestBB = BI->getSuccessor(Val->isZero()); else { SwitchInst *SI = cast(BB->getTerminator()); DestBB = SI->getSuccessor(SI->findCaseValue(Val)); } // If we have exactly one destination, remember it for efficiency below. if (i == 0) OnlyDest = DestBB; else if (OnlyDest != DestBB) OnlyDest = MultipleDestSentinel; PredToDestList.push_back(std::make_pair(Pred, DestBB)); } // If all edges were unthreadable, we fail. if (PredToDestList.empty()) return false; // Determine which is the most common successor. If we have many inputs and // this block is a switch, we want to start by threading the batch that goes // to the most popular destination first. If we only know about one // threadable destination (the common case) we can avoid this. BasicBlock *MostPopularDest = OnlyDest; if (MostPopularDest == MultipleDestSentinel) MostPopularDest = FindMostPopularDest(BB, PredToDestList); // Now that we know what the most popular destination is, factor all // predecessors that will jump to it into a single predecessor. SmallVector PredsToFactor; for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) if (PredToDestList[i].second == MostPopularDest) { BasicBlock *Pred = PredToDestList[i].first; // This predecessor may be a switch or something else that has multiple // edges to the block. Factor each of these edges by listing them // according to # occurrences in PredsToFactor. TerminatorInst *PredTI = Pred->getTerminator(); for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) if (PredTI->getSuccessor(i) == BB) PredsToFactor.push_back(Pred); } // If the threadable edges are branching on an undefined value, we get to pick // the destination that these predecessors should get to. if (MostPopularDest == 0) MostPopularDest = BB->getTerminator()-> getSuccessor(GetBestDestForJumpOnUndef(BB)); // Ok, try to thread it! return ThreadEdge(BB, PredsToFactor, MostPopularDest); } /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on /// a PHI node in the current block. See if there are any simplifications we /// can do based on inputs to the phi node. /// bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { BasicBlock *BB = PN->getParent(); // TODO: We could make use of this to do it once for blocks with common PHI // values. SmallVector PredBBs; PredBBs.resize(1); // If any of the predecessor blocks end in an unconditional branch, we can // *duplicate* the conditional branch into that block in order to further // encourage jump threading and to eliminate cases where we have branch on a // phi of an icmp (branch on icmp is much better). for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *PredBB = PN->getIncomingBlock(i); if (BranchInst *PredBr = dyn_cast(PredBB->getTerminator())) if (PredBr->isUnconditional()) { PredBBs[0] = PredBB; // Try to duplicate BB into PredBB. if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) return true; } } return false; } /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on /// a xor instruction in the current block. See if there are any /// simplifications we can do based on inputs to the xor. /// bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { BasicBlock *BB = BO->getParent(); // If either the LHS or RHS of the xor is a constant, don't do this // optimization. if (isa(BO->getOperand(0)) || isa(BO->getOperand(1))) return false; // If the first instruction in BB isn't a phi, we won't be able to infer // anything special about any particular predecessor. if (!isa(BB->front())) return false; // If we have a xor as the branch input to this block, and we know that the // LHS or RHS of the xor in any predecessor is true/false, then we can clone // the condition into the predecessor and fix that value to true, saving some // logical ops on that path and encouraging other paths to simplify. // // This copies something like this: // // BB: // %X = phi i1 [1], [%X'] // %Y = icmp eq i32 %A, %B // %Z = xor i1 %X, %Y // br i1 %Z, ... // // Into: // BB': // %Y = icmp ne i32 %A, %B // br i1 %Z, ... SmallVector, 8> XorOpValues; bool isLHS = true; if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) { assert(XorOpValues.empty()); if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues)) return false; isLHS = false; } assert(!XorOpValues.empty() && "ComputeValueKnownInPredecessors returned true with no values"); // Scan the information to see which is most popular: true or false. The // predecessors can be of the set true, false, or undef. unsigned NumTrue = 0, NumFalse = 0; for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { if (!XorOpValues[i].first) continue; // Ignore undefs for the count. if (XorOpValues[i].first->isZero()) ++NumFalse; else ++NumTrue; } // Determine which value to split on, true, false, or undef if neither. ConstantInt *SplitVal = 0; if (NumTrue > NumFalse) SplitVal = ConstantInt::getTrue(BB->getContext()); else if (NumTrue != 0 || NumFalse != 0) SplitVal = ConstantInt::getFalse(BB->getContext()); // Collect all of the blocks that this can be folded into so that we can // factor this once and clone it once. SmallVector BlocksToFoldInto; for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue; BlocksToFoldInto.push_back(XorOpValues[i].second); } // If we inferred a value for all of the predecessors, then duplication won't // help us. However, we can just replace the LHS or RHS with the constant. if (BlocksToFoldInto.size() == cast(BB->front()).getNumIncomingValues()) { if (SplitVal == 0) { // If all preds provide undef, just nuke the xor, because it is undef too. BO->replaceAllUsesWith(UndefValue::get(BO->getType())); BO->eraseFromParent(); } else if (SplitVal->isZero()) { // If all preds provide 0, replace the xor with the other input. BO->replaceAllUsesWith(BO->getOperand(isLHS)); BO->eraseFromParent(); } else { // If all preds provide 1, set the computed value to 1. BO->setOperand(!isLHS, SplitVal); } return true; } // Try to duplicate BB into PredBB. return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); } /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new /// predecessor to the PHIBB block. If it has PHI nodes, add entries for /// NewPred using the entries from OldPred (suitably mapped). static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, BasicBlock *OldPred, BasicBlock *NewPred, DenseMap &ValueMap) { for (BasicBlock::iterator PNI = PHIBB->begin(); PHINode *PN = dyn_cast(PNI); ++PNI) { // Ok, we have a PHI node. Figure out what the incoming value was for the // DestBlock. Value *IV = PN->getIncomingValueForBlock(OldPred); // Remap the value if necessary. if (Instruction *Inst = dyn_cast(IV)) { DenseMap::iterator I = ValueMap.find(Inst); if (I != ValueMap.end()) IV = I->second; } PN->addIncoming(IV, NewPred); } } /// ThreadEdge - We have decided that it is safe and profitable to factor the /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB /// across BB. Transform the IR to reflect this change. bool JumpThreading::ThreadEdge(BasicBlock *BB, const SmallVectorImpl &PredBBs, BasicBlock *SuccBB) { // If threading to the same block as we come from, we would infinite loop. if (SuccBB == BB) { DEBUG(dbgs() << " Not threading across BB '" << BB->getName() << "' - would thread to self!\n"); return false; } // If threading this would thread across a loop header, don't thread the edge. // See the comments above FindLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB)) { DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() << "' to dest BB '" << SuccBB->getName() << "' - it might create an irreducible loop!\n"); return false; } unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); if (JumpThreadCost > Threshold) { DEBUG(dbgs() << " Not threading BB '" << BB->getName() << "' - Cost is too high: " << JumpThreadCost << "\n"); return false; } // And finally, do it! Start by factoring the predecessors is needed. BasicBlock *PredBB; if (PredBBs.size() == 1) PredBB = PredBBs[0]; else { DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), ".thr_comm", this); } // And finally, do it! DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" << SuccBB->getName() << "' with cost: " << JumpThreadCost << ", across block:\n " << *BB << "\n"); if (LVI) LVI->threadEdge(PredBB, BB, SuccBB); // We are going to have to map operands from the original BB block to the new // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to // account for entry from PredBB. DenseMap ValueMapping; BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+".thread", BB->getParent(), BB); NewBB->moveAfter(PredBB); BasicBlock::iterator BI = BB->begin(); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); // Clone the non-phi instructions of BB into NewBB, keeping track of the // mapping and using it to remap operands in the cloned instructions. for (; !isa(BI); ++BI) { Instruction *New = BI->clone(); New->setName(BI->getName()); NewBB->getInstList().push_back(New); ValueMapping[BI] = New; // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (Instruction *Inst = dyn_cast(New->getOperand(i))) { DenseMap::iterator I = ValueMapping.find(Inst); if (I != ValueMapping.end()) New->setOperand(i, I->second); } } // We didn't copy the terminator from BB over to NewBB, because there is now // an unconditional jump to SuccBB. Insert the unconditional jump. BranchInst::Create(SuccBB, NewBB); // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the // PHI nodes for NewBB now. AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); // If there were values defined in BB that are used outside the block, then we // now have to update all uses of the value to use either the original value, // the cloned value, or some PHI derived value. This can require arbitrary // PHI insertion, of which we are prepared to do, clean these up now. SSAUpdater SSAUpdate; SmallVector UsesToRename; for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { // Scan all uses of this instruction to see if it is used outside of its // block, and if so, record them in UsesToRename. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); if (PHINode *UserPN = dyn_cast(User)) { if (UserPN->getIncomingBlock(UI) == BB) continue; } else if (User->getParent() == BB) continue; UsesToRename.push_back(&UI.getUse()); } // If there are no uses outside the block, we're done with this instruction. if (UsesToRename.empty()) continue; DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); // We found a use of I outside of BB. Rename all uses of I that are outside // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks // with the two values we know. SSAUpdate.Initialize(I); SSAUpdate.AddAvailableValue(BB, I); SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); while (!UsesToRename.empty()) SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); DEBUG(dbgs() << "\n"); } // Ok, NewBB is good to go. Update the terminator of PredBB to jump to // NewBB instead of BB. This eliminates predecessors from BB, which requires // us to simplify any PHI nodes in BB. TerminatorInst *PredTerm = PredBB->getTerminator(); for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) if (PredTerm->getSuccessor(i) == BB) { RemovePredecessorAndSimplify(BB, PredBB, TD); PredTerm->setSuccessor(i, NewBB); } // At this point, the IR is fully up to date and consistent. Do a quick scan // over the new instructions and zap any that are constants or dead. This // frequently happens because of phi translation. SimplifyInstructionsInBlock(NewBB, TD); // Threaded an edge! ++NumThreads; return true; } /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch /// to BB which contains an i1 PHI node and a conditional branch on that PHI. /// If we can duplicate the contents of BB up into PredBB do so now, this /// improves the odds that the branch will be on an analyzable instruction like /// a compare. bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, const SmallVectorImpl &PredBBs) { assert(!PredBBs.empty() && "Can't handle an empty set"); // If BB is a loop header, then duplicating this block outside the loop would // cause us to transform this into an irreducible loop, don't do this. // See the comments above FindLoopHeaders for justifications and caveats. if (LoopHeaders.count(BB)) { DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() << "' into predecessor block '" << PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"); return false; } unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); if (DuplicationCost > Threshold) { DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() << "' - Cost is too high: " << DuplicationCost << "\n"); return false; } // And finally, do it! Start by factoring the predecessors is needed. BasicBlock *PredBB; if (PredBBs.size() == 1) PredBB = PredBBs[0]; else { DEBUG(dbgs() << " Factoring out " << PredBBs.size() << " common predecessors.\n"); PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), ".thr_comm", this); } // Okay, we decided to do this! Clone all the instructions in BB onto the end // of PredBB. DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" << PredBB->getName() << "' to eliminate branch on phi. Cost: " << DuplicationCost << " block is:" << *BB << "\n"); // Unless PredBB ends with an unconditional branch, split the edge so that we // can just clone the bits from BB into the end of the new PredBB. BranchInst *OldPredBranch = dyn_cast(PredBB->getTerminator()); if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { PredBB = SplitEdge(PredBB, BB, this); OldPredBranch = cast(PredBB->getTerminator()); } // We are going to have to map operands from the original BB block into the // PredBB block. Evaluate PHI nodes in BB. DenseMap ValueMapping; BasicBlock::iterator BI = BB->begin(); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); // Clone the non-phi instructions of BB into PredBB, keeping track of the // mapping and using it to remap operands in the cloned instructions. for (; BI != BB->end(); ++BI) { Instruction *New = BI->clone(); // Remap operands to patch up intra-block references. for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) if (Instruction *Inst = dyn_cast(New->getOperand(i))) { DenseMap::iterator I = ValueMapping.find(Inst); if (I != ValueMapping.end()) New->setOperand(i, I->second); } // If this instruction can be simplified after the operands are updated, // just use the simplified value instead. This frequently happens due to // phi translation. if (Value *IV = SimplifyInstruction(New, TD)) { delete New; ValueMapping[BI] = IV; } else { // Otherwise, insert the new instruction into the block. New->setName(BI->getName()); PredBB->getInstList().insert(OldPredBranch, New); ValueMapping[BI] = New; } } // Check to see if the targets of the branch had PHI nodes. If so, we need to // add entries to the PHI nodes for branch from PredBB now. BranchInst *BBBranch = cast(BB->getTerminator()); AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, ValueMapping); AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, ValueMapping); // If there were values defined in BB that are used outside the block, then we // now have to update all uses of the value to use either the original value, // the cloned value, or some PHI derived value. This can require arbitrary // PHI insertion, of which we are prepared to do, clean these up now. SSAUpdater SSAUpdate; SmallVector UsesToRename; for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { // Scan all uses of this instruction to see if it is used outside of its // block, and if so, record them in UsesToRename. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast(*UI); if (PHINode *UserPN = dyn_cast(User)) { if (UserPN->getIncomingBlock(UI) == BB) continue; } else if (User->getParent() == BB) continue; UsesToRename.push_back(&UI.getUse()); } // If there are no uses outside the block, we're done with this instruction. if (UsesToRename.empty()) continue; DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); // We found a use of I outside of BB. Rename all uses of I that are outside // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks // with the two values we know. SSAUpdate.Initialize(I); SSAUpdate.AddAvailableValue(BB, I); SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); while (!UsesToRename.empty()) SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); DEBUG(dbgs() << "\n"); } // PredBB no longer jumps to BB, remove entries in the PHI node for the edge // that we nuked. RemovePredecessorAndSimplify(BB, PredBB, TD); // Remove the unconditional branch at the end of the PredBB block. OldPredBranch->eraseFromParent(); ++NumDupes; return true; }