//===-- PPC32ISelPattern.cpp - A pattern matching inst selector for PPC32 -===// // // The LLVM Compiler Infrastructure // // This file was developed by Nate Begeman and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a pattern matching instruction selector for 32 bit PowerPC. // Magic number generation for integer divide from the PowerPC Compiler Writer's // Guide, section 3.2.3.5 // //===----------------------------------------------------------------------===// #include "PowerPC.h" #include "PowerPCInstrBuilder.h" #include "PowerPCInstrInfo.h" #include "PPC32TargetMachine.h" #include "PPC32ISelLowering.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/ADT/Statistic.h" #include #include using namespace llvm; namespace { Statistic<> Recorded("ppc-codegen", "Number of recording ops emitted"); Statistic<> FusedFP ("ppc-codegen", "Number of fused fp operations"); Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed"); //===--------------------------------------------------------------------===// // ISel - PPC32 specific code to select PPC32 machine instructions for // SelectionDAG operations. //===--------------------------------------------------------------------===// class ISel : public SelectionDAGISel { PPC32TargetLowering PPC32Lowering; SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform // for sdiv and udiv until it is put into the future // dag combiner. /// ExprMap - As shared expressions are codegen'd, we keep track of which /// vreg the value is produced in, so we only emit one copy of each compiled /// tree. std::map ExprMap; unsigned GlobalBaseReg; bool GlobalBaseInitialized; bool RecordSuccess; public: ISel(TargetMachine &TM) : SelectionDAGISel(PPC32Lowering), PPC32Lowering(TM), ISelDAG(0) {} /// runOnFunction - Override this function in order to reset our per-function /// variables. virtual bool runOnFunction(Function &Fn) { // Make sure we re-emit a set of the global base reg if necessary GlobalBaseInitialized = false; return SelectionDAGISel::runOnFunction(Fn); } /// InstructionSelectBasicBlock - This callback is invoked by /// SelectionDAGISel when it has created a SelectionDAG for us to codegen. virtual void InstructionSelectBasicBlock(SelectionDAG &DAG) { DEBUG(BB->dump()); // Codegen the basic block. ISelDAG = &DAG; Select(DAG.getRoot()); // Clear state used for selection. ExprMap.clear(); ISelDAG = 0; } // convenience functions for virtual register creation inline unsigned MakeIntReg() { return RegMap->createVirtualRegister(PPC32::GPRCRegisterClass); } inline unsigned MakeFPReg() { return RegMap->createVirtualRegister(PPC32::FPRCRegisterClass); } // dag -> dag expanders for integer divide by constant SDOperand BuildSDIVSequence(SDOperand N); SDOperand BuildUDIVSequence(SDOperand N); unsigned getGlobalBaseReg(); unsigned getConstDouble(double floatVal, unsigned Result); void MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result); bool SelectBitfieldInsert(SDOperand OR, unsigned Result); unsigned FoldIfWideZeroExtend(SDOperand N); unsigned SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC); bool SelectIntImmediateExpr(SDOperand N, unsigned Result, unsigned OCHi, unsigned OCLo, bool IsArithmetic = false, bool Negate = false); unsigned SelectExpr(SDOperand N, bool Recording=false); void Select(SDOperand N); unsigned SelectAddr(SDOperand N, unsigned& Reg, int& offset); void SelectBranchCC(SDOperand N); virtual const char *getPassName() const { return "PowerPC Pattern Instruction Selection"; } }; // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with // any number of 0s on either side. The 1s are allowed to wrap from LSB to // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1s are not contiguous. static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) { if (isShiftedMask_32(Val)) { // look for the first non-zero bit MB = CountLeadingZeros_32(Val); // look for the first zero bit after the run of ones ME = CountLeadingZeros_32((Val - 1) ^ Val); return true; } else if (isShiftedMask_32(Val = ~Val)) { // invert mask // effectively look for the first zero bit ME = CountLeadingZeros_32(Val) - 1; // effectively look for the first one bit after the run of zeros MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1; return true; } // no run present return false; } // isRotateAndMask - Returns true if Mask and Shift can be folded in to a rotate // and mask opcode and mask operation. static bool isRotateAndMask(unsigned Opcode, unsigned Shift, unsigned Mask, bool IsShiftMask, unsigned &SH, unsigned &MB, unsigned &ME) { if (Shift > 31) return false; unsigned Indeterminant = ~0; // bit mask marking indeterminant results if (Opcode == ISD::SHL) { // shift left // apply shift to mask if it comes first if (IsShiftMask) Mask = Mask << Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu << Shift); } else if (Opcode == ISD::SRA || Opcode == ISD::SRL) { // shift rights // apply shift to mask if it comes first if (IsShiftMask) Mask = Mask >> Shift; // determine which bits are made indeterminant by shift Indeterminant = ~(0xFFFFFFFFu >> Shift); // adjust for the left rotate Shift = 32 - Shift; } // if the mask doesn't intersect any Indeterminant bits if (Mask && !(Mask & Indeterminant)) { SH = Shift; // make sure the mask is still a mask (wrap arounds may not be) return isRunOfOnes(Mask, MB, ME); } // can't do it return false; } // isIntImmediate - This method tests to see if a constant operand. // If so Imm will receive the 32 bit value. static bool isIntImmediate(SDOperand N, unsigned& Imm) { // test for constant if (ConstantSDNode *CN = dyn_cast(N)) { // retrieve value Imm = (unsigned)CN->getSignExtended(); // passes muster return true; } // not a constant return false; } // isOpcWithIntImmediate - This method tests to see if the node is a specific // opcode and that it has a immediate integer right operand. // If so Imm will receive the 32 bit value. static bool isOpcWithIntImmediate(SDOperand N, unsigned Opc, unsigned& Imm) { return N.getOpcode() == Opc && isIntImmediate(N.getOperand(1), Imm); } // isOprShiftImm - Returns true if the specified operand is a shift opcode with // a immediate shift count less than 32. static bool isOprShiftImm(SDOperand N, unsigned& Opc, unsigned& SH) { Opc = N.getOpcode(); return (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) && isIntImmediate(N.getOperand(1), SH) && SH < 32; } // isOprNot - Returns true if the specified operand is an xor with immediate -1. static bool isOprNot(SDOperand N) { unsigned Imm; return isOpcWithIntImmediate(N, ISD::XOR, Imm) && (signed)Imm == -1; } // Immediate constant composers. // Lo16 - grabs the lo 16 bits from a 32 bit constant. // Hi16 - grabs the hi 16 bits from a 32 bit constant. // HA16 - computes the hi bits required if the lo bits are add/subtracted in // arithmethically. static unsigned Lo16(unsigned x) { return x & 0x0000FFFF; } static unsigned Hi16(unsigned x) { return Lo16(x >> 16); } static unsigned HA16(unsigned x) { return Hi16((signed)x - (signed short)x); } /// NodeHasRecordingVariant - If SelectExpr can always produce code for /// NodeOpcode that also sets CR0 as a side effect, return true. Otherwise, /// return false. static bool NodeHasRecordingVariant(unsigned NodeOpcode) { switch(NodeOpcode) { default: return false; case ISD::AND: case ISD::OR: return true; } } /// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding /// to Condition. static unsigned getBCCForSetCC(ISD::CondCode CC) { switch (CC) { default: assert(0 && "Unknown condition!"); abort(); case ISD::SETEQ: return PPC::BEQ; case ISD::SETNE: return PPC::BNE; case ISD::SETULT: case ISD::SETLT: return PPC::BLT; case ISD::SETULE: case ISD::SETLE: return PPC::BLE; case ISD::SETUGT: case ISD::SETGT: return PPC::BGT; case ISD::SETUGE: case ISD::SETGE: return PPC::BGE; } return 0; } /// getCROpForOp - Return the condition register opcode (or inverted opcode) /// associated with the SelectionDAG opcode. static unsigned getCROpForSetCC(unsigned Opcode, bool Inv1, bool Inv2) { switch (Opcode) { default: assert(0 && "Unknown opcode!"); abort(); case ISD::AND: if (Inv1 && Inv2) return PPC::CRNOR; // De Morgan's Law if (!Inv1 && !Inv2) return PPC::CRAND; if (Inv1 ^ Inv2) return PPC::CRANDC; case ISD::OR: if (Inv1 && Inv2) return PPC::CRNAND; // De Morgan's Law if (!Inv1 && !Inv2) return PPC::CROR; if (Inv1 ^ Inv2) return PPC::CRORC; } return 0; } /// getCRIdxForSetCC - Return the index of the condition register field /// associated with the SetCC condition, and whether or not the field is /// treated as inverted. That is, lt = 0; ge = 0 inverted. static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) { switch (CC) { default: assert(0 && "Unknown condition!"); abort(); case ISD::SETULT: case ISD::SETLT: Inv = false; return 0; case ISD::SETUGE: case ISD::SETGE: Inv = true; return 0; case ISD::SETUGT: case ISD::SETGT: Inv = false; return 1; case ISD::SETULE: case ISD::SETLE: Inv = true; return 1; case ISD::SETEQ: Inv = false; return 2; case ISD::SETNE: Inv = true; return 2; } return 0; } /// IndexedOpForOp - Return the indexed variant for each of the PowerPC load /// and store immediate instructions. static unsigned IndexedOpForOp(unsigned Opcode) { switch(Opcode) { default: assert(0 && "Unknown opcode!"); abort(); case PPC::LBZ: return PPC::LBZX; case PPC::STB: return PPC::STBX; case PPC::LHZ: return PPC::LHZX; case PPC::STH: return PPC::STHX; case PPC::LHA: return PPC::LHAX; case PPC::STW: return PPC::STWX; case PPC::LWZ: return PPC::LWZX; case PPC::STFS: return PPC::STFSX; case PPC::LFS: return PPC::LFSX; case PPC::STFD: return PPC::STFDX; case PPC::LFD: return PPC::LFDX; } return 0; } // Structure used to return the necessary information to codegen an SDIV as // a multiply. struct ms { int m; // magic number int s; // shift amount }; struct mu { unsigned int m; // magic number int a; // add indicator int s; // shift amount }; /// magic - calculate the magic numbers required to codegen an integer sdiv as /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, /// or -1. static struct ms magic(int d) { int p; unsigned int ad, anc, delta, q1, r1, q2, r2, t; const unsigned int two31 = 0x80000000U; struct ms mag; ad = abs(d); t = two31 + ((unsigned int)d >> 31); anc = t - 1 - t%ad; // absolute value of nc p = 31; // initialize p q1 = two31/anc; // initialize q1 = 2p/abs(nc) r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) q2 = two31/ad; // initialize q2 = 2p/abs(d) r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) do { p = p + 1; q1 = 2*q1; // update q1 = 2p/abs(nc) r1 = 2*r1; // update r1 = rem(2p/abs(nc)) if (r1 >= anc) { // must be unsigned comparison q1 = q1 + 1; r1 = r1 - anc; } q2 = 2*q2; // update q2 = 2p/abs(d) r2 = 2*r2; // update r2 = rem(2p/abs(d)) if (r2 >= ad) { // must be unsigned comparison q2 = q2 + 1; r2 = r2 - ad; } delta = ad - r2; } while (q1 < delta || (q1 == delta && r1 == 0)); mag.m = q2 + 1; if (d < 0) mag.m = -mag.m; // resulting magic number mag.s = p - 32; // resulting shift return mag; } /// magicu - calculate the magic numbers required to codegen an integer udiv as /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. static struct mu magicu(unsigned d) { int p; unsigned int nc, delta, q1, r1, q2, r2; struct mu magu; magu.a = 0; // initialize "add" indicator nc = - 1 - (-d)%d; p = 31; // initialize p q1 = 0x80000000/nc; // initialize q1 = 2p/nc r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) do { p = p + 1; if (r1 >= nc - r1 ) { q1 = 2*q1 + 1; // update q1 r1 = 2*r1 - nc; // update r1 } else { q1 = 2*q1; // update q1 r1 = 2*r1; // update r1 } if (r2 + 1 >= d - r2) { if (q2 >= 0x7FFFFFFF) magu.a = 1; q2 = 2*q2 + 1; // update q2 r2 = 2*r2 + 1 - d; // update r2 } else { if (q2 >= 0x80000000) magu.a = 1; q2 = 2*q2; // update q2 r2 = 2*r2 + 1; // update r2 } delta = d - 1 - r2; } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); magu.m = q2 + 1; // resulting magic number magu.s = p - 32; // resulting shift return magu; } } /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand ISel::BuildSDIVSequence(SDOperand N) { int d = (int)cast(N.getOperand(1))->getSignExtended(); ms magics = magic(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i32, N.getOperand(0), ISelDAG->getConstant(magics.m, MVT::i32)); // If d > 0 and m < 0, add the numerator if (d > 0 && magics.m < 0) Q = ISelDAG->getNode(ISD::ADD, MVT::i32, Q, N.getOperand(0)); // If d < 0 and m > 0, subtract the numerator. if (d < 0 && magics.m > 0) Q = ISelDAG->getNode(ISD::SUB, MVT::i32, Q, N.getOperand(0)); // Shift right algebraic if shift value is nonzero if (magics.s > 0) Q = ISelDAG->getNode(ISD::SRA, MVT::i32, Q, ISelDAG->getConstant(magics.s, MVT::i32)); // Extract the sign bit and add it to the quotient SDOperand T = ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(31, MVT::i32)); return ISelDAG->getNode(ISD::ADD, MVT::i32, Q, T); } /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. See: /// SDOperand ISel::BuildUDIVSequence(SDOperand N) { unsigned d = (unsigned)cast(N.getOperand(1))->getSignExtended(); mu magics = magicu(d); // Multiply the numerator (operand 0) by the magic value SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i32, N.getOperand(0), ISelDAG->getConstant(magics.m, MVT::i32)); if (magics.a == 0) { Q = ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(magics.s, MVT::i32)); } else { SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i32, N.getOperand(0), Q); NPQ = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ, ISelDAG->getConstant(1, MVT::i32)); NPQ = ISelDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q); Q = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ, ISelDAG->getConstant(magics.s-1, MVT::i32)); } return Q; } /// getGlobalBaseReg - Output the instructions required to put the /// base address to use for accessing globals into a register. /// unsigned ISel::getGlobalBaseReg() { if (!GlobalBaseInitialized) { // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = BB->getParent()->front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); GlobalBaseReg = MakeIntReg(); BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR); BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg).addReg(PPC::LR); GlobalBaseInitialized = true; } return GlobalBaseReg; } /// getConstDouble - Loads a floating point value into a register, via the /// Constant Pool. Optionally takes a register in which to load the value. unsigned ISel::getConstDouble(double doubleVal, unsigned Result=0) { unsigned Tmp1 = MakeIntReg(); if (0 == Result) Result = MakeFPReg(); MachineConstantPool *CP = BB->getParent()->getConstantPool(); ConstantFP *CFP = ConstantFP::get(Type::DoubleTy, doubleVal); unsigned CPI = CP->getConstantPoolIndex(CFP); if (PICEnabled) BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg()) .addConstantPoolIndex(CPI); else BuildMI(BB, PPC::LIS, 1, Tmp1).addConstantPoolIndex(CPI); BuildMI(BB, PPC::LFD, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); return Result; } /// MoveCRtoGPR - Move CCReg[Idx] to the least significant bit of Result. If /// Inv is true, then invert the result. void ISel::MoveCRtoGPR(unsigned CCReg, ISD::CondCode CC, unsigned Result){ bool Inv; unsigned IntCR = MakeIntReg(); unsigned Idx = getCRIdxForSetCC(CC, Inv); BuildMI(BB, PPC::MCRF, 1, PPC::CR7).addReg(CCReg); bool GPOpt = TLI.getTargetMachine().getSubtarget().isGigaProcessor(); BuildMI(BB, GPOpt ? PPC::MFOCRF : PPC::MFCR, 1, IntCR).addReg(PPC::CR7); if (Inv) { unsigned Tmp1 = MakeIntReg(); BuildMI(BB, PPC::RLWINM, 4, Tmp1).addReg(IntCR).addImm(32-(3-Idx)) .addImm(31).addImm(31); BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp1).addImm(1); } else { BuildMI(BB, PPC::RLWINM, 4, Result).addReg(IntCR).addImm(32-(3-Idx)) .addImm(31).addImm(31); } } /// SelectBitfieldInsert - turn an or of two masked values into /// the rotate left word immediate then mask insert (rlwimi) instruction. /// Returns true on success, false if the caller still needs to select OR. /// /// Patterns matched: /// 1. or shl, and 5. or and, and /// 2. or and, shl 6. or shl, shr /// 3. or shr, and 7. or shr, shl /// 4. or and, shr bool ISel::SelectBitfieldInsert(SDOperand OR, unsigned Result) { bool IsRotate = false; unsigned TgtMask = 0xFFFFFFFF, InsMask = 0xFFFFFFFF, Amount = 0; unsigned Value; SDOperand Op0 = OR.getOperand(0); SDOperand Op1 = OR.getOperand(1); unsigned Op0Opc = Op0.getOpcode(); unsigned Op1Opc = Op1.getOpcode(); // Verify that we have the correct opcodes if (ISD::SHL != Op0Opc && ISD::SRL != Op0Opc && ISD::AND != Op0Opc) return false; if (ISD::SHL != Op1Opc && ISD::SRL != Op1Opc && ISD::AND != Op1Opc) return false; // Generate Mask value for Target if (isIntImmediate(Op0.getOperand(1), Value)) { switch(Op0Opc) { case ISD::SHL: TgtMask <<= Value; break; case ISD::SRL: TgtMask >>= Value; break; case ISD::AND: TgtMask &= Value; break; } } else { return false; } // Generate Mask value for Insert if (isIntImmediate(Op1.getOperand(1), Value)) { switch(Op1Opc) { case ISD::SHL: Amount = Value; InsMask <<= Amount; if (Op0Opc == ISD::SRL) IsRotate = true; break; case ISD::SRL: Amount = Value; InsMask >>= Amount; Amount = 32-Amount; if (Op0Opc == ISD::SHL) IsRotate = true; break; case ISD::AND: InsMask &= Value; break; } } else { return false; } unsigned Tmp3 = 0; // If both of the inputs are ANDs and one of them has a logical shift by // constant as its input, make that the inserted value so that we can combine // the shift into the rotate part of the rlwimi instruction if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) { if (Op1.getOperand(0).getOpcode() == ISD::SHL || Op1.getOperand(0).getOpcode() == ISD::SRL) { if (isIntImmediate(Op1.getOperand(0).getOperand(1), Value)) { Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0)); } } else if (Op0.getOperand(0).getOpcode() == ISD::SHL || Op0.getOperand(0).getOpcode() == ISD::SRL) { if (isIntImmediate(Op0.getOperand(0).getOperand(1), Value)) { std::swap(Op0, Op1); std::swap(TgtMask, InsMask); Amount = Op1.getOperand(0).getOpcode() == ISD::SHL ? Value : 32 - Value; Tmp3 = SelectExpr(Op1.getOperand(0).getOperand(0)); } } } // Verify that the Target mask and Insert mask together form a full word mask // and that the Insert mask is a run of set bits (which implies both are runs // of set bits). Given that, Select the arguments and generate the rlwimi // instruction. unsigned MB, ME; if (((TgtMask & InsMask) == 0) && isRunOfOnes(InsMask, MB, ME)) { unsigned Tmp1, Tmp2; bool fullMask = (TgtMask ^ InsMask) == 0xFFFFFFFF; // Check for rotlwi / rotrwi here, a special case of bitfield insert // where both bitfield halves are sourced from the same value. if (IsRotate && fullMask && OR.getOperand(0).getOperand(0) == OR.getOperand(1).getOperand(0)) { Tmp1 = SelectExpr(OR.getOperand(0).getOperand(0)); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Amount) .addImm(0).addImm(31); return true; } if (Op0Opc == ISD::AND && fullMask) Tmp1 = SelectExpr(Op0.getOperand(0)); else Tmp1 = SelectExpr(Op0); Tmp2 = Tmp3 ? Tmp3 : SelectExpr(Op1.getOperand(0)); BuildMI(BB, PPC::RLWIMI, 5, Result).addReg(Tmp1).addReg(Tmp2) .addImm(Amount).addImm(MB).addImm(ME); return true; } return false; } /// FoldIfWideZeroExtend - 32 bit PowerPC implicit masks shift amounts to the /// low six bits. If the shift amount is an ISD::AND node with a mask that is /// wider than the implicit mask, then we can get rid of the AND and let the /// shift do the mask. unsigned ISel::FoldIfWideZeroExtend(SDOperand N) { unsigned C; if (isOpcWithIntImmediate(N, ISD::AND, C) && isMask_32(C) && C > 63) return SelectExpr(N.getOperand(0)); else return SelectExpr(N); } unsigned ISel::SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC) { unsigned Result, Tmp1, Tmp2; bool AlreadySelected = false; static const unsigned CompareOpcodes[] = { PPC::FCMPU, PPC::FCMPU, PPC::CMPW, PPC::CMPLW }; // Allocate a condition register for this expression Result = RegMap->createVirtualRegister(PPC32::CRRCRegisterClass); // Use U to determine whether the SETCC immediate range is signed or not. bool U = ISD::isUnsignedIntSetCC(CC); if (isIntImmediate(RHS, Tmp2) && ((U && isUInt16(Tmp2)) || (!U && isInt16(Tmp2)))) { Tmp2 = Lo16(Tmp2); // For comparisons against zero, we can implicity set CR0 if a recording // variant (e.g. 'or.' instead of 'or') of the instruction that defines // operand zero of the SetCC node is available. if (Tmp2 == 0 && NodeHasRecordingVariant(LHS.getOpcode()) && LHS.Val->hasOneUse()) { RecordSuccess = false; Tmp1 = SelectExpr(LHS, true); if (RecordSuccess) { ++Recorded; BuildMI(BB, PPC::MCRF, 1, Result).addReg(PPC::CR0); return Result; } AlreadySelected = true; } // If we could not implicitly set CR0, then emit a compare immediate // instead. if (!AlreadySelected) Tmp1 = SelectExpr(LHS); if (U) BuildMI(BB, PPC::CMPLWI, 2, Result).addReg(Tmp1).addImm(Tmp2); else BuildMI(BB, PPC::CMPWI, 2, Result).addReg(Tmp1).addSImm(Tmp2); } else { bool IsInteger = MVT::isInteger(LHS.getValueType()); unsigned CompareOpc = CompareOpcodes[2 * IsInteger + U]; Tmp1 = SelectExpr(LHS); Tmp2 = SelectExpr(RHS); BuildMI(BB, CompareOpc, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; } /// Check to see if the load is a constant offset from a base register. unsigned ISel::SelectAddr(SDOperand N, unsigned& Reg, int& offset) { unsigned imm = 0, opcode = N.getOpcode(); if (N.getOpcode() == ISD::ADD) { bool isFrame = N.getOperand(0).getOpcode() == ISD::FrameIndex; if (isIntImmediate(N.getOperand(1), imm) && isInt16(imm)) { offset = Lo16(imm); if (isFrame) { ++FrameOff; Reg = cast(N.getOperand(0))->getIndex(); return 1; } else { Reg = SelectExpr(N.getOperand(0)); return 0; } } else { Reg = SelectExpr(N.getOperand(0)); offset = SelectExpr(N.getOperand(1)); return 2; } } // Now check if we're dealing with a global, and whether or not we should emit // an optimized load or store for statics. if(GlobalAddressSDNode *GN = dyn_cast(N)) { GlobalValue *GV = GN->getGlobal(); if (!GV->hasWeakLinkage() && !GV->isExternal()) { unsigned GlobalHi = MakeIntReg(); if (PICEnabled) BuildMI(BB, PPC::ADDIS, 2, GlobalHi).addReg(getGlobalBaseReg()) .addGlobalAddress(GV); else BuildMI(BB, PPC::LIS, 1, GlobalHi).addGlobalAddress(GV); Reg = GlobalHi; offset = 0; return 3; } } Reg = SelectExpr(N); offset = 0; return 0; } void ISel::SelectBranchCC(SDOperand N) { MachineBasicBlock *Dest = cast(N.getOperand(4))->getBasicBlock(); Select(N.getOperand(0)); //chain ISD::CondCode CC = cast(N.getOperand(1))->get(); unsigned CCReg = SelectCC(N.getOperand(2), N.getOperand(3), CC); unsigned Opc = getBCCForSetCC(CC); // Iterate to the next basic block ilist::iterator It = BB; ++It; // If this is a two way branch, then grab the fallthrough basic block argument // and build a PowerPC branch pseudo-op, suitable for long branch conversion // if necessary by the branch selection pass. Otherwise, emit a standard // conditional branch. if (N.getOpcode() == ISD::BRTWOWAY_CC) { MachineBasicBlock *Fallthrough = cast(N.getOperand(5))->getBasicBlock(); if (Dest != It) { BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) .addMBB(Dest).addMBB(Fallthrough); if (Fallthrough != It) BuildMI(BB, PPC::B, 1).addMBB(Fallthrough); } else { if (Fallthrough != It) { Opc = PPC32InstrInfo::invertPPCBranchOpcode(Opc); BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) .addMBB(Fallthrough).addMBB(Dest); } } } else { // If the fallthrough path is off the end of the function, which would be // undefined behavior, set it to be the same as the current block because // we have nothing better to set it to, and leaving it alone will cause the // PowerPC Branch Selection pass to crash. if (It == BB->getParent()->end()) It = Dest; BuildMI(BB, PPC::COND_BRANCH, 4).addReg(CCReg).addImm(Opc) .addMBB(Dest).addMBB(It); } return; } // SelectIntImmediateExpr - Choose code for opcodes with immediate value. bool ISel::SelectIntImmediateExpr(SDOperand N, unsigned Result, unsigned OCHi, unsigned OCLo, bool IsArithmetic, bool Negate) { // check constant ConstantSDNode *CN = dyn_cast(N.getOperand(1)); // exit if not a constant if (!CN) return false; // extract immediate unsigned C = (unsigned)CN->getValue(); // negate if required (ISD::SUB) if (Negate) C = -C; // get the hi and lo portions of constant unsigned Hi = IsArithmetic ? HA16(C) : Hi16(C); unsigned Lo = Lo16(C); // assume no intermediate result from lo instruction (same as final result) unsigned Tmp = Result; // check if two instructions are needed if (Hi && Lo) { // exit if usage indicates it would be better to load immediate into a // register if (CN->use_size() > 2) return false; // need intermediate result for two instructions Tmp = MakeIntReg(); } // get first operand unsigned Opr0 = SelectExpr(N.getOperand(0)); // is a lo instruction needed if (Lo) { // generate instruction for lo portion BuildMI(BB, OCLo, 2, Tmp).addReg(Opr0).addImm(Lo); // need to switch out first operand for hi instruction Opr0 = Tmp; } // is a hi instruction needed if (Hi) { // generate instruction for hi portion BuildMI(BB, OCHi, 2, Result).addReg(Opr0).addImm(Hi); } return true; } unsigned ISel::SelectExpr(SDOperand N, bool Recording) { unsigned Result; unsigned Tmp1, Tmp2, Tmp3; unsigned Opc = 0; unsigned opcode = N.getOpcode(); SDNode *Node = N.Val; MVT::ValueType DestType = N.getValueType(); if (Node->getOpcode() == ISD::CopyFromReg) { unsigned Reg = cast(Node->getOperand(1))->getReg(); // Just use the specified register as our input. if (MRegisterInfo::isVirtualRegister(Reg) || Reg == PPC::R1) return Reg; } unsigned &Reg = ExprMap[N]; if (Reg) return Reg; switch (N.getOpcode()) { default: Reg = Result = (N.getValueType() != MVT::Other) ? MakeReg(N.getValueType()) : 1; break; case ISD::TAILCALL: case ISD::CALL: // If this is a call instruction, make sure to prepare ALL of the result // values as well as the chain. if (Node->getNumValues() == 1) Reg = Result = 1; // Void call, just a chain. else { Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1; } break; case ISD::ADD_PARTS: case ISD::SUB_PARTS: case ISD::SHL_PARTS: case ISD::SRL_PARTS: case ISD::SRA_PARTS: Result = MakeReg(Node->getValueType(0)); ExprMap[N.getValue(0)] = Result; for (unsigned i = 1, e = N.Val->getNumValues(); i != e; ++i) ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i)); break; } switch (opcode) { default: Node->dump(); std::cerr << '\n'; assert(0 && "Node not handled!\n"); case ISD::UNDEF: BuildMI(BB, PPC::IMPLICIT_DEF, 0, Result); return Result; case ISD::DYNAMIC_STACKALLOC: // Generate both result values. FIXME: Need a better commment here? if (Result != 1) ExprMap[N.getValue(1)] = 1; else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); // FIXME: We are currently ignoring the requested alignment for handling // greater than the stack alignment. This will need to be revisited at some // point. Align = N.getOperand(2); if (!isa(N.getOperand(2)) || cast(N.getOperand(2))->getValue() != 0) { std::cerr << "Cannot allocate stack object with greater alignment than" << " the stack alignment yet!"; abort(); } Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); // Subtract size from stack pointer, thereby allocating some space. BuildMI(BB, PPC::SUBF, 2, PPC::R1).addReg(Tmp1).addReg(PPC::R1); // Put a pointer to the space into the result register by copying the SP BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R1).addReg(PPC::R1); return Result; case ISD::ConstantPool: Tmp1 = cast(N)->getIndex(); Tmp2 = MakeIntReg(); if (PICEnabled) BuildMI(BB, PPC::ADDIS, 2, Tmp2).addReg(getGlobalBaseReg()) .addConstantPoolIndex(Tmp1); else BuildMI(BB, PPC::LIS, 1, Tmp2).addConstantPoolIndex(Tmp1); BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp2).addConstantPoolIndex(Tmp1); return Result; case ISD::FrameIndex: Tmp1 = cast(N)->getIndex(); addFrameReference(BuildMI(BB, PPC::ADDI, 2, Result), (int)Tmp1, 0, false); return Result; case ISD::GlobalAddress: { GlobalValue *GV = cast(N)->getGlobal(); Tmp1 = MakeIntReg(); if (PICEnabled) BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg()) .addGlobalAddress(GV); else BuildMI(BB, PPC::LIS, 1, Tmp1).addGlobalAddress(GV); if (GV->hasWeakLinkage() || GV->isExternal()) { BuildMI(BB, PPC::LWZ, 2, Result).addGlobalAddress(GV).addReg(Tmp1); } else { BuildMI(BB, PPC::LA, 2, Result).addReg(Tmp1).addGlobalAddress(GV); } return Result; } case ISD::LOAD: case ISD::EXTLOAD: case ISD::ZEXTLOAD: case ISD::SEXTLOAD: { MVT::ValueType TypeBeingLoaded = (ISD::LOAD == opcode) ? Node->getValueType(0) : cast(Node->getOperand(3))->getVT(); bool sext = (ISD::SEXTLOAD == opcode); // Make sure we generate both values. if (Result != 1) ExprMap[N.getValue(1)] = 1; // Generate the token else Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType()); SDOperand Chain = N.getOperand(0); SDOperand Address = N.getOperand(1); Select(Chain); switch (TypeBeingLoaded) { default: Node->dump(); assert(0 && "Cannot load this type!"); case MVT::i1: Opc = PPC::LBZ; break; case MVT::i8: Opc = PPC::LBZ; break; case MVT::i16: Opc = sext ? PPC::LHA : PPC::LHZ; break; case MVT::i32: Opc = PPC::LWZ; break; case MVT::f32: Opc = PPC::LFS; break; case MVT::f64: Opc = PPC::LFD; break; } if (ConstantPoolSDNode *CP = dyn_cast(Address)) { Tmp1 = MakeIntReg(); int CPI = CP->getIndex(); if (PICEnabled) BuildMI(BB, PPC::ADDIS, 2, Tmp1).addReg(getGlobalBaseReg()) .addConstantPoolIndex(CPI); else BuildMI(BB, PPC::LIS, 1, Tmp1).addConstantPoolIndex(CPI); BuildMI(BB, Opc, 2, Result).addConstantPoolIndex(CPI).addReg(Tmp1); } else if (Address.getOpcode() == ISD::FrameIndex) { Tmp1 = cast(Address)->getIndex(); addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1); } else { int offset; switch(SelectAddr(Address, Tmp1, offset)) { default: assert(0 && "Unhandled return value from SelectAddr"); case 0: // imm offset, no frame, no index BuildMI(BB, Opc, 2, Result).addSImm(offset).addReg(Tmp1); break; case 1: // imm offset + frame index addFrameReference(BuildMI(BB, Opc, 2, Result), (int)Tmp1, offset); break; case 2: // base+index addressing Opc = IndexedOpForOp(Opc); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(offset); break; case 3: { GlobalAddressSDNode *GN = cast(Address); GlobalValue *GV = GN->getGlobal(); BuildMI(BB, Opc, 2, Result).addGlobalAddress(GV).addReg(Tmp1); } } } return Result; } case ISD::TAILCALL: case ISD::CALL: { unsigned GPR_idx = 0, FPR_idx = 0; static const unsigned GPR[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; // Lower the chain for this call. Select(N.getOperand(0)); ExprMap[N.getValue(Node->getNumValues()-1)] = 1; MachineInstr *CallMI; // Emit the correct call instruction based on the type of symbol called. if (GlobalAddressSDNode *GASD = dyn_cast(N.getOperand(1))) { CallMI = BuildMI(PPC::CALLpcrel, 1).addGlobalAddress(GASD->getGlobal(), true); } else if (ExternalSymbolSDNode *ESSDN = dyn_cast(N.getOperand(1))) { CallMI = BuildMI(PPC::CALLpcrel, 1).addExternalSymbol(ESSDN->getSymbol(), true); } else { Tmp1 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::OR, 2, PPC::R12).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, PPC::MTCTR, 1).addReg(PPC::R12); CallMI = BuildMI(PPC::CALLindirect, 3).addImm(20).addImm(0) .addReg(PPC::R12); } // Load the register args to virtual regs std::vector ArgVR; for(int i = 2, e = Node->getNumOperands(); i < e; ++i) ArgVR.push_back(SelectExpr(N.getOperand(i))); // Copy the virtual registers into the appropriate argument register for(int i = 0, e = ArgVR.size(); i < e; ++i) { switch(N.getOperand(i+2).getValueType()) { default: Node->dump(); assert(0 && "Unknown value type for call"); case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: assert(GPR_idx < 8 && "Too many int args"); if (N.getOperand(i+2).getOpcode() != ISD::UNDEF) { BuildMI(BB, PPC::OR,2,GPR[GPR_idx]).addReg(ArgVR[i]).addReg(ArgVR[i]); CallMI->addRegOperand(GPR[GPR_idx], MachineOperand::Use); } ++GPR_idx; break; case MVT::f64: case MVT::f32: assert(FPR_idx < 13 && "Too many fp args"); BuildMI(BB, PPC::FMR, 1, FPR[FPR_idx]).addReg(ArgVR[i]); CallMI->addRegOperand(FPR[FPR_idx], MachineOperand::Use); ++FPR_idx; break; } } // Put the call instruction in the correct place in the MachineBasicBlock BB->push_back(CallMI); switch (Node->getValueType(0)) { default: assert(0 && "Unknown value type for call result!"); case MVT::Other: return 1; case MVT::i1: case MVT::i8: case MVT::i16: case MVT::i32: if (Node->getValueType(1) == MVT::i32) { BuildMI(BB, PPC::OR, 2, Result+1).addReg(PPC::R3).addReg(PPC::R3); BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R4).addReg(PPC::R4); } else { BuildMI(BB, PPC::OR, 2, Result).addReg(PPC::R3).addReg(PPC::R3); } break; case MVT::f32: case MVT::f64: BuildMI(BB, PPC::FMR, 1, Result).addReg(PPC::F1); break; } return Result+N.ResNo; } case ISD::SIGN_EXTEND: case ISD::SIGN_EXTEND_INREG: Tmp1 = SelectExpr(N.getOperand(0)); switch(cast(Node->getOperand(1))->getVT()) { default: Node->dump(); assert(0 && "Unhandled SIGN_EXTEND type"); break; case MVT::i16: BuildMI(BB, PPC::EXTSH, 1, Result).addReg(Tmp1); break; case MVT::i8: BuildMI(BB, PPC::EXTSB, 1, Result).addReg(Tmp1); break; case MVT::i1: BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp1).addSImm(0); break; } return Result; case ISD::CopyFromReg: DestType = N.getValue(0).getValueType(); if (Result == 1) Result = ExprMap[N.getValue(0)] = MakeReg(DestType); Tmp1 = dyn_cast(Node->getOperand(1))->getReg(); if (MVT::isInteger(DestType)) BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp1).addReg(Tmp1); else BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); return Result; case ISD::SHL: if (isIntImmediate(N.getOperand(1), Tmp2)) { unsigned SH, MB, ME; if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) && isRotateAndMask(ISD::SHL, Tmp2, Tmp3, true, SH, MB, ME)) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH) .addImm(MB).addImm(ME); return Result; } Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 &= 0x1F; BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(Tmp2).addImm(0) .addImm(31-Tmp2); } else { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); BuildMI(BB, PPC::SLW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::SRL: if (isIntImmediate(N.getOperand(1), Tmp2)) { unsigned SH, MB, ME; if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) && isRotateAndMask(ISD::SRL, Tmp2, Tmp3, true, SH, MB, ME)) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH) .addImm(MB).addImm(ME); return Result; } Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 &= 0x1F; BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(32-Tmp2) .addImm(Tmp2).addImm(31); } else { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); BuildMI(BB, PPC::SRW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::SRA: if (isIntImmediate(N.getOperand(1), Tmp2)) { unsigned SH, MB, ME; if (isOpcWithIntImmediate(N.getOperand(0), ISD::AND, Tmp3) && isRotateAndMask(ISD::SRA, Tmp2, Tmp3, true, SH, MB, ME)) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(SH) .addImm(MB).addImm(ME); return Result; } Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 &= 0x1F; BuildMI(BB, PPC::SRAWI, 2, Result).addReg(Tmp1).addImm(Tmp2); } else { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = FoldIfWideZeroExtend(N.getOperand(1)); BuildMI(BB, PPC::SRAW, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::CTLZ: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::CNTLZW, 1, Result).addReg(Tmp1); return Result; case ISD::ADD: if (!MVT::isInteger(DestType)) { if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL && N.getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(1)); Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL && N.getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FMADD : PPC::FMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } Opc = DestType == MVT::f64 ? PPC::FADD : PPC::FADDS; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; } if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true)) return Result; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::AND: if (isIntImmediate(N.getOperand(1), Tmp2)) { if (isShiftedMask_32(Tmp2) || isShiftedMask_32(~Tmp2)) { unsigned SH, MB, ME; Opc = Recording ? PPC::RLWINMo : PPC::RLWINM; unsigned OprOpc; if (isOprShiftImm(N.getOperand(0), OprOpc, Tmp3) && isRotateAndMask(OprOpc, Tmp3, Tmp2, false, SH, MB, ME)) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); } else { Tmp1 = SelectExpr(N.getOperand(0)); isRunOfOnes(Tmp2, MB, ME); SH = 0; } BuildMI(BB, Opc, 4, Result).addReg(Tmp1).addImm(SH) .addImm(MB).addImm(ME); RecordSuccess = true; return Result; } else if (isUInt16(Tmp2)) { Tmp2 = Lo16(Tmp2); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::ANDIo, 2, Result).addReg(Tmp1).addImm(Tmp2); RecordSuccess = true; return Result; } else if (isUInt16(Tmp2)) { Tmp2 = Hi16(Tmp2); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::ANDISo, 2, Result).addReg(Tmp1).addImm(Tmp2); RecordSuccess = true; return Result; } } if (isOprNot(N.getOperand(1))) { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1).getOperand(0)); BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2); RecordSuccess = false; return Result; } if (isOprNot(N.getOperand(0))) { Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::ANDC, 2, Result).addReg(Tmp1).addReg(Tmp2); RecordSuccess = false; return Result; } // emit a regular and Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); Opc = Recording ? PPC::ANDo : PPC::AND; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); RecordSuccess = true; return Result; case ISD::OR: if (SelectBitfieldInsert(N, Result)) return Result; if (SelectIntImmediateExpr(N, Result, PPC::ORIS, PPC::ORI)) return Result; if (isOprNot(N.getOperand(1))) { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1).getOperand(0)); BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2); RecordSuccess = false; return Result; } if (isOprNot(N.getOperand(0))) { Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::ORC, 2, Result).addReg(Tmp1).addReg(Tmp2); RecordSuccess = false; return Result; } // emit regular or Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); Opc = Recording ? PPC::ORo : PPC::OR; RecordSuccess = true; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::XOR: { // Check for EQV: xor, (xor a, -1), b if (isOprNot(N.getOperand(0))) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; } // Check for NOT, NOR, EQV, and NAND: xor (copy, or, xor, and), -1 if (isOprNot(N)) { switch(N.getOperand(0).getOpcode()) { case ISD::OR: Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::AND: Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); BuildMI(BB, PPC::NAND, 2, Result).addReg(Tmp1).addReg(Tmp2); break; case ISD::XOR: Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); BuildMI(BB, PPC::EQV, 2, Result).addReg(Tmp1).addReg(Tmp2); break; default: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::NOR, 2, Result).addReg(Tmp1).addReg(Tmp1); break; } return Result; } if (SelectIntImmediateExpr(N, Result, PPC::XORIS, PPC::XORI)) return Result; // emit regular xor Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; } case ISD::SUB: if (!MVT::isInteger(DestType)) { if (!NoExcessFPPrecision && N.getOperand(0).getOpcode() == ISD::MUL && N.getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(1)); Opc = DestType == MVT::f64 ? PPC::FMSUB : PPC::FMSUBS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } if (!NoExcessFPPrecision && N.getOperand(1).getOpcode() == ISD::MUL && N.getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(1).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FNMSUB : PPC::FNMSUBS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); return Result; } Opc = DestType == MVT::f64 ? PPC::FSUB : PPC::FSUBS; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; } if (isIntImmediate(N.getOperand(0), Tmp1) && isInt16(Tmp1)) { Tmp1 = Lo16(Tmp1); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SUBFIC, 2, Result).addReg(Tmp2).addSImm(Tmp1); return Result; } if (SelectIntImmediateExpr(N, Result, PPC::ADDIS, PPC::ADDI, true, true)) return Result; Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); BuildMI(BB, PPC::SUBF, 2, Result).addReg(Tmp2).addReg(Tmp1); return Result; case ISD::MUL: Tmp1 = SelectExpr(N.getOperand(0)); if (isIntImmediate(N.getOperand(1), Tmp2) && isInt16(Tmp2)) { Tmp2 = Lo16(Tmp2); BuildMI(BB, PPC::MULLI, 2, Result).addReg(Tmp1).addSImm(Tmp2); } else { Tmp2 = SelectExpr(N.getOperand(1)); switch (DestType) { default: assert(0 && "Unknown type to ISD::MUL"); break; case MVT::i32: Opc = PPC::MULLW; break; case MVT::f32: Opc = PPC::FMULS; break; case MVT::f64: Opc = PPC::FMUL; break; } BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); } return Result; case ISD::MULHS: case ISD::MULHU: Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); Opc = (ISD::MULHU == opcode) ? PPC::MULHWU : PPC::MULHW; BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::SDIV: if (isIntImmediate(N.getOperand(1), Tmp3)) { if ((signed)Tmp3 > 0 && isPowerOf2_32(Tmp3)) { Tmp3 = Log2_32(Tmp3); Tmp1 = MakeIntReg(); Tmp2 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3); BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp1); return Result; } else if ((signed)Tmp3 < 0 && isPowerOf2_32(-Tmp3)) { Tmp3 = Log2_32(-Tmp3); Tmp2 = SelectExpr(N.getOperand(0)); Tmp1 = MakeIntReg(); unsigned Tmp4 = MakeIntReg(); BuildMI(BB, PPC::SRAWI, 2, Tmp1).addReg(Tmp2).addImm(Tmp3); BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1); BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4); return Result; } } // fall thru case ISD::UDIV: // If this is a divide by constant, we can emit code using some magic // constants to implement it as a multiply instead. if (isIntImmediate(N.getOperand(1), Tmp3)) { if (opcode == ISD::SDIV) { if ((signed)Tmp3 < -1 || (signed)Tmp3 > 1) { ExprMap.erase(N); return SelectExpr(BuildSDIVSequence(N)); } } else { if ((signed)Tmp3 > 1) { ExprMap.erase(N); return SelectExpr(BuildUDIVSequence(N)); } } } Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); switch (DestType) { default: assert(0 && "Unknown type to ISD::SDIV"); break; case MVT::i32: Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; break; case MVT::f32: Opc = PPC::FDIVS; break; case MVT::f64: Opc = PPC::FDIV; break; } BuildMI(BB, Opc, 2, Result).addReg(Tmp1).addReg(Tmp2); return Result; case ISD::ADD_PARTS: case ISD::SUB_PARTS: { assert(N.getNumOperands() == 4 && N.getValueType() == MVT::i32 && "Not an i64 add/sub!"); unsigned Tmp4 = 0; bool ME = isIntImmediate(N.getOperand(3),Tmp3) && ((signed)Tmp3 == -1); bool ZE = isIntImmediate(N.getOperand(3),Tmp3) && (Tmp3 == 0); bool IM = isIntImmediate(N.getOperand(2),Tmp3) && ((signed)Tmp3 >= -32768 || (signed)Tmp3 < 32768); Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = SelectExpr(N.getOperand(1)); if (!IM || N.getOpcode() == ISD::SUB_PARTS) Tmp3 = SelectExpr(N.getOperand(2)); if ((!ME && !ZE) || N.getOpcode() == ISD::SUB_PARTS) Tmp4 = SelectExpr(N.getOperand(3)); if (N.getOpcode() == ISD::ADD_PARTS) { // Codegen the low 32 bits of the add. Interestingly, there is no shifted // form of add immediate carrying. if (IM) BuildMI(BB, PPC::ADDIC, 2, Result).addReg(Tmp1).addSImm(Tmp3); else BuildMI(BB, PPC::ADDC, 2, Result).addReg(Tmp1).addReg(Tmp3); // Codegen the high 32 bits, adding zero, minus one, or the full value // along with the carry flag produced by addc/addic to tmp2. if (ZE) BuildMI(BB, PPC::ADDZE, 1, Result+1).addReg(Tmp2); else if (ME) BuildMI(BB, PPC::ADDME, 1, Result+1).addReg(Tmp2); else BuildMI(BB, PPC::ADDE, 2, Result+1).addReg(Tmp2).addReg(Tmp4); } else { BuildMI(BB, PPC::SUBFC, 2, Result).addReg(Tmp3).addReg(Tmp1); BuildMI(BB, PPC::SUBFE, 2, Result+1).addReg(Tmp4).addReg(Tmp2); } return Result+N.ResNo; } case ISD::SHL_PARTS: case ISD::SRA_PARTS: case ISD::SRL_PARTS: { assert(N.getNumOperands() == 3 && N.getValueType() == MVT::i32 && "Not an i64 shift!"); unsigned ShiftOpLo = SelectExpr(N.getOperand(0)); unsigned ShiftOpHi = SelectExpr(N.getOperand(1)); unsigned SHReg = FoldIfWideZeroExtend(N.getOperand(2)); Tmp1 = MakeIntReg(); Tmp2 = MakeIntReg(); Tmp3 = MakeIntReg(); unsigned Tmp4 = MakeIntReg(); unsigned Tmp5 = MakeIntReg(); unsigned Tmp6 = MakeIntReg(); BuildMI(BB, PPC::SUBFIC, 2, Tmp1).addReg(SHReg).addSImm(32); if (ISD::SHL_PARTS == opcode) { BuildMI(BB, PPC::SLW, 2, Tmp2).addReg(ShiftOpHi).addReg(SHReg); BuildMI(BB, PPC::SRW, 2, Tmp3).addReg(ShiftOpLo).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32); BuildMI(BB, PPC::SLW, 2, Tmp6).addReg(ShiftOpLo).addReg(Tmp5); BuildMI(BB, PPC::OR, 2, Result+1).addReg(Tmp4).addReg(Tmp6); BuildMI(BB, PPC::SLW, 2, Result).addReg(ShiftOpLo).addReg(SHReg); } else if (ISD::SRL_PARTS == opcode) { BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg); BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); BuildMI(BB, PPC::ADDI, 2, Tmp5).addReg(SHReg).addSImm(-32); BuildMI(BB, PPC::SRW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5); BuildMI(BB, PPC::OR, 2, Result).addReg(Tmp4).addReg(Tmp6); BuildMI(BB, PPC::SRW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg); } else { MachineBasicBlock *TmpMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *PhiMBB = new MachineBasicBlock(BB->getBasicBlock()); MachineBasicBlock *OldMBB = BB; MachineFunction *F = BB->getParent(); ilist::iterator It = BB; ++It; F->getBasicBlockList().insert(It, TmpMBB); F->getBasicBlockList().insert(It, PhiMBB); BB->addSuccessor(TmpMBB); BB->addSuccessor(PhiMBB); BuildMI(BB, PPC::SRW, 2, Tmp2).addReg(ShiftOpLo).addReg(SHReg); BuildMI(BB, PPC::SLW, 2, Tmp3).addReg(ShiftOpHi).addReg(Tmp1); BuildMI(BB, PPC::OR, 2, Tmp4).addReg(Tmp2).addReg(Tmp3); BuildMI(BB, PPC::ADDICo, 2, Tmp5).addReg(SHReg).addSImm(-32); BuildMI(BB, PPC::SRAW, 2, Tmp6).addReg(ShiftOpHi).addReg(Tmp5); BuildMI(BB, PPC::SRAW, 2, Result+1).addReg(ShiftOpHi).addReg(SHReg); BuildMI(BB, PPC::BLE, 2).addReg(PPC::CR0).addMBB(PhiMBB); // Select correct least significant half if the shift amount > 32 BB = TmpMBB; unsigned Tmp7 = MakeIntReg(); BuildMI(BB, PPC::OR, 2, Tmp7).addReg(Tmp6).addReg(Tmp6); TmpMBB->addSuccessor(PhiMBB); BB = PhiMBB; BuildMI(BB, PPC::PHI, 4, Result).addReg(Tmp4).addMBB(OldMBB) .addReg(Tmp7).addMBB(TmpMBB); } return Result+N.ResNo; } case ISD::FP_TO_SINT: { Tmp1 = SelectExpr(N.getOperand(0)); Tmp2 = MakeFPReg(); BuildMI(BB, PPC::FCTIWZ, 1, Tmp2).addReg(Tmp1); int FrameIdx = BB->getParent()->getFrameInfo()->CreateStackObject(8, 8); addFrameReference(BuildMI(BB, PPC::STFD, 3).addReg(Tmp2), FrameIdx); addFrameReference(BuildMI(BB, PPC::LWZ, 2, Result), FrameIdx, 4); return Result; } case ISD::SETCC: { ISD::CondCode CC = cast(Node->getOperand(2))->get(); if (isIntImmediate(Node->getOperand(1), Tmp3)) { // We can codegen setcc op, imm very efficiently compared to a brcond. // Check for those cases here. // setcc op, 0 if (Tmp3 == 0) { Tmp1 = SelectExpr(Node->getOperand(0)); switch (CC) { default: Node->dump(); assert(0 && "Unhandled SetCC condition"); abort(); case ISD::SETEQ: Tmp2 = MakeIntReg(); BuildMI(BB, PPC::CNTLZW, 1, Tmp2).addReg(Tmp1); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp2).addImm(27) .addImm(5).addImm(31); break; case ISD::SETNE: Tmp2 = MakeIntReg(); BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(-1); BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp2).addReg(Tmp1); break; case ISD::SETLT: BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp1).addImm(1) .addImm(31).addImm(31); break; case ISD::SETGT: Tmp2 = MakeIntReg(); Tmp3 = MakeIntReg(); BuildMI(BB, PPC::NEG, 2, Tmp2).addReg(Tmp1); BuildMI(BB, PPC::ANDC, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) .addImm(31).addImm(31); break; } return Result; } else if (Tmp3 == ~0U) { // setcc op, -1 Tmp1 = SelectExpr(Node->getOperand(0)); switch (CC) { default: assert(0 && "Unhandled SetCC condition"); abort(); case ISD::SETEQ: Tmp2 = MakeIntReg(); Tmp3 = MakeIntReg(); BuildMI(BB, PPC::ADDIC, 2, Tmp2).addReg(Tmp1).addSImm(1); BuildMI(BB, PPC::LI, 1, Tmp3).addSImm(0); BuildMI(BB, PPC::ADDZE, 1, Result).addReg(Tmp3); break; case ISD::SETNE: Tmp2 = MakeIntReg(); Tmp3 = MakeIntReg(); BuildMI(BB, PPC::NOR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); BuildMI(BB, PPC::ADDIC, 2, Tmp3).addReg(Tmp2).addSImm(-1); BuildMI(BB, PPC::SUBFE, 2, Result).addReg(Tmp3).addReg(Tmp2); break; case ISD::SETLT: Tmp2 = MakeIntReg(); Tmp3 = MakeIntReg(); BuildMI(BB, PPC::ADDI, 2, Tmp2).addReg(Tmp1).addSImm(1); BuildMI(BB, PPC::AND, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::RLWINM, 4, Result).addReg(Tmp3).addImm(1) .addImm(31).addImm(31); break; case ISD::SETGT: Tmp2 = MakeIntReg(); BuildMI(BB, PPC::RLWINM, 4, Tmp2).addReg(Tmp1).addImm(1) .addImm(31).addImm(31); BuildMI(BB, PPC::XORI, 2, Result).addReg(Tmp2).addImm(1); break; } return Result; } } unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC); MoveCRtoGPR(CCReg, CC, Result); return Result; } case ISD::SELECT_CC: { ISD::CondCode CC = cast(N.getOperand(4))->get(); if (!MVT::isInteger(N.getOperand(0).getValueType()) && !MVT::isInteger(N.getOperand(2).getValueType()) && CC != ISD::SETEQ && CC != ISD::SETNE) { MVT::ValueType VT = N.getOperand(0).getValueType(); unsigned TV = SelectExpr(N.getOperand(2)); // Use if TRUE unsigned FV = SelectExpr(N.getOperand(3)); // Use if FALSE ConstantFPSDNode *CN = dyn_cast(N.getOperand(1)); if (CN && (CN->isExactlyValue(-0.0) || CN->isExactlyValue(0.0))) { switch(CC) { default: assert(0 && "Invalid FSEL condition"); abort(); case ISD::SETULT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETUGE: case ISD::SETGE: Tmp1 = SelectExpr(N.getOperand(0)); // Val to compare against BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp1).addReg(TV).addReg(FV); return Result; case ISD::SETUGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETULE: case ISD::SETLE: { if (N.getOperand(0).getOpcode() == ISD::FNEG) { Tmp2 = SelectExpr(N.getOperand(0).getOperand(0)); } else { Tmp2 = MakeReg(VT); Tmp1 = SelectExpr(N.getOperand(0)); // Val to compare against BuildMI(BB, PPC::FNEG, 1, Tmp2).addReg(Tmp1); } BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp2).addReg(TV).addReg(FV); return Result; } } } else { Opc = (MVT::f64 == VT) ? PPC::FSUB : PPC::FSUBS; Tmp1 = SelectExpr(N.getOperand(0)); // Val to compare against Tmp2 = SelectExpr(N.getOperand(1)); Tmp3 = MakeReg(VT); switch(CC) { default: assert(0 && "Invalid FSEL condition"); abort(); case ISD::SETULT: case ISD::SETLT: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV); return Result; case ISD::SETUGE: case ISD::SETGE: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp1).addReg(Tmp2); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV); return Result; case ISD::SETUGT: case ISD::SETGT: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(FV).addReg(TV); return Result; case ISD::SETULE: case ISD::SETLE: BuildMI(BB, Opc, 2, Tmp3).addReg(Tmp2).addReg(Tmp1); BuildMI(BB, PPC::FSEL, 3, Result).addReg(Tmp3).addReg(TV).addReg(FV); return Result; } } assert(0 && "Should never get here"); } // If the False value only has one use, we can generate better code by // selecting it in the fallthrough basic block rather than here, which // increases register pressure. unsigned TrueValue = SelectExpr(N.getOperand(2)); unsigned FalseValue = SelectExpr(N.getOperand(3)); unsigned CCReg = SelectCC(N.getOperand(0), N.getOperand(1), CC); Opc = getBCCForSetCC(CC); // Create an iterator with which to insert the MBB for copying the false // value and the MBB to hold the PHI instruction for this SetCC. MachineBasicBlock *thisMBB = BB; const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); BuildMI(BB, Opc, 2).addReg(CCReg).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, PPC::PHI, 4, Result).addReg(FalseValue) .addMBB(copy0MBB).addReg(TrueValue).addMBB(thisMBB); return Result; } case ISD::Constant: switch (N.getValueType()) { default: assert(0 && "Cannot use constants of this type!"); case MVT::i32: { int v = (int)cast(N)->getSignExtended(); if (v < 32768 && v >= -32768) { BuildMI(BB, PPC::LI, 1, Result).addSImm(v); } else { Tmp1 = MakeIntReg(); BuildMI(BB, PPC::LIS, 1, Tmp1).addSImm(v >> 16); BuildMI(BB, PPC::ORI, 2, Result).addReg(Tmp1).addImm(v & 0xFFFF); } } } return Result; case ISD::ConstantFP: { ConstantFPSDNode *CN = cast(N); Result = getConstDouble(CN->getValue(), Result); return Result; } case ISD::FNEG: if (!NoExcessFPPrecision && ISD::ADD == N.getOperand(0).getOpcode() && N.getOperand(0).Val->hasOneUse() && ISD::MUL == N.getOperand(0).getOperand(0).getOpcode() && N.getOperand(0).getOperand(0).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(0).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0).getOperand(1)); Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); } else if (!NoExcessFPPrecision && ISD::ADD == N.getOperand(0).getOpcode() && N.getOperand(0).Val->hasOneUse() && ISD::MUL == N.getOperand(0).getOperand(1).getOpcode() && N.getOperand(0).getOperand(1).Val->hasOneUse()) { ++FusedFP; // Statistic Tmp1 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(0)); Tmp2 = SelectExpr(N.getOperand(0).getOperand(1).getOperand(1)); Tmp3 = SelectExpr(N.getOperand(0).getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FNMADD : PPC::FNMADDS; BuildMI(BB, Opc, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3); } else if (ISD::FABS == N.getOperand(0).getOpcode()) { Tmp1 = SelectExpr(N.getOperand(0).getOperand(0)); BuildMI(BB, PPC::FNABS, 1, Result).addReg(Tmp1); } else { Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FNEG, 1, Result).addReg(Tmp1); } return Result; case ISD::FABS: Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FABS, 1, Result).addReg(Tmp1); return Result; case ISD::FSQRT: Tmp1 = SelectExpr(N.getOperand(0)); Opc = DestType == MVT::f64 ? PPC::FSQRT : PPC::FSQRTS; BuildMI(BB, Opc, 1, Result).addReg(Tmp1); return Result; case ISD::FP_ROUND: assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 && "only f64 to f32 conversion supported here"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FRSP, 1, Result).addReg(Tmp1); return Result; case ISD::FP_EXTEND: assert (DestType == MVT::f64 && N.getOperand(0).getValueType() == MVT::f32 && "only f32 to f64 conversion supported here"); Tmp1 = SelectExpr(N.getOperand(0)); BuildMI(BB, PPC::FMR, 1, Result).addReg(Tmp1); return Result; } return 0; } void ISel::Select(SDOperand N) { unsigned Tmp1, Tmp2, Tmp3, Opc; unsigned opcode = N.getOpcode(); if (!ExprMap.insert(std::make_pair(N, 1)).second) return; // Already selected. SDNode *Node = N.Val; switch (Node->getOpcode()) { default: Node->dump(); std::cerr << "\n"; assert(0 && "Node not handled yet!"); case ISD::EntryToken: return; // Noop case ISD::TokenFactor: for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) Select(Node->getOperand(i)); return; case ISD::CALLSEQ_START: case ISD::CALLSEQ_END: Select(N.getOperand(0)); Tmp1 = cast(N.getOperand(1))->getValue(); Opc = N.getOpcode() == ISD::CALLSEQ_START ? PPC::ADJCALLSTACKDOWN : PPC::ADJCALLSTACKUP; BuildMI(BB, Opc, 1).addImm(Tmp1); return; case ISD::BR: { MachineBasicBlock *Dest = cast(N.getOperand(1))->getBasicBlock(); Select(N.getOperand(0)); BuildMI(BB, PPC::B, 1).addMBB(Dest); return; } case ISD::BR_CC: case ISD::BRTWOWAY_CC: SelectBranchCC(N); return; case ISD::CopyToReg: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(2)); Tmp2 = cast(N.getOperand(1))->getReg(); if (Tmp1 != Tmp2) { if (N.getOperand(2).getValueType() == MVT::f64 || N.getOperand(2).getValueType() == MVT::f32) BuildMI(BB, PPC::FMR, 1, Tmp2).addReg(Tmp1); else BuildMI(BB, PPC::OR, 2, Tmp2).addReg(Tmp1).addReg(Tmp1); } return; case ISD::ImplicitDef: Select(N.getOperand(0)); BuildMI(BB, PPC::IMPLICIT_DEF, 0, cast(N.getOperand(1))->getReg()); return; case ISD::RET: switch (N.getNumOperands()) { default: assert(0 && "Unknown return instruction!"); case 3: assert(N.getOperand(1).getValueType() == MVT::i32 && N.getOperand(2).getValueType() == MVT::i32 && "Unknown two-register value!"); Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); Tmp2 = SelectExpr(N.getOperand(2)); BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp2).addReg(Tmp2); BuildMI(BB, PPC::OR, 2, PPC::R4).addReg(Tmp1).addReg(Tmp1); break; case 2: Select(N.getOperand(0)); Tmp1 = SelectExpr(N.getOperand(1)); switch (N.getOperand(1).getValueType()) { default: assert(0 && "Unknown return type!"); case MVT::f64: case MVT::f32: BuildMI(BB, PPC::FMR, 1, PPC::F1).addReg(Tmp1); break; case MVT::i32: BuildMI(BB, PPC::OR, 2, PPC::R3).addReg(Tmp1).addReg(Tmp1); break; } case 1: Select(N.getOperand(0)); break; } BuildMI(BB, PPC::BLR, 0); // Just emit a 'ret' instruction return; case ISD::TRUNCSTORE: case ISD::STORE: { SDOperand Chain = N.getOperand(0); SDOperand Value = N.getOperand(1); SDOperand Address = N.getOperand(2); Select(Chain); Tmp1 = SelectExpr(Value); //value if (opcode == ISD::STORE) { switch(Value.getValueType()) { default: assert(0 && "unknown Type in store"); case MVT::i32: Opc = PPC::STW; break; case MVT::f64: Opc = PPC::STFD; break; case MVT::f32: Opc = PPC::STFS; break; } } else { //ISD::TRUNCSTORE switch(cast(Node->getOperand(4))->getVT()) { default: assert(0 && "unknown Type in store"); case MVT::i1: case MVT::i8: Opc = PPC::STB; break; case MVT::i16: Opc = PPC::STH; break; } } if(Address.getOpcode() == ISD::FrameIndex) { Tmp2 = cast(Address)->getIndex(); addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2); } else { int offset; switch(SelectAddr(Address, Tmp2, offset)) { default: assert(0 && "Unhandled return value from SelectAddr"); case 0: // imm offset, no frame, no index BuildMI(BB, Opc, 3).addReg(Tmp1).addSImm(offset).addReg(Tmp2); break; case 1: // imm offset + frame index addFrameReference(BuildMI(BB, Opc, 3).addReg(Tmp1), (int)Tmp2, offset); break; case 2: // base+index addressing Opc = IndexedOpForOp(Opc); BuildMI(BB, Opc, 3).addReg(Tmp1).addReg(Tmp2).addReg(offset); break; case 3: { GlobalAddressSDNode *GN = cast(Address); GlobalValue *GV = GN->getGlobal(); BuildMI(BB, Opc, 3).addReg(Tmp1).addGlobalAddress(GV).addReg(Tmp2); } } } return; } case ISD::EXTLOAD: case ISD::SEXTLOAD: case ISD::ZEXTLOAD: case ISD::LOAD: case ISD::CopyFromReg: case ISD::TAILCALL: case ISD::CALL: case ISD::DYNAMIC_STACKALLOC: ExprMap.erase(N); SelectExpr(N); return; } assert(0 && "Should not be reached!"); } /// createPPC32PatternInstructionSelector - This pass converts an LLVM function /// into a machine code representation using pattern matching and a machine /// description file. /// FunctionPass *llvm::createPPC32ISelPattern(TargetMachine &TM) { return new ISel(TM); }