//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs various transformations related to eliminating memcpy // calls, or transforming sets of stores into memset's. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "memcpyopt" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Instructions.h" #include "llvm/ParameterAttributes.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetData.h" #include using namespace llvm; STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); STATISTIC(NumMemSetInfer, "Number of memsets inferred"); /// isBytewiseValue - If the specified value can be set by repeating the same /// byte in memory, return the i8 value that it is represented with. This is /// true for all i8 values obviously, but is also true for i32 0, i32 -1, /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated /// byte store (e.g. i16 0x1234), return null. static Value *isBytewiseValue(Value *V) { // All byte-wide stores are splatable, even of arbitrary variables. if (V->getType() == Type::Int8Ty) return V; // Constant float and double values can be handled as integer values if the // corresponding integer value is "byteable". An important case is 0.0. if (ConstantFP *CFP = dyn_cast(V)) { if (CFP->getType() == Type::FloatTy) V = ConstantExpr::getBitCast(CFP, Type::Int32Ty); if (CFP->getType() == Type::DoubleTy) V = ConstantExpr::getBitCast(CFP, Type::Int64Ty); // Don't handle long double formats, which have strange constraints. } // We can handle constant integers that are power of two in size and a // multiple of 8 bits. if (ConstantInt *CI = dyn_cast(V)) { unsigned Width = CI->getBitWidth(); if (isPowerOf2_32(Width) && Width > 8) { // We can handle this value if the recursive binary decomposition is the // same at all levels. APInt Val = CI->getValue(); APInt Val2; while (Val.getBitWidth() != 8) { unsigned NextWidth = Val.getBitWidth()/2; Val2 = Val.lshr(NextWidth); Val2.trunc(Val.getBitWidth()/2); Val.trunc(Val.getBitWidth()/2); // If the top/bottom halves aren't the same, reject it. if (Val != Val2) return 0; } return ConstantInt::get(Val); } } // Conceptually, we could handle things like: // %a = zext i8 %X to i16 // %b = shl i16 %a, 8 // %c = or i16 %a, %b // but until there is an example that actually needs this, it doesn't seem // worth worrying about. return 0; } static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx, bool &VariableIdxFound, TargetData &TD) { // Skip over the first indices. gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1; i != Idx; ++i, ++GTI) /*skip along*/; // Compute the offset implied by the rest of the indices. int64_t Offset = 0; for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { ConstantInt *OpC = dyn_cast(GEP->getOperand(i)); if (OpC == 0) return VariableIdxFound = true; if (OpC->isZero()) continue; // No offset. // Handle struct indices, which add their field offset to the pointer. if (const StructType *STy = dyn_cast(*GTI)) { Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); continue; } // Otherwise, we have a sequential type like an array or vector. Multiply // the index by the ElementSize. uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()); Offset += Size*OpC->getSExtValue(); } return Offset; } /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a /// constant offset, and return that constant offset. For example, Ptr1 might /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8. static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, TargetData &TD) { // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical // base. After that base, they may have some number of common (and // potentially variable) indices. After that they handle some constant // offset, which determines their offset from each other. At this point, we // handle no other case. GetElementPtrInst *GEP1 = dyn_cast(Ptr1); GetElementPtrInst *GEP2 = dyn_cast(Ptr2); if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) return false; // Skip any common indices and track the GEP types. unsigned Idx = 1; for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) break; bool VariableIdxFound = false; int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD); int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD); if (VariableIdxFound) return false; Offset = Offset2-Offset1; return true; } /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. /// This allows us to analyze stores like: /// store 0 -> P+1 /// store 0 -> P+0 /// store 0 -> P+3 /// store 0 -> P+2 /// which sometimes happens with stores to arrays of structs etc. When we see /// the first store, we make a range [1, 2). The second store extends the range /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the /// two ranges into [0, 3) which is memset'able. namespace { struct MemsetRange { // Start/End - A semi range that describes the span that this range covers. // The range is closed at the start and open at the end: [Start, End). int64_t Start, End; /// StartPtr - The getelementptr instruction that points to the start of the /// range. Value *StartPtr; /// Alignment - The known alignment of the first store. unsigned Alignment; /// TheStores - The actual stores that make up this range. SmallVector TheStores; bool isProfitableToUseMemset(const TargetData &TD) const; }; } // end anon namespace bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const { // If we found more than 8 stores to merge or 64 bytes, use memset. if (TheStores.size() >= 8 || End-Start >= 64) return true; // Assume that the code generator is capable of merging pairs of stores // together if it wants to. if (TheStores.size() <= 2) return false; // If we have fewer than 8 stores, it can still be worthwhile to do this. // For example, merging 4 i8 stores into an i32 store is useful almost always. // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the // memset will be split into 2 32-bit stores anyway) and doing so can // pessimize the llvm optimizer. // // Since we don't have perfect knowledge here, make some assumptions: assume // the maximum GPR width is the same size as the pointer size and assume that // this width can be stored. If so, check to see whether we will end up // actually reducing the number of stores used. unsigned Bytes = unsigned(End-Start); unsigned NumPointerStores = Bytes/TD.getPointerSize(); // Assume the remaining bytes if any are done a byte at a time. unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize(); // If we will reduce the # stores (according to this heuristic), do the // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 // etc. return TheStores.size() > NumPointerStores+NumByteStores; } namespace { class MemsetRanges { /// Ranges - A sorted list of the memset ranges. We use std::list here /// because each element is relatively large and expensive to copy. std::list Ranges; typedef std::list::iterator range_iterator; TargetData &TD; public: MemsetRanges(TargetData &td) : TD(td) {} typedef std::list::const_iterator const_iterator; const_iterator begin() const { return Ranges.begin(); } const_iterator end() const { return Ranges.end(); } bool empty() const { return Ranges.empty(); } void addStore(int64_t OffsetFromFirst, StoreInst *SI); }; } // end anon namespace /// addStore - Add a new store to the MemsetRanges data structure. This adds a /// new range for the specified store at the specified offset, merging into /// existing ranges as appropriate. void MemsetRanges::addStore(int64_t Start, StoreInst *SI) { int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType()); // Do a linear search of the ranges to see if this can be joined and/or to // find the insertion point in the list. We keep the ranges sorted for // simplicity here. This is a linear search of a linked list, which is ugly, // however the number of ranges is limited, so this won't get crazy slow. range_iterator I = Ranges.begin(), E = Ranges.end(); while (I != E && Start > I->End) ++I; // We now know that I == E, in which case we didn't find anything to merge // with, or that Start <= I->End. If End < I->Start or I == E, then we need // to insert a new range. Handle this now. if (I == E || End < I->Start) { MemsetRange &R = *Ranges.insert(I, MemsetRange()); R.Start = Start; R.End = End; R.StartPtr = SI->getPointerOperand(); R.Alignment = SI->getAlignment(); R.TheStores.push_back(SI); return; } // This store overlaps with I, add it. I->TheStores.push_back(SI); // At this point, we may have an interval that completely contains our store. // If so, just add it to the interval and return. if (I->Start <= Start && I->End >= End) return; // Now we know that Start <= I->End and End >= I->Start so the range overlaps // but is not entirely contained within the range. // See if the range extends the start of the range. In this case, it couldn't // possibly cause it to join the prior range, because otherwise we would have // stopped on *it*. if (Start < I->Start) { I->Start = Start; I->StartPtr = SI->getPointerOperand(); } // Now we know that Start <= I->End and Start >= I->Start (so the startpoint // is in or right at the end of I), and that End >= I->Start. Extend I out to // End. if (End > I->End) { I->End = End; range_iterator NextI = I;; while (++NextI != E && End >= NextI->Start) { // Merge the range in. I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); if (NextI->End > I->End) I->End = NextI->End; Ranges.erase(NextI); NextI = I; } } } //===----------------------------------------------------------------------===// // MemCpyOpt Pass //===----------------------------------------------------------------------===// namespace { class VISIBILITY_HIDDEN MemCpyOpt : public FunctionPass { bool runOnFunction(Function &F); public: static char ID; // Pass identification, replacement for typeid MemCpyOpt() : FunctionPass((intptr_t)&ID) { } private: // This transformation requires dominator postdominator info virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); AU.addPreserved(); } // Helper fuctions bool processStore(StoreInst *SI, BasicBlock::iterator& BBI); bool processMemCpy(MemCpyInst* M); bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C); bool iterateOnFunction(Function &F); }; char MemCpyOpt::ID = 0; } // createMemCpyOptPass - The public interface to this file... FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } static RegisterPass X("memcpyopt", "MemCpy Optimization"); /// processStore - When GVN is scanning forward over instructions, we look for /// some other patterns to fold away. In particular, this looks for stores to /// neighboring locations of memory. If it sees enough consequtive ones /// (currently 4) it attempts to merge them together into a memcpy/memset. bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator& BBI) { if (SI->isVolatile()) return false; // There are two cases that are interesting for this code to handle: memcpy // and memset. Right now we only handle memset. // Ensure that the value being stored is something that can be memset'able a // byte at a time like "0" or "-1" or any width, as well as things like // 0xA0A0A0A0 and 0.0. Value *ByteVal = isBytewiseValue(SI->getOperand(0)); if (!ByteVal) return false; TargetData &TD = getAnalysis(); AliasAnalysis &AA = getAnalysis(); // Okay, so we now have a single store that can be splatable. Scan to find // all subsequent stores of the same value to offset from the same pointer. // Join these together into ranges, so we can decide whether contiguous blocks // are stored. MemsetRanges Ranges(TD); Value *StartPtr = SI->getPointerOperand(); BasicBlock::iterator BI = SI; for (++BI; !isa(BI); ++BI) { if (isa(BI) || isa(BI)) { // If the call is readnone, ignore it, otherwise bail out. We don't even // allow readonly here because we don't want something like: // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). if (AA.getModRefBehavior(CallSite::get(BI)) == AliasAnalysis::DoesNotAccessMemory) continue; // TODO: If this is a memset, try to join it in. break; } else if (isa(BI) || isa(BI)) break; // If this is a non-store instruction it is fine, ignore it. StoreInst *NextStore = dyn_cast(BI); if (NextStore == 0) continue; // If this is a store, see if we can merge it in. if (NextStore->isVolatile()) break; // Check to see if this stored value is of the same byte-splattable value. if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) break; // Check to see if this store is to a constant offset from the start ptr. int64_t Offset; if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, TD)) break; Ranges.addStore(Offset, NextStore); } // If we have no ranges, then we just had a single store with nothing that // could be merged in. This is a very common case of course. if (Ranges.empty()) return false; // If we had at least one store that could be merged in, add the starting // store as well. We try to avoid this unless there is at least something // interesting as a small compile-time optimization. Ranges.addStore(0, SI); Function *MemSetF = 0; // Now that we have full information about ranges, loop over the ranges and // emit memset's for anything big enough to be worthwhile. bool MadeChange = false; for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { const MemsetRange &Range = *I; if (Range.TheStores.size() == 1) continue; // If it is profitable to lower this range to memset, do so now. if (!Range.isProfitableToUseMemset(TD)) continue; // Otherwise, we do want to transform this! Create a new memset. We put // the memset right before the first instruction that isn't part of this // memset block. This ensure that the memset is dominated by any addressing // instruction needed by the start of the block. BasicBlock::iterator InsertPt = BI; if (MemSetF == 0) MemSetF = Intrinsic::getDeclaration(SI->getParent()->getParent() ->getParent(), Intrinsic::memset_i64); // Get the starting pointer of the block. StartPtr = Range.StartPtr; // Cast the start ptr to be i8* as memset requires. const Type *i8Ptr = PointerType::getUnqual(Type::Int8Ty); if (StartPtr->getType() != i8Ptr) StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getNameStart(), InsertPt); Value *Ops[] = { StartPtr, ByteVal, // Start, value ConstantInt::get(Type::Int64Ty, Range.End-Range.Start), // size ConstantInt::get(Type::Int32Ty, Range.Alignment) // align }; Value *C = CallInst::Create(MemSetF, Ops, Ops+4, "", InsertPt); DEBUG(cerr << "Replace stores:\n"; for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) cerr << *Range.TheStores[i]; cerr << "With: " << *C); C=C; // Don't invalidate the iterator BBI = BI; // Zap all the stores. for (SmallVector::const_iterator SI = Range.TheStores.begin(), SE = Range.TheStores.end(); SI != SE; ++SI) (*SI)->eraseFromParent(); ++NumMemSetInfer; MadeChange = true; } return MadeChange; } /// performCallSlotOptzn - takes a memcpy and a call that it depends on, /// and checks for the possibility of a call slot optimization by having /// the call write its result directly into the destination of the memcpy. bool MemCpyOpt::performCallSlotOptzn(MemCpyInst *cpy, CallInst *C) { // The general transformation to keep in mind is // // call @func(..., src, ...) // memcpy(dest, src, ...) // // -> // // memcpy(dest, src, ...) // call @func(..., dest, ...) // // Since moving the memcpy is technically awkward, we additionally check that // src only holds uninitialized values at the moment of the call, meaning that // the memcpy can be discarded rather than moved. // Deliberately get the source and destination with bitcasts stripped away, // because we'll need to do type comparisons based on the underlying type. Value* cpyDest = cpy->getDest(); Value* cpySrc = cpy->getSource(); CallSite CS = CallSite::get(C); // We need to be able to reason about the size of the memcpy, so we require // that it be a constant. ConstantInt* cpyLength = dyn_cast(cpy->getLength()); if (!cpyLength) return false; // Require that src be an alloca. This simplifies the reasoning considerably. AllocaInst* srcAlloca = dyn_cast(cpySrc); if (!srcAlloca) return false; // Check that all of src is copied to dest. TargetData& TD = getAnalysis(); ConstantInt* srcArraySize = dyn_cast(srcAlloca->getArraySize()); if (!srcArraySize) return false; uint64_t srcSize = TD.getABITypeSize(srcAlloca->getAllocatedType()) * srcArraySize->getZExtValue(); if (cpyLength->getZExtValue() < srcSize) return false; // Check that accessing the first srcSize bytes of dest will not cause a // trap. Otherwise the transform is invalid since it might cause a trap // to occur earlier than it otherwise would. if (AllocaInst* A = dyn_cast(cpyDest)) { // The destination is an alloca. Check it is larger than srcSize. ConstantInt* destArraySize = dyn_cast(A->getArraySize()); if (!destArraySize) return false; uint64_t destSize = TD.getABITypeSize(A->getAllocatedType()) * destArraySize->getZExtValue(); if (destSize < srcSize) return false; } else if (Argument* A = dyn_cast(cpyDest)) { // If the destination is an sret parameter then only accesses that are // outside of the returned struct type can trap. if (!A->hasStructRetAttr()) return false; const Type* StructTy = cast(A->getType())->getElementType(); uint64_t destSize = TD.getABITypeSize(StructTy); if (destSize < srcSize) return false; } else { return false; } // Check that src is not accessed except via the call and the memcpy. This // guarantees that it holds only undefined values when passed in (so the final // memcpy can be dropped), that it is not read or written between the call and // the memcpy, and that writing beyond the end of it is undefined. SmallVector srcUseList(srcAlloca->use_begin(), srcAlloca->use_end()); while (!srcUseList.empty()) { User* UI = srcUseList.back(); srcUseList.pop_back(); if (isa(UI) || isa(UI)) { for (User::use_iterator I = UI->use_begin(), E = UI->use_end(); I != E; ++I) srcUseList.push_back(*I); } else if (UI != C && UI != cpy) { return false; } } // Since we're changing the parameter to the callsite, we need to make sure // that what would be the new parameter dominates the callsite. DominatorTree& DT = getAnalysis(); if (Instruction* cpyDestInst = dyn_cast(cpyDest)) if (!DT.dominates(cpyDestInst, C)) return false; // In addition to knowing that the call does not access src in some // unexpected manner, for example via a global, which we deduce from // the use analysis, we also need to know that it does not sneakily // access dest. We rely on AA to figure this out for us. AliasAnalysis& AA = getAnalysis(); if (AA.getModRefInfo(C, cpy->getRawDest(), srcSize) != AliasAnalysis::NoModRef) return false; // All the checks have passed, so do the transformation. for (unsigned i = 0; i < CS.arg_size(); ++i) if (CS.getArgument(i) == cpySrc) { if (cpySrc->getType() != cpyDest->getType()) cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), cpyDest->getName(), C); CS.setArgument(i, cpyDest); } // Drop any cached information about the call, because we may have changed // its dependence information by changing its parameter. MemoryDependenceAnalysis& MD = getAnalysis(); MD.dropInstruction(C); // Remove the memcpy MD.removeInstruction(cpy); cpy->eraseFromParent(); NumMemCpyInstr++; return true; } /// processMemCpy - perform simplication of memcpy's. If we have memcpy A which /// copies X to Y, and memcpy B which copies Y to Z, then we can rewrite B to be /// a memcpy from X to Z (or potentially a memmove, depending on circumstances). /// This allows later passes to remove the first memcpy altogether. bool MemCpyOpt::processMemCpy(MemCpyInst* M) { MemoryDependenceAnalysis& MD = getAnalysis(); // The are two possible optimizations we can do for memcpy: // a) memcpy-memcpy xform which exposes redundance for DSE // b) call-memcpy xform for return slot optimization Instruction* dep = MD.getDependency(M); if (dep == MemoryDependenceAnalysis::None || dep == MemoryDependenceAnalysis::NonLocal) return false; else if (!isa(dep)) { if (CallInst* C = dyn_cast(dep)) return performCallSlotOptzn(M, C); else return false; } MemCpyInst* MDep = cast(dep); // We can only transforms memcpy's where the dest of one is the source of the // other if (M->getSource() != MDep->getDest()) return false; // Second, the length of the memcpy's must be the same, or the preceeding one // must be larger than the following one. ConstantInt* C1 = dyn_cast(MDep->getLength()); ConstantInt* C2 = dyn_cast(M->getLength()); if (!C1 || !C2) return false; uint64_t DepSize = C1->getValue().getZExtValue(); uint64_t CpySize = C2->getValue().getZExtValue(); if (DepSize < CpySize) return false; // Finally, we have to make sure that the dest of the second does not // alias the source of the first AliasAnalysis& AA = getAnalysis(); if (AA.alias(M->getRawDest(), CpySize, MDep->getRawSource(), DepSize) != AliasAnalysis::NoAlias) return false; else if (AA.alias(M->getRawDest(), CpySize, M->getRawSource(), CpySize) != AliasAnalysis::NoAlias) return false; else if (AA.alias(MDep->getRawDest(), DepSize, MDep->getRawSource(), DepSize) != AliasAnalysis::NoAlias) return false; // If all checks passed, then we can transform these memcpy's Function* MemCpyFun = Intrinsic::getDeclaration( M->getParent()->getParent()->getParent(), M->getIntrinsicID()); std::vector args; args.push_back(M->getRawDest()); args.push_back(MDep->getRawSource()); args.push_back(M->getLength()); args.push_back(M->getAlignment()); CallInst* C = CallInst::Create(MemCpyFun, args.begin(), args.end(), "", M); // If C and M don't interfere, then this is a valid transformation. If they // did, this would mean that the two sources overlap, which would be bad. if (MD.getDependency(C) == MDep) { MD.dropInstruction(M); M->eraseFromParent(); NumMemCpyInstr++; return true; } // Otherwise, there was no point in doing this, so we remove the call we // inserted and act like nothing happened. MD.removeInstruction(C); C->eraseFromParent(); return false; } // MemCpyOpt::runOnFunction - This is the main transformation entry point for a // function. // bool MemCpyOpt::runOnFunction(Function& F) { bool changed = false; bool shouldContinue = true; while (shouldContinue) { shouldContinue = iterateOnFunction(F); changed |= shouldContinue; } return changed; } // MemCpyOpt::iterateOnFunction - Executes one iteration of GVN bool MemCpyOpt::iterateOnFunction(Function &F) { bool changed_function = false; // Walk all instruction in the function for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { // Avoid invalidating the iterator Instruction* I = BI++; if (StoreInst *SI = dyn_cast(I)) changed_function |= processStore(SI, BI); else if (MemCpyInst* M = dyn_cast(I)) { changed_function |= processMemCpy(M); } } } return changed_function; }