//===-------- SplitKit.h - Toolkit for splitting live ranges ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the SplitAnalysis class as well as mutator functions for // live range splitting. // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/CodeGen/SlotIndexes.h" namespace llvm { class LiveInterval; class LiveIntervals; class LiveRangeEdit; class MachineInstr; class MachineLoop; class MachineLoopInfo; class MachineRegisterInfo; class TargetInstrInfo; class TargetRegisterInfo; class VirtRegMap; class VNInfo; class raw_ostream; /// At some point we should just include MachineDominators.h: class MachineDominatorTree; template class DomTreeNodeBase; typedef DomTreeNodeBase MachineDomTreeNode; /// SplitAnalysis - Analyze a LiveInterval, looking for live range splitting /// opportunities. class SplitAnalysis { public: const MachineFunction &MF; const LiveIntervals &LIS; const MachineLoopInfo &Loops; const TargetInstrInfo &TII; // Instructions using the the current register. typedef SmallPtrSet InstrPtrSet; InstrPtrSet UsingInstrs; // Sorted slot indexes of using instructions. SmallVector UseSlots; // The number of instructions using CurLI in each basic block. typedef DenseMap BlockCountMap; BlockCountMap UsingBlocks; // The number of basic block using CurLI in each loop. typedef DenseMap LoopCountMap; LoopCountMap UsingLoops; private: // Current live interval. const LiveInterval *CurLI; // Sumarize statistics by counting instructions using CurLI. void analyzeUses(); /// canAnalyzeBranch - Return true if MBB ends in a branch that can be /// analyzed. bool canAnalyzeBranch(const MachineBasicBlock *MBB); public: SplitAnalysis(const MachineFunction &mf, const LiveIntervals &lis, const MachineLoopInfo &mli); /// analyze - set CurLI to the specified interval, and analyze how it may be /// split. void analyze(const LiveInterval *li); /// clear - clear all data structures so SplitAnalysis is ready to analyze a /// new interval. void clear(); /// hasUses - Return true if MBB has any uses of CurLI. bool hasUses(const MachineBasicBlock *MBB) const { return UsingBlocks.lookup(MBB); } typedef SmallPtrSet BlockPtrSet; typedef SmallPtrSet LoopPtrSet; // Print a set of blocks with use counts. void print(const BlockPtrSet&, raw_ostream&) const; // Sets of basic blocks surrounding a machine loop. struct LoopBlocks { BlockPtrSet Loop; // Blocks in the loop. BlockPtrSet Preds; // Loop predecessor blocks. BlockPtrSet Exits; // Loop exit blocks. void clear() { Loop.clear(); Preds.clear(); Exits.clear(); } }; // Print loop blocks with use counts. void print(const LoopBlocks&, raw_ostream&) const; // Calculate the block sets surrounding the loop. void getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks); /// LoopPeripheralUse - how is a variable used in and around a loop? /// Peripheral blocks are the loop predecessors and exit blocks. enum LoopPeripheralUse { ContainedInLoop, // All uses are inside the loop. SinglePeripheral, // At most one instruction per peripheral block. MultiPeripheral, // Multiple instructions in some peripheral blocks. OutsideLoop // Uses outside loop periphery. }; /// analyzeLoopPeripheralUse - Return an enum describing how CurLI is used in /// and around the Loop. LoopPeripheralUse analyzeLoopPeripheralUse(const LoopBlocks&); /// getCriticalExits - It may be necessary to partially break critical edges /// leaving the loop if an exit block has phi uses of CurLI. Collect the exit /// blocks that need special treatment into CriticalExits. void getCriticalExits(const LoopBlocks &Blocks, BlockPtrSet &CriticalExits); /// canSplitCriticalExits - Return true if it is possible to insert new exit /// blocks before the blocks in CriticalExits. bool canSplitCriticalExits(const LoopBlocks &Blocks, BlockPtrSet &CriticalExits); /// getCriticalPreds - Get the set of loop predecessors with critical edges to /// blocks outside the loop that have CurLI live in. We don't have to break /// these edges, but they do require special treatment. void getCriticalPreds(const LoopBlocks &Blocks, BlockPtrSet &CriticalPreds); /// getSplitLoops - Get the set of loops that have CurLI uses and would be /// profitable to split. void getSplitLoops(LoopPtrSet&); /// getBestSplitLoop - Return the loop where CurLI may best be split to a /// separate register, or NULL. const MachineLoop *getBestSplitLoop(); /// isBypassLoop - Return true if CurLI is live through Loop and has no uses /// inside the loop. Bypass loops are candidates for splitting because it can /// prevent interference inside the loop. bool isBypassLoop(const MachineLoop *Loop); /// getBypassLoops - Get all the maximal bypass loops. These are the bypass /// loops whose parent is not a bypass loop. void getBypassLoops(LoopPtrSet&); /// getMultiUseBlocks - Add basic blocks to Blocks that may benefit from /// having CurLI split to a new live interval. Return true if Blocks can be /// passed to SplitEditor::splitSingleBlocks. bool getMultiUseBlocks(BlockPtrSet &Blocks); /// getBlockForInsideSplit - If CurLI is contained inside a single basic /// block, and it would pay to subdivide the interval inside that block, /// return it. Otherwise return NULL. The returned block can be passed to /// SplitEditor::splitInsideBlock. const MachineBasicBlock *getBlockForInsideSplit(); }; /// LiveIntervalMap - Map values from a large LiveInterval into a small /// interval that is a subset. Insert phi-def values as needed. This class is /// used by SplitEditor to create new smaller LiveIntervals. /// /// ParentLI is the larger interval, LI is the subset interval. Every value /// in LI corresponds to exactly one value in ParentLI, and the live range /// of the value is contained within the live range of the ParentLI value. /// Values in ParentLI may map to any number of OpenLI values, including 0. class LiveIntervalMap { LiveIntervals &LIS; MachineDominatorTree &MDT; // The parent interval is never changed. const LiveInterval &ParentLI; // The child interval's values are fully contained inside ParentLI values. LiveInterval *LI; typedef DenseMap ValueMap; // Map ParentLI values to simple values in LI that are defined at the same // SlotIndex, or NULL for ParentLI values that have complex LI defs. // Note there is a difference between values mapping to NULL (complex), and // values not present (unknown/unmapped). ValueMap Values; typedef std::pair LiveOutPair; typedef DenseMap LiveOutMap; // LiveOutCache - Map each basic block where LI is live out to the live-out // value and its defining block. One of these conditions shall be true: // // 1. !LiveOutCache.count(MBB) // 2. LiveOutCache[MBB].second.getNode() == MBB // 3. forall P in preds(MBB): LiveOutCache[P] == LiveOutCache[MBB] // // This is only a cache, the values can be computed as: // // VNI = LI->getVNInfoAt(LIS.getMBBEndIdx(MBB)) // Node = mbt_[LIS.getMBBFromIndex(VNI->def)] // // The cache is also used as a visiteed set by mapValue(). LiveOutMap LiveOutCache; // Dump the live-out cache to dbgs(). void dumpCache(); public: LiveIntervalMap(LiveIntervals &lis, MachineDominatorTree &mdt, const LiveInterval &parentli) : LIS(lis), MDT(mdt), ParentLI(parentli), LI(0) {} /// reset - clear all data structures and start a new live interval. void reset(LiveInterval *); /// getLI - return the current live interval. LiveInterval *getLI() const { return LI; } /// defValue - define a value in LI from the ParentLI value VNI and Idx. /// Idx does not have to be ParentVNI->def, but it must be contained within /// ParentVNI's live range in ParentLI. /// Return the new LI value. VNInfo *defValue(const VNInfo *ParentVNI, SlotIndex Idx); /// mapValue - map ParentVNI to the corresponding LI value at Idx. It is /// assumed that ParentVNI is live at Idx. /// If ParentVNI has not been defined by defValue, it is assumed that /// ParentVNI->def dominates Idx. /// If ParentVNI has been defined by defValue one or more times, a value that /// dominates Idx will be returned. This may require creating extra phi-def /// values and adding live ranges to LI. /// If simple is not NULL, *simple will indicate if ParentVNI is a simply /// mapped value. VNInfo *mapValue(const VNInfo *ParentVNI, SlotIndex Idx, bool *simple = 0); // extendTo - Find the last LI value defined in MBB at or before Idx. The // parentli is assumed to be live at Idx. Extend the live range to include // Idx. Return the found VNInfo, or NULL. VNInfo *extendTo(const MachineBasicBlock *MBB, SlotIndex Idx); /// isMapped - Return true is ParentVNI is a known mapped value. It may be a /// simple 1-1 mapping or a complex mapping to later defs. bool isMapped(const VNInfo *ParentVNI) const { return Values.count(ParentVNI); } /// isComplexMapped - Return true if ParentVNI has received new definitions /// with defValue. bool isComplexMapped(const VNInfo *ParentVNI) const; // addSimpleRange - Add a simple range from ParentLI to LI. // ParentVNI must be live in the [Start;End) interval. void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI); /// addRange - Add live ranges to LI where [Start;End) intersects ParentLI. /// All needed values whose def is not inside [Start;End) must be defined /// beforehand so mapValue will work. void addRange(SlotIndex Start, SlotIndex End); }; /// SplitEditor - Edit machine code and LiveIntervals for live range /// splitting. /// /// - Create a SplitEditor from a SplitAnalysis. /// - Start a new live interval with openIntv. /// - Mark the places where the new interval is entered using enterIntv* /// - Mark the ranges where the new interval is used with useIntv* /// - Mark the places where the interval is exited with exitIntv*. /// - Finish the current interval with closeIntv and repeat from 2. /// - Rewrite instructions with finish(). /// class SplitEditor { SplitAnalysis &sa_; LiveIntervals &LIS; VirtRegMap &VRM; MachineRegisterInfo &MRI; const TargetInstrInfo &TII; const TargetRegisterInfo &TRI; /// Edit - The current parent register and new intervals created. LiveRangeEdit &Edit; /// DupLI - Created as a copy of CurLI, ranges are carved out as new /// intervals get added through openIntv / closeIntv. This is used to avoid /// editing CurLI. LiveIntervalMap DupLI; /// Currently open LiveInterval. LiveIntervalMap OpenLI; /// defFromParent - Define Reg from ParentVNI at UseIdx using either /// rematerialization or a COPY from parent. Return the new value. VNInfo *defFromParent(LiveIntervalMap &Reg, VNInfo *ParentVNI, SlotIndex UseIdx, MachineBasicBlock &MBB, MachineBasicBlock::iterator I); /// intervalsLiveAt - Return true if any member of intervals_ is live at Idx. bool intervalsLiveAt(SlotIndex Idx) const; /// Values in CurLI whose live range has been truncated when entering an open /// li. SmallPtrSet truncatedValues; /// addTruncSimpleRange - Add the given simple range to DupLI after /// truncating any overlap with intervals_. void addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI); /// criticalPreds_ - Set of basic blocks where both dupli and OpenLI should be /// live out because of a critical edge. SplitAnalysis::BlockPtrSet criticalPreds_; /// computeRemainder - Compute the dupli liveness as the complement of all the /// new intervals. void computeRemainder(); /// rewrite - Rewrite all uses of reg to use the new registers. void rewrite(unsigned reg); public: /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. /// Newly created intervals will be appended to newIntervals. SplitEditor(SplitAnalysis &SA, LiveIntervals&, VirtRegMap&, MachineDominatorTree&, LiveRangeEdit&); /// getAnalysis - Get the corresponding analysis. SplitAnalysis &getAnalysis() { return sa_; } /// Create a new virtual register and live interval. void openIntv(); /// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is /// not live before Idx, a COPY is not inserted. void enterIntvBefore(SlotIndex Idx); /// enterIntvAtEnd - Enter OpenLI at the end of MBB. void enterIntvAtEnd(MachineBasicBlock &MBB); /// useIntv - indicate that all instructions in MBB should use OpenLI. void useIntv(const MachineBasicBlock &MBB); /// useIntv - indicate that all instructions in range should use OpenLI. void useIntv(SlotIndex Start, SlotIndex End); /// leaveIntvAfter - Leave OpenLI after the instruction at Idx. void leaveIntvAfter(SlotIndex Idx); /// leaveIntvAtTop - Leave the interval at the top of MBB. /// Currently, only one value can leave the interval. void leaveIntvAtTop(MachineBasicBlock &MBB); /// closeIntv - Indicate that we are done editing the currently open /// LiveInterval, and ranges can be trimmed. void closeIntv(); /// finish - after all the new live ranges have been created, compute the /// remaining live range, and rewrite instructions to use the new registers. void finish(); // ===--- High level methods ---=== /// splitAroundLoop - Split CurLI into a separate live interval inside /// the loop. void splitAroundLoop(const MachineLoop*); /// splitSingleBlocks - Split CurLI into a separate live interval inside each /// basic block in Blocks. void splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks); /// splitInsideBlock - Split CurLI into multiple intervals inside MBB. void splitInsideBlock(const MachineBasicBlock *); }; }