//===- llvm/System/Unix/Program.cpp -----------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Reid Spencer and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Unix specific portion of the Program class. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// //=== WARNING: Implementation here must contain only generic UNIX code that //=== is guaranteed to work on *all* UNIX variants. //===----------------------------------------------------------------------===// #include #include "Unix.h" #include #if HAVE_SYS_STAT_H #include #endif #if HAVE_SIGNAL_H #include #endif #if HAVE_FCNTL_H #include #endif extern char** environ; namespace llvm { using namespace sys; // This function just uses the PATH environment variable to find the program. Path Program::FindProgramByName(const std::string& progName) { // Check some degenerate cases if (progName.length() == 0) // no program return Path(); Path temp; if (!temp.set(progName)) // invalid name return Path(); // FIXME: have to check for absolute filename - we cannot assume anything // about "." being in $PATH if (temp.canExecute()) // already executable as is return temp; // At this point, the file name is valid and its not executable // Get the path. If its empty, we can't do anything to find it. const char *PathStr = getenv("PATH"); if (PathStr == 0) return Path(); // Now we have a colon separated list of directories to search; try them. unsigned PathLen = strlen(PathStr); while (PathLen) { // Find the first colon... const char *Colon = std::find(PathStr, PathStr+PathLen, ':'); // Check to see if this first directory contains the executable... Path FilePath; if (FilePath.set(std::string(PathStr,Colon))) { FilePath.appendComponent(progName); if (FilePath.canExecute()) return FilePath; // Found the executable! } // Nope it wasn't in this directory, check the next path in the list! PathLen -= Colon-PathStr; PathStr = Colon; // Advance past duplicate colons while (*PathStr == ':') { PathStr++; PathLen--; } } return Path(); } static void RedirectFD(const std::string &File, int FD) { if (File.empty()) return; // Noop // Open the file int InFD = open(File.c_str(), FD == 0 ? O_RDONLY : O_WRONLY|O_CREAT, 0666); if (InFD == -1) { ThrowErrno("Cannot open file '" + File + "' for " + (FD == 0 ? "input" : "output") + "!\n"); } dup2(InFD, FD); // Install it as the requested FD close(InFD); // Close the original FD } static bool Timeout = false; static void TimeOutHandler(int Sig) { Timeout = true; } int Program::ExecuteAndWait(const Path& path, const char** args, const char** envp, const Path** redirects, unsigned secondsToWait ) { if (!path.canExecute()) throw path.toString() + " is not executable"; #ifdef HAVE_SYS_WAIT_H // Create a child process. int child = fork(); switch (child) { // An error occured: Return to the caller. case -1: ThrowErrno(std::string("Couldn't execute program '") + path.toString() + "'"); break; // Child process: Execute the program. case 0: { // Redirect file descriptors... if (redirects) { if (redirects[0]) if (redirects[0]->isEmpty()) RedirectFD("/dev/null",0); else RedirectFD(redirects[0]->toString(), 0); if (redirects[1]) if (redirects[1]->isEmpty()) RedirectFD("/dev/null",1); else RedirectFD(redirects[1]->toString(), 1); if (redirects[1] && redirects[2] && *(redirects[1]) != *(redirects[2])) { if (redirects[2]->isEmpty()) RedirectFD("/dev/null",2); else RedirectFD(redirects[2]->toString(), 2); } else { dup2(1, 2); } } // Set up the environment char** env = environ; if (envp != 0) env = (char**) envp; // Execute! execve (path.c_str(), (char** const)args, env); // If the execve() failed, we should exit and let the parent pick up // our non-zero exit status. exit (errno); } // Parent process: Break out of the switch to do our processing. default: break; } // Make sure stderr and stdout have been flushed std::cerr << std::flush; std::cout << std::flush; fsync(1); fsync(2); struct sigaction Act, Old; // Install a timeout handler. if (secondsToWait) { Timeout = false; Act.sa_sigaction = 0; Act.sa_handler = TimeOutHandler; sigemptyset(&Act.sa_mask); Act.sa_flags = 0; sigaction(SIGALRM, &Act, &Old); alarm(secondsToWait); } // Parent process: Wait for the child process to terminate. int status; while (wait(&status) != child) if (secondsToWait && errno == EINTR) { // Kill the child. kill(child, SIGKILL); // Turn off the alarm and restore the signal handler alarm(0); sigaction(SIGALRM, &Old, 0); // Wait for child to die if (wait(&status) != child) ThrowErrno("Child timedout but wouldn't die"); return -1; // Timeout detected } else { ThrowErrno("Error waiting for child process"); } // We exited normally without timeout, so turn off the timer. if (secondsToWait) { alarm(0); sigaction(SIGALRM, &Old, 0); } // Return the proper exit status. 0=success, >0 is programs' exit status, // <0 means a signal was returned, -9999999 means the program dumped core. int result = 0; if (WIFEXITED (status)) result = WEXITSTATUS(status); else if (WIFSIGNALED(status)) result = 0 - WTERMSIG(status); #ifdef WCOREDUMP if (WCOREDUMP(status)) result |= 0x01000000; #endif return result; #else return -99; #endif } void Program::ChangeStdinToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. } void Program::ChangeStdoutToBinary(){ // Do nothing, as Unix doesn't differentiate between text and binary. } }