//===- MemoryDepAnalysis.cpp - Compute dep graph for memory ops --*-C++-*--===// // // This file implements a pass (MemoryDepAnalysis) that computes memory-based // data dependences between instructions for each function in a module. // Memory-based dependences occur due to load and store operations, but // also the side-effects of call instructions. // // The result of this pass is a DependenceGraph for each function // representing the memory-based data dependences between instructions. //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemoryDepAnalysis.h" #include "llvm/Analysis/IPModRef.h" #include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DSGraph.h" #include "llvm/Module.h" #include "llvm/iMemory.h" #include "llvm/iOther.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/CFG.h" #include "Support/SCCIterator.h" #include "Support/Statistic.h" #include "Support/STLExtras.h" #include "Support/hash_map" #include "Support/hash_set" ///-------------------------------------------------------------------------- /// struct ModRefTable: /// /// A data structure that tracks ModRefInfo for instructions: /// -- modRefMap is a map of Instruction* -> ModRefInfo for the instr. /// -- definers is a vector of instructions that define any node /// -- users is a vector of instructions that reference any node /// -- numUsersBeforeDef is a vector indicating that the number of users /// seen before definers[i] is numUsersBeforeDef[i]. /// /// numUsersBeforeDef[] effectively tells us the exact interleaving of /// definers and users within the ModRefTable. /// This is only maintained when constructing the table for one SCC, and /// not copied over from one table to another since it is no longer useful. ///-------------------------------------------------------------------------- struct ModRefTable { typedef hash_map ModRefMap; typedef ModRefMap::const_iterator const_map_iterator; typedef ModRefMap:: iterator map_iterator; typedef std::vector::const_iterator const_ref_iterator; typedef std::vector:: iterator ref_iterator; ModRefMap modRefMap; std::vector definers; std::vector users; std::vector numUsersBeforeDef; // Iterators to enumerate all the defining instructions const_ref_iterator defsBegin() const { return definers.begin(); } ref_iterator defsBegin() { return definers.begin(); } const_ref_iterator defsEnd() const { return definers.end(); } ref_iterator defsEnd() { return definers.end(); } // Iterators to enumerate all the user instructions const_ref_iterator usersBegin() const { return users.begin(); } ref_iterator usersBegin() { return users.begin(); } const_ref_iterator usersEnd() const { return users.end(); } ref_iterator usersEnd() { return users.end(); } // Iterator identifying the last user that was seen *before* a // specified def. In particular, all users in the half-closed range // [ usersBegin(), usersBeforeDef_End(defPtr) ) // were seen *before* the specified def. All users in the half-closed range // [ usersBeforeDef_End(defPtr), usersEnd() ) // were seen *after* the specified def. // ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) { unsigned defIndex = (unsigned) (defPtr - defsBegin()); assert(defIndex < numUsersBeforeDef.size()); assert(usersBegin() + numUsersBeforeDef[defIndex] <= usersEnd()); return usersBegin() + numUsersBeforeDef[defIndex]; } const_ref_iterator usersBeforeDef_End(const_ref_iterator defPtr) const { return const_cast(this)->usersBeforeDef_End(defPtr); } // // Modifier methods // void AddDef(Instruction* D) { definers.push_back(D); numUsersBeforeDef.push_back(users.size()); } void AddUse(Instruction* U) { users.push_back(U); } void Insert(const ModRefTable& fromTable) { modRefMap.insert(fromTable.modRefMap.begin(), fromTable.modRefMap.end()); definers.insert(definers.end(), fromTable.definers.begin(), fromTable.definers.end()); users.insert(users.end(), fromTable.users.begin(), fromTable.users.end()); numUsersBeforeDef.clear(); /* fromTable.numUsersBeforeDef is ignored */ } }; ///-------------------------------------------------------------------------- /// class ModRefInfoBuilder: /// /// A simple InstVisitor<> class that retrieves the Mod/Ref info for /// Load/Store/Call instructions and inserts this information in /// a ModRefTable. It also records all instructions that Mod any node /// and all that use any node. ///-------------------------------------------------------------------------- class ModRefInfoBuilder : public InstVisitor { const DSGraph& funcGraph; const FunctionModRefInfo& funcModRef; ModRefTable& modRefTable; ModRefInfoBuilder(); // DO NOT IMPLEMENT ModRefInfoBuilder(const ModRefInfoBuilder&); // DO NOT IMPLEMENT void operator=(const ModRefInfoBuilder&); // DO NOT IMPLEMENT public: /*ctor*/ ModRefInfoBuilder(const DSGraph& _funcGraph, const FunctionModRefInfo& _funcModRef, ModRefTable& _modRefTable) : funcGraph(_funcGraph), funcModRef(_funcModRef), modRefTable(_modRefTable) { } // At a call instruction, retrieve the ModRefInfo using IPModRef results. // Add the call to the defs list if it modifies any nodes and to the uses // list if it refs any nodes. // void visitCallInst (CallInst& callInst) { ModRefInfo safeModRef(funcGraph.getGraphSize()); const ModRefInfo* callModRef = funcModRef.getModRefInfo(callInst); if (callModRef == NULL) { // call to external/unknown function: mark all nodes as Mod and Ref safeModRef.getModSet().set(); safeModRef.getRefSet().set(); callModRef = &safeModRef; } modRefTable.modRefMap.insert(std::make_pair(&callInst, ModRefInfo(*callModRef))); if (callModRef->getModSet().any()) modRefTable.AddDef(&callInst); if (callModRef->getRefSet().any()) modRefTable.AddUse(&callInst); } // At a store instruction, add to the mod set the single node pointed to // by the pointer argument of the store. Interestingly, if there is no // such node, that would be a null pointer reference! void visitStoreInst (StoreInst& storeInst) { const DSNodeHandle& ptrNode = funcGraph.getNodeForValue(storeInst.getPointerOperand()); if (const DSNode* target = ptrNode.getNode()) { unsigned nodeId = funcModRef.getNodeId(target); ModRefInfo& minfo = modRefTable.modRefMap.insert( std::make_pair(&storeInst, ModRefInfo(funcGraph.getGraphSize()))).first->second; minfo.setNodeIsMod(nodeId); modRefTable.AddDef(&storeInst); } else std::cerr << "Warning: Uninitialized pointer reference!\n"; } // At a load instruction, add to the ref set the single node pointed to // by the pointer argument of the load. Interestingly, if there is no // such node, that would be a null pointer reference! void visitLoadInst (LoadInst& loadInst) { const DSNodeHandle& ptrNode = funcGraph.getNodeForValue(loadInst.getPointerOperand()); if (const DSNode* target = ptrNode.getNode()) { unsigned nodeId = funcModRef.getNodeId(target); ModRefInfo& minfo = modRefTable.modRefMap.insert( std::make_pair(&loadInst, ModRefInfo(funcGraph.getGraphSize()))).first->second; minfo.setNodeIsRef(nodeId); modRefTable.AddUse(&loadInst); } else std::cerr << "Warning: Uninitialized pointer reference!\n"; } }; //---------------------------------------------------------------------------- // class MemoryDepAnalysis: A dep. graph for load/store/call instructions //---------------------------------------------------------------------------- /// getAnalysisUsage - This does not modify anything. It uses the Top-Down DS /// Graph and IPModRef. /// void MemoryDepAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); } /// Basic dependence gathering algorithm, using scc_iterator on CFG: /// /// for every SCC S in the CFG in PostOrder on the SCC DAG /// { /// for every basic block BB in S in *postorder* /// for every instruction I in BB in reverse /// Add (I, ModRef[I]) to ModRefCurrent /// if (Mod[I] != NULL) /// Add I to DefSetCurrent: { I \in S : Mod[I] != NULL } /// if (Ref[I] != NULL) /// Add I to UseSetCurrent: { I : Ref[I] != NULL } /// /// for every def D in DefSetCurrent /// /// // NOTE: D comes after itself iff S contains a loop /// if (HasLoop(S) && D & D) /// Add output-dep: D -> D2 /// /// for every def D2 *after* D in DefSetCurrent /// // NOTE: D2 comes before D in execution order /// if (D & D2) /// Add output-dep: D2 -> D /// if (HasLoop(S)) /// Add output-dep: D -> D2 /// /// for every use U in UseSetCurrent that was seen *before* D /// // NOTE: U comes after D in execution order /// if (U & D) /// if (U != D || HasLoop(S)) /// Add true-dep: D -> U /// if (HasLoop(S)) /// Add anti-dep: U -> D /// /// for every use U in UseSetCurrent that was seen *after* D /// // NOTE: U comes before D in execution order /// if (U & D) /// if (U != D || HasLoop(S)) /// Add anti-dep: U -> D /// if (HasLoop(S)) /// Add true-dep: D -> U /// /// for every def Dnext in DefSetAfter /// // NOTE: Dnext comes after D in execution order /// if (Dnext & D) /// Add output-dep: D -> Dnext /// /// for every use Unext in UseSetAfter /// // NOTE: Unext comes after D in execution order /// if (Unext & D) /// Add true-dep: D -> Unext /// /// for every use U in UseSetCurrent /// for every def Dnext in DefSetAfter /// // NOTE: Dnext comes after U in execution order /// if (Dnext & D) /// Add anti-dep: U -> Dnext /// /// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) } /// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL } /// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL } /// } /// /// void MemoryDepAnalysis::ProcessSCC(std::vector &S, ModRefTable& ModRefAfter, bool hasLoop) { ModRefTable ModRefCurrent; ModRefTable::ModRefMap& mapCurrent = ModRefCurrent.modRefMap; ModRefTable::ModRefMap& mapAfter = ModRefAfter.modRefMap; // Builder class fills out a ModRefTable one instruction at a time. // To use it, we just invoke it's visit function for each basic block: // // for each basic block BB in the SCC in *postorder* // for each instruction I in BB in *reverse* // ModRefInfoBuilder::visit(I) // : Add (I, ModRef[I]) to ModRefCurrent.modRefMap // : Add I to ModRefCurrent.definers if it defines any node // : Add I to ModRefCurrent.users if it uses any node // ModRefInfoBuilder builder(*funcGraph, *funcModRef, ModRefCurrent); for (std::vector::iterator BI = S.begin(), BE = S.end(); BI != BE; ++BI) // Note: BBs in the SCC<> created by scc_iterator are in postorder. for (BasicBlock::reverse_iterator II=(*BI)->rbegin(), IE=(*BI)->rend(); II != IE; ++II) builder.visit(*II); /// for every def D in DefSetCurrent /// for (ModRefTable::ref_iterator II=ModRefCurrent.defsBegin(), IE=ModRefCurrent.defsEnd(); II != IE; ++II) { /// // NOTE: D comes after itself iff S contains a loop /// if (HasLoop(S)) /// Add output-dep: D -> D2 if (hasLoop) funcDepGraph->AddSimpleDependence(**II, **II, OutputDependence); /// for every def D2 *after* D in DefSetCurrent /// // NOTE: D2 comes before D in execution order /// if (D2 & D) /// Add output-dep: D2 -> D /// if (HasLoop(S)) /// Add output-dep: D -> D2 for (ModRefTable::ref_iterator JI=II+1; JI != IE; ++JI) if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), mapCurrent.find(*JI)->second.getModSet())) { funcDepGraph->AddSimpleDependence(**JI, **II, OutputDependence); if (hasLoop) funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence); } /// for every use U in UseSetCurrent that was seen *before* D /// // NOTE: U comes after D in execution order /// if (U & D) /// if (U != D || HasLoop(S)) /// Add true-dep: U -> D /// if (HasLoop(S)) /// Add anti-dep: D -> U ModRefTable::ref_iterator JI=ModRefCurrent.usersBegin(); ModRefTable::ref_iterator JE = ModRefCurrent.usersBeforeDef_End(II); for ( ; JI != JE; ++JI) if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), mapCurrent.find(*JI)->second.getRefSet())) { if (*II != *JI || hasLoop) funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); if (hasLoop) funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence); } /// for every use U in UseSetCurrent that was seen *after* D /// // NOTE: U comes before D in execution order /// if (U & D) /// if (U != D || HasLoop(S)) /// Add anti-dep: U -> D /// if (HasLoop(S)) /// Add true-dep: D -> U for (/*continue JI*/ JE = ModRefCurrent.usersEnd(); JI != JE; ++JI) if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), mapCurrent.find(*JI)->second.getRefSet())) { if (*II != *JI || hasLoop) funcDepGraph->AddSimpleDependence(**JI, **II, AntiDependence); if (hasLoop) funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); } /// for every def Dnext in DefSetPrev /// // NOTE: Dnext comes after D in execution order /// if (Dnext & D) /// Add output-dep: D -> Dnext for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(), JE=ModRefAfter.defsEnd(); JI != JE; ++JI) if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), mapAfter.find(*JI)->second.getModSet())) funcDepGraph->AddSimpleDependence(**II, **JI, OutputDependence); /// for every use Unext in UseSetAfter /// // NOTE: Unext comes after D in execution order /// if (Unext & D) /// Add true-dep: D -> Unext for (ModRefTable::ref_iterator JI=ModRefAfter.usersBegin(), JE=ModRefAfter.usersEnd(); JI != JE; ++JI) if (!Disjoint(mapCurrent.find(*II)->second.getModSet(), mapAfter.find(*JI)->second.getRefSet())) funcDepGraph->AddSimpleDependence(**II, **JI, TrueDependence); } /// /// for every use U in UseSetCurrent /// for every def Dnext in DefSetAfter /// // NOTE: Dnext comes after U in execution order /// if (Dnext & D) /// Add anti-dep: U -> Dnext for (ModRefTable::ref_iterator II=ModRefCurrent.usersBegin(), IE=ModRefCurrent.usersEnd(); II != IE; ++II) for (ModRefTable::ref_iterator JI=ModRefAfter.defsBegin(), JE=ModRefAfter.defsEnd(); JI != JE; ++JI) if (!Disjoint(mapCurrent.find(*II)->second.getRefSet(), mapAfter.find(*JI)->second.getModSet())) funcDepGraph->AddSimpleDependence(**II, **JI, AntiDependence); /// Add ModRefCurrent to ModRefAfter: { (I, ModRef[I] ) } /// Add DefSetCurrent to DefSetAfter: { I : Mod[I] != NULL } /// Add UseSetCurrent to UseSetAfter: { I : Ref[I] != NULL } ModRefAfter.Insert(ModRefCurrent); } /// Debugging support methods /// void MemoryDepAnalysis::print(std::ostream &O) const { // TEMPORARY LOOP for (hash_map::const_iterator I = funcMap.begin(), E = funcMap.end(); I != E; ++I) { Function* func = I->first; DependenceGraph* depGraph = I->second; O << "\n================================================================\n"; O << "DEPENDENCE GRAPH FOR MEMORY OPERATIONS IN FUNCTION " << func->getName(); O << "\n================================================================\n\n"; depGraph->print(*func, O); } } /// /// Run the pass on a function /// bool MemoryDepAnalysis::runOnFunction(Function &F) { assert(!F.isExternal()); // Get the FunctionModRefInfo holding IPModRef results for this function. // Use the TD graph recorded within the FunctionModRefInfo object, which // may not be the same as the original TD graph computed by DS analysis. // funcModRef = &getAnalysis().getFunctionModRefInfo(F); funcGraph = &funcModRef->getFuncGraph(); // TEMPORARY: ptr to depGraph (later just becomes "this"). assert(!funcMap.count(&F) && "Analyzing function twice?"); funcDepGraph = funcMap[&F] = new DependenceGraph(); ModRefTable ModRefAfter; for (scc_iterator I = scc_begin(&F), E = scc_end(&F); I != E; ++I) ProcessSCC(*I, ModRefAfter, I.hasLoop()); return true; } //------------------------------------------------------------------------- // TEMPORARY FUNCTIONS TO MAKE THIS A MODULE PASS --- // These functions will go away once this class becomes a FunctionPass. // // Driver function to compute dependence graphs for every function. // This is temporary and will go away once this is a FunctionPass. // bool MemoryDepAnalysis::run(Module& M) { for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) if (! FI->isExternal()) runOnFunction(*FI); // automatically inserts each depGraph into funcMap return true; } // Release all the dependence graphs in the map. void MemoryDepAnalysis::releaseMemory() { for (hash_map::const_iterator I = funcMap.begin(), E = funcMap.end(); I != E; ++I) delete I->second; funcMap.clear(); // Clear pointers because the pass constructor will not be invoked again. funcDepGraph = NULL; funcGraph = NULL; funcModRef = NULL; } MemoryDepAnalysis::~MemoryDepAnalysis() { releaseMemory(); } //----END TEMPORARY FUNCTIONS---------------------------------------------- void MemoryDepAnalysis::dump() const { this->print(std::cerr); } static RegisterAnalysis Z("memdep", "Memory Dependence Analysis");