//===-- Attribute.cpp - Implement AttributesList -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeSetImpl, and AttributeSet classes. // //===----------------------------------------------------------------------===// #include "llvm/Attributes.h" #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Type.h" using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Implementation //===----------------------------------------------------------------------===// Attribute Attribute::get(LLVMContext &Context, ArrayRef Vals) { AttrBuilder B; for (ArrayRef::iterator I = Vals.begin(), E = Vals.end(); I != E; ++I) B.addAttribute(*I); return Attribute::get(Context, B); } Attribute Attribute::get(LLVMContext &Context, AttrBuilder &B) { // If there are no attributes, return an empty Attribute class. if (!B.hasAttributes()) return Attribute(); // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(B.Raw()); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new AttributeImpl(B.Raw()); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return Attribute(PA); } bool Attribute::hasAttribute(AttrVal Val) const { return Attrs && Attrs->hasAttribute(Val); } bool Attribute::hasAttributes() const { return Attrs && Attrs->hasAttributes(); } bool Attribute::hasAttributes(const Attribute &A) const { return Attrs && Attrs->hasAttributes(A); } /// This returns the alignment field of an attribute as a byte alignment value. unsigned Attribute::getAlignment() const { if (!hasAttribute(Attribute::Alignment)) return 0; return 1U << ((Attrs->getAlignment() >> 16) - 1); } /// This returns the stack alignment field of an attribute as a byte alignment /// value. unsigned Attribute::getStackAlignment() const { if (!hasAttribute(Attribute::StackAlignment)) return 0; return 1U << ((Attrs->getStackAlignment() >> 26) - 1); } uint64_t Attribute::Raw() const { return Attrs ? Attrs->Raw() : 0; } Attribute Attribute::typeIncompatible(Type *Ty) { AttrBuilder Incompatible; if (!Ty->isIntegerTy()) // Attribute that only apply to integers. Incompatible.addAttribute(Attribute::SExt) .addAttribute(Attribute::ZExt); if (!Ty->isPointerTy()) // Attribute that only apply to pointers. Incompatible.addAttribute(Attribute::ByVal) .addAttribute(Attribute::Nest) .addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::StructRet); return Attribute::get(Ty->getContext(), Incompatible); } /// encodeLLVMAttributesForBitcode - This returns an integer containing an /// encoding of all the LLVM attributes found in the given attribute bitset. /// Any change to this encoding is a breaking change to bitcode compatibility. uint64_t Attribute::encodeLLVMAttributesForBitcode(Attribute Attrs) { // FIXME: It doesn't make sense to store the alignment information as an // expanded out value, we should store it as a log2 value. However, we can't // just change that here without breaking bitcode compatibility. If this ever // becomes a problem in practice, we should introduce new tag numbers in the // bitcode file and have those tags use a more efficiently encoded alignment // field. // Store the alignment in the bitcode as a 16-bit raw value instead of a 5-bit // log2 encoded value. Shift the bits above the alignment up by 11 bits. uint64_t EncodedAttrs = Attrs.Raw() & 0xffff; if (Attrs.hasAttribute(Attribute::Alignment)) EncodedAttrs |= Attrs.getAlignment() << 16; EncodedAttrs |= (Attrs.Raw() & (0xffffULL << 21)) << 11; return EncodedAttrs; } /// decodeLLVMAttributesForBitcode - This returns an attribute bitset containing /// the LLVM attributes that have been decoded from the given integer. This /// function must stay in sync with 'encodeLLVMAttributesForBitcode'. Attribute Attribute::decodeLLVMAttributesForBitcode(LLVMContext &C, uint64_t EncodedAttrs) { // The alignment is stored as a 16-bit raw value from bits 31--16. We shift // the bits above 31 down by 11 bits. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; assert((!Alignment || isPowerOf2_32(Alignment)) && "Alignment must be a power of two."); AttrBuilder B(EncodedAttrs & 0xffff); if (Alignment) B.addAlignmentAttr(Alignment); B.addRawValue((EncodedAttrs & (0xffffULL << 32)) >> 11); return Attribute::get(C, B); } std::string Attribute::getAsString() const { std::string Result; if (hasAttribute(Attribute::ZExt)) Result += "zeroext "; if (hasAttribute(Attribute::SExt)) Result += "signext "; if (hasAttribute(Attribute::NoReturn)) Result += "noreturn "; if (hasAttribute(Attribute::NoUnwind)) Result += "nounwind "; if (hasAttribute(Attribute::UWTable)) Result += "uwtable "; if (hasAttribute(Attribute::ReturnsTwice)) Result += "returns_twice "; if (hasAttribute(Attribute::InReg)) Result += "inreg "; if (hasAttribute(Attribute::NoAlias)) Result += "noalias "; if (hasAttribute(Attribute::NoCapture)) Result += "nocapture "; if (hasAttribute(Attribute::StructRet)) Result += "sret "; if (hasAttribute(Attribute::ByVal)) Result += "byval "; if (hasAttribute(Attribute::Nest)) Result += "nest "; if (hasAttribute(Attribute::ReadNone)) Result += "readnone "; if (hasAttribute(Attribute::ReadOnly)) Result += "readonly "; if (hasAttribute(Attribute::OptimizeForSize)) Result += "optsize "; if (hasAttribute(Attribute::NoInline)) Result += "noinline "; if (hasAttribute(Attribute::InlineHint)) Result += "inlinehint "; if (hasAttribute(Attribute::AlwaysInline)) Result += "alwaysinline "; if (hasAttribute(Attribute::StackProtect)) Result += "ssp "; if (hasAttribute(Attribute::StackProtectReq)) Result += "sspreq "; if (hasAttribute(Attribute::NoRedZone)) Result += "noredzone "; if (hasAttribute(Attribute::NoImplicitFloat)) Result += "noimplicitfloat "; if (hasAttribute(Attribute::Naked)) Result += "naked "; if (hasAttribute(Attribute::NonLazyBind)) Result += "nonlazybind "; if (hasAttribute(Attribute::AddressSafety)) Result += "address_safety "; if (hasAttribute(Attribute::MinSize)) Result += "minsize "; if (hasAttribute(Attribute::StackAlignment)) { Result += "alignstack("; Result += utostr(getStackAlignment()); Result += ") "; } if (hasAttribute(Attribute::Alignment)) { Result += "align "; Result += utostr(getAlignment()); Result += " "; } // Trim the trailing space. assert(!Result.empty() && "Unknown attribute!"); Result.erase(Result.end()-1); return Result; } //===----------------------------------------------------------------------===// // AttrBuilder Implementation //===----------------------------------------------------------------------===// AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrVal Val){ Bits |= AttributeImpl::getAttrMask(Val); return *this; } AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) { Bits |= Val; return *this; } AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) { if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); Bits |= (Log2_32(Align) + 1) << 16; return *this; } AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align){ // Default alignment, allow the target to define how to align it. if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); Bits |= (Log2_32(Align) + 1) << 26; return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrVal Val) { Bits &= ~AttributeImpl::getAttrMask(Val); return *this; } AttrBuilder &AttrBuilder::addAttributes(const Attribute &A) { Bits |= A.Raw(); return *this; } AttrBuilder &AttrBuilder::removeAttributes(const Attribute &A){ Bits &= ~A.Raw(); return *this; } bool AttrBuilder::hasAttribute(Attribute::AttrVal A) const { return Bits & AttributeImpl::getAttrMask(A); } bool AttrBuilder::hasAttributes() const { return Bits != 0; } bool AttrBuilder::hasAttributes(const Attribute &A) const { return Bits & A.Raw(); } bool AttrBuilder::hasAlignmentAttr() const { return Bits & AttributeImpl::getAttrMask(Attribute::Alignment); } uint64_t AttrBuilder::getAlignment() const { if (!hasAlignmentAttr()) return 0; return 1ULL << (((Bits & AttributeImpl::getAttrMask(Attribute::Alignment)) >> 16) - 1); } uint64_t AttrBuilder::getStackAlignment() const { if (!hasAlignmentAttr()) return 0; return 1ULL << (((Bits & AttributeImpl::getAttrMask(Attribute::StackAlignment))>>26)-1); } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// uint64_t AttributeImpl::getAttrMask(uint64_t Val) { switch (Val) { case Attribute::None: return 0; case Attribute::ZExt: return 1 << 0; case Attribute::SExt: return 1 << 1; case Attribute::NoReturn: return 1 << 2; case Attribute::InReg: return 1 << 3; case Attribute::StructRet: return 1 << 4; case Attribute::NoUnwind: return 1 << 5; case Attribute::NoAlias: return 1 << 6; case Attribute::ByVal: return 1 << 7; case Attribute::Nest: return 1 << 8; case Attribute::ReadNone: return 1 << 9; case Attribute::ReadOnly: return 1 << 10; case Attribute::NoInline: return 1 << 11; case Attribute::AlwaysInline: return 1 << 12; case Attribute::OptimizeForSize: return 1 << 13; case Attribute::StackProtect: return 1 << 14; case Attribute::StackProtectReq: return 1 << 15; case Attribute::Alignment: return 31 << 16; case Attribute::NoCapture: return 1 << 21; case Attribute::NoRedZone: return 1 << 22; case Attribute::NoImplicitFloat: return 1 << 23; case Attribute::Naked: return 1 << 24; case Attribute::InlineHint: return 1 << 25; case Attribute::StackAlignment: return 7 << 26; case Attribute::ReturnsTwice: return 1 << 29; case Attribute::UWTable: return 1 << 30; case Attribute::NonLazyBind: return 1U << 31; case Attribute::AddressSafety: return 1ULL << 32; case Attribute::MinSize: return 1ULL << 33; } llvm_unreachable("Unsupported attribute type"); } bool AttributeImpl::hasAttribute(uint64_t A) const { return (Bits & getAttrMask(A)) != 0; } bool AttributeImpl::hasAttributes() const { return Bits != 0; } bool AttributeImpl::hasAttributes(const Attribute &A) const { return Bits & A.Raw(); // FIXME: Raw() won't work here in the future. } uint64_t AttributeImpl::getAlignment() const { return Bits & getAttrMask(Attribute::Alignment); } uint64_t AttributeImpl::getStackAlignment() const { return Bits & getAttrMask(Attribute::StackAlignment); } //===----------------------------------------------------------------------===// // AttributeSetImpl Definition //===----------------------------------------------------------------------===// AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); #ifndef NDEBUG for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { assert(Attrs[i].Attrs.hasAttributes() && "Pointless attribute!"); assert((!i || Attrs[i-1].Index < Attrs[i].Index) && "Misordered AttributesList!"); } #endif // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeSetImpl::Profile(ID, Attrs); void *InsertPoint; AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { PA = new AttributeSetImpl(C, Attrs); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeSet(PA); } //===----------------------------------------------------------------------===// // AttributeSet Method Implementations //===----------------------------------------------------------------------===// const AttributeSet &AttributeSet::operator=(const AttributeSet &RHS) { if (AttrList == RHS.AttrList) return *this; AttrList = RHS.AttrList; return *this; } /// getNumSlots - Return the number of slots used in this attribute list. /// This is the number of arguments that have an attribute set on them /// (including the function itself). unsigned AttributeSet::getNumSlots() const { return AttrList ? AttrList->Attrs.size() : 0; } /// getSlot - Return the AttributeWithIndex at the specified slot. This /// holds a number plus a set of attributes. const AttributeWithIndex &AttributeSet::getSlot(unsigned Slot) const { assert(AttrList && Slot < AttrList->Attrs.size() && "Slot # out of range!"); return AttrList->Attrs[Slot]; } /// getAttributes - The attributes for the specified index are returned. /// Attribute for the result are denoted with Idx = 0. Function notes are /// denoted with idx = ~0. Attribute AttributeSet::getAttributes(unsigned Idx) const { if (AttrList == 0) return Attribute(); const SmallVector &Attrs = AttrList->Attrs; for (unsigned i = 0, e = Attrs.size(); i != e && Attrs[i].Index <= Idx; ++i) if (Attrs[i].Index == Idx) return Attrs[i].Attrs; return Attribute(); } /// hasAttrSomewhere - Return true if the specified attribute is set for at /// least one parameter or for the return value. bool AttributeSet::hasAttrSomewhere(Attribute::AttrVal Attr) const { if (AttrList == 0) return false; const SmallVector &Attrs = AttrList->Attrs; for (unsigned i = 0, e = Attrs.size(); i != e; ++i) if (Attrs[i].Attrs.hasAttribute(Attr)) return true; return false; } unsigned AttributeSet::getNumAttrs() const { return AttrList ? AttrList->Attrs.size() : 0; } Attribute &AttributeSet::getAttributesAtIndex(unsigned i) const { assert(AttrList && "Trying to get an attribute from an empty list!"); assert(i < AttrList->Attrs.size() && "Index out of range!"); return AttrList->Attrs[i].Attrs; } AttributeSet AttributeSet::addAttr(LLVMContext &C, unsigned Idx, Attribute Attrs) const { Attribute OldAttrs = getAttributes(Idx); #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. // For now, say we can't change a known alignment. unsigned OldAlign = OldAttrs.getAlignment(); unsigned NewAlign = Attrs.getAlignment(); assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && "Attempt to change alignment!"); #endif AttrBuilder NewAttrs = AttrBuilder(OldAttrs).addAttributes(Attrs); if (NewAttrs == AttrBuilder(OldAttrs)) return *this; SmallVector NewAttrList; if (AttrList == 0) NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); else { const SmallVector &OldAttrList = AttrList->Attrs; unsigned i = 0, e = OldAttrList.size(); // Copy attributes for arguments before this one. for (; i != e && OldAttrList[i].Index < Idx; ++i) NewAttrList.push_back(OldAttrList[i]); // If there are attributes already at this index, merge them in. if (i != e && OldAttrList[i].Index == Idx) { Attrs = Attribute::get(C, AttrBuilder(Attrs). addAttributes(OldAttrList[i].Attrs)); ++i; } NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); // Copy attributes for arguments after this one. NewAttrList.insert(NewAttrList.end(), OldAttrList.begin()+i, OldAttrList.end()); } return get(C, NewAttrList); } AttributeSet AttributeSet::removeAttr(LLVMContext &C, unsigned Idx, Attribute Attrs) const { #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAttribute(Attribute::Alignment) && "Attempt to exclude alignment!"); #endif if (AttrList == 0) return AttributeSet(); Attribute OldAttrs = getAttributes(Idx); AttrBuilder NewAttrs = AttrBuilder(OldAttrs).removeAttributes(Attrs); if (NewAttrs == AttrBuilder(OldAttrs)) return *this; SmallVector NewAttrList; const SmallVector &OldAttrList = AttrList->Attrs; unsigned i = 0, e = OldAttrList.size(); // Copy attributes for arguments before this one. for (; i != e && OldAttrList[i].Index < Idx; ++i) NewAttrList.push_back(OldAttrList[i]); // If there are attributes already at this index, merge them in. assert(OldAttrList[i].Index == Idx && "Attribute isn't set?"); Attrs = Attribute::get(C, AttrBuilder(OldAttrList[i].Attrs). removeAttributes(Attrs)); ++i; if (Attrs.hasAttributes()) // If any attributes left for this param, add them. NewAttrList.push_back(AttributeWithIndex::get(Idx, Attrs)); // Copy attributes for arguments after this one. NewAttrList.insert(NewAttrList.end(), OldAttrList.begin()+i, OldAttrList.end()); return get(C, NewAttrList); } void AttributeSet::dump() const { dbgs() << "PAL[ "; for (unsigned i = 0; i < getNumSlots(); ++i) { const AttributeWithIndex &PAWI = getSlot(i); dbgs() << "{" << PAWI.Index << "," << PAWI.Attrs.getAsString() << "} "; } dbgs() << "]\n"; }