//===-- Function.cpp - Implement the Global object classes ----------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Function & GlobalVariable classes for the VMCore // library. // //===----------------------------------------------------------------------===// #include "llvm/Module.h" #include "llvm/DerivedTypes.h" #include "llvm/IntrinsicInst.h" #include "llvm/Support/LeakDetector.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; BasicBlock *ilist_traits::createSentinel() { BasicBlock *Ret = new BasicBlock(); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Function *F) { return F->getBasicBlockList(); } Argument *ilist_traits::createSentinel() { Argument *Ret = new Argument(Type::IntTy); // This should not be garbage monitored. LeakDetector::removeGarbageObject(Ret); return Ret; } iplist &ilist_traits::getList(Function *F) { return F->getArgumentList(); } // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file... template class SymbolTableListTraits; template class SymbolTableListTraits; //===----------------------------------------------------------------------===// // Argument Implementation //===----------------------------------------------------------------------===// Argument::Argument(const Type *Ty, const std::string &Name, Function *Par) : Value(Ty, Value::ArgumentVal, Name) { Parent = 0; // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (Par) Par->getArgumentList().push_back(this); } void Argument::setParent(Function *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } //===----------------------------------------------------------------------===// // Function Implementation //===----------------------------------------------------------------------===// Function::Function(const FunctionType *Ty, LinkageTypes Linkage, const std::string &name, Module *ParentModule) : GlobalValue(PointerType::get(Ty), Value::FunctionVal, 0, 0, Linkage, name) { CallingConvention = 0; BasicBlocks.setItemParent(this); BasicBlocks.setParent(this); ArgumentList.setItemParent(this); ArgumentList.setParent(this); SymTab = new SymbolTable(); assert((getReturnType()->isFirstClassType() ||getReturnType() == Type::VoidTy) && "LLVM functions cannot return aggregate values!"); // Create the arguments vector, all arguments start out unnamed. for (unsigned i = 0, e = Ty->getNumParams(); i != e; ++i) { assert(Ty->getParamType(i) != Type::VoidTy && "Cannot have void typed arguments!"); ArgumentList.push_back(new Argument(Ty->getParamType(i))); } // Make sure that we get added to a function LeakDetector::addGarbageObject(this); if (ParentModule) ParentModule->getFunctionList().push_back(this); } Function::~Function() { dropAllReferences(); // After this it is safe to delete instructions. // Delete all of the method arguments and unlink from symbol table... ArgumentList.clear(); ArgumentList.setParent(0); delete SymTab; } void Function::setParent(Module *parent) { if (getParent()) LeakDetector::addGarbageObject(this); Parent = parent; if (getParent()) LeakDetector::removeGarbageObject(this); } const FunctionType *Function::getFunctionType() const { return cast(getType()->getElementType()); } bool Function::isVarArg() const { return getFunctionType()->isVarArg(); } const Type *Function::getReturnType() const { return getFunctionType()->getReturnType(); } void Function::removeFromParent() { getParent()->getFunctionList().remove(this); } void Function::eraseFromParent() { getParent()->getFunctionList().erase(this); } /// renameLocalSymbols - This method goes through the Function's symbol table /// and renames any symbols that conflict with symbols at global scope. This is /// required before printing out to a textual form, to ensure that there is no /// ambiguity when parsing. void Function::renameLocalSymbols() { SymbolTable &LST = getSymbolTable(); // Local Symtab SymbolTable &GST = getParent()->getSymbolTable(); // Global Symtab for (SymbolTable::plane_iterator LPI = LST.plane_begin(), E = LST.plane_end(); LPI != E; ++LPI) // All global symbols are of pointer type, ignore any non-pointer planes. if (const PointerType *CurTy = dyn_cast(LPI->first)) { // Only check if the global plane has any symbols of this type. SymbolTable::plane_iterator GPI = GST.find(LPI->first); if (GPI != GST.plane_end()) { SymbolTable::ValueMap &LVM = LPI->second; const SymbolTable::ValueMap &GVM = GPI->second; // Loop over all local symbols, renaming those that are in the global // symbol table already. for (SymbolTable::value_iterator VI = LVM.begin(), E = LVM.end(); VI != E;) { Value *V = VI->second; const std::string &Name = VI->first; ++VI; if (GVM.count(Name)) { static unsigned UniqueNum = 0; // Find a name that does not conflict! while (GVM.count(Name + "_" + utostr(++UniqueNum)) || LVM.count(Name + "_" + utostr(UniqueNum))) /* scan for UniqueNum that works */; V->setName(Name + "_" + utostr(UniqueNum)); } } } } } // dropAllReferences() - This function causes all the subinstructions to "let // go" of all references that they are maintaining. This allows one to // 'delete' a whole class at a time, even though there may be circular // references... first all references are dropped, and all use counts go to // zero. Then everything is deleted for real. Note that no operations are // valid on an object that has "dropped all references", except operator // delete. // void Function::dropAllReferences() { for (iterator I = begin(), E = end(); I != E; ++I) I->dropAllReferences(); BasicBlocks.clear(); // Delete all basic blocks... } /// getIntrinsicID - This method returns the ID number of the specified /// function, or Intrinsic::not_intrinsic if the function is not an /// intrinsic, or if the pointer is null. This value is always defined to be /// zero to allow easy checking for whether a function is intrinsic or not. The /// particular intrinsic functions which correspond to this value are defined in /// llvm/Intrinsics.h. /// unsigned Function::getIntrinsicID() const { const std::string& Name = this->getName(); if (Name.size() < 5 || Name[4] != '.' || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm') return 0; // All intrinsics start with 'llvm.' assert(Name.size() != 5 && "'llvm.' is an invalid intrinsic name!"); switch (Name[5]) { case 'b': if (Name == "llvm.bswap.i16") return Intrinsic::bswap_i16; if (Name == "llvm.bswap.i32") return Intrinsic::bswap_i32; if (Name == "llvm.bswap.i64") return Intrinsic::bswap_i64; break; case 'c': if (Name == "llvm.ctpop.i8") return Intrinsic::ctpop_i8; if (Name == "llvm.ctpop.i16") return Intrinsic::ctpop_i16; if (Name == "llvm.ctpop.i32") return Intrinsic::ctpop_i32; if (Name == "llvm.ctpop.i64") return Intrinsic::ctpop_i64; if (Name == "llvm.cttz.i8") return Intrinsic::cttz_i8; if (Name == "llvm.cttz.i16") return Intrinsic::cttz_i16; if (Name == "llvm.cttz.i32") return Intrinsic::cttz_i32; if (Name == "llvm.cttz.i64") return Intrinsic::cttz_i64; if (Name == "llvm.ctlz.i8") return Intrinsic::ctlz_i8; if (Name == "llvm.ctlz.i16") return Intrinsic::ctlz_i16; if (Name == "llvm.ctlz.i32") return Intrinsic::ctlz_i32; if (Name == "llvm.ctlz.i64") return Intrinsic::ctlz_i64; break; case 'd': if (Name == "llvm.dbg.stoppoint") return Intrinsic::dbg_stoppoint; if (Name == "llvm.dbg.region.start")return Intrinsic::dbg_region_start; if (Name == "llvm.dbg.region.end") return Intrinsic::dbg_region_end; if (Name == "llvm.dbg.func.start") return Intrinsic::dbg_func_start; if (Name == "llvm.dbg.declare") return Intrinsic::dbg_declare; break; case 'f': if (Name == "llvm.frameaddress") return Intrinsic::frameaddress; break; case 'g': if (Name == "llvm.gcwrite") return Intrinsic::gcwrite; if (Name == "llvm.gcread") return Intrinsic::gcread; if (Name == "llvm.gcroot") return Intrinsic::gcroot; break; case 'i': if (Name == "llvm.isunordered.f32") return Intrinsic::isunordered_f32; if (Name == "llvm.isunordered.f64") return Intrinsic::isunordered_f64; break; case 'l': if (Name == "llvm.longjmp") return Intrinsic::longjmp; break; case 'm': if (Name == "llvm.memcpy.i32") return Intrinsic::memcpy_i32; if (Name == "llvm.memcpy.i64") return Intrinsic::memcpy_i64; if (Name == "llvm.memmove.i32") return Intrinsic::memmove_i32; if (Name == "llvm.memmove.i64") return Intrinsic::memmove_i64; if (Name == "llvm.memset.i32") return Intrinsic::memset_i32; if (Name == "llvm.memset.i64") return Intrinsic::memset_i64; break; case 'p': if (Name == "llvm.prefetch") return Intrinsic::prefetch; if (Name == "llvm.pcmarker") return Intrinsic::pcmarker; break; case 'r': if (Name == "llvm.returnaddress") return Intrinsic::returnaddress; if (Name == "llvm.readcyclecounter") return Intrinsic::readcyclecounter; break; case 's': if (Name == "llvm.setjmp") return Intrinsic::setjmp; if (Name == "llvm.sigsetjmp") return Intrinsic::sigsetjmp; if (Name == "llvm.siglongjmp") return Intrinsic::siglongjmp; if (Name == "llvm.stackrestore") return Intrinsic::stackrestore; if (Name == "llvm.stacksave") return Intrinsic::stacksave; if (Name == "llvm.sqrt.f32") return Intrinsic::sqrt_f32; if (Name == "llvm.sqrt.f64") return Intrinsic::sqrt_f64; break; case 'v': if (Name == "llvm.va_copy") return Intrinsic::vacopy; if (Name == "llvm.va_end") return Intrinsic::vaend; if (Name == "llvm.va_start") return Intrinsic::vastart; break; } // The "llvm." namespace is reserved! assert(!"Unknown LLVM intrinsic function!"); return 0; } Value *IntrinsicInst::StripPointerCasts(Value *Ptr) { if (ConstantExpr *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == Instruction::Cast) { if (isa(CE->getOperand(0)->getType())) return StripPointerCasts(CE->getOperand(0)); } else if (CE->getOpcode() == Instruction::GetElementPtr) { for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) if (!CE->getOperand(i)->isNullValue()) return Ptr; return StripPointerCasts(CE->getOperand(0)); } return Ptr; } if (CastInst *CI = dyn_cast(Ptr)) { if (isa(CI->getOperand(0)->getType())) return StripPointerCasts(CI->getOperand(0)); } else if (GetElementPtrInst *GEP = dyn_cast(Ptr)) { for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) if (!isa(GEP->getOperand(i)) || !cast(GEP->getOperand(i))->isNullValue()) return Ptr; return StripPointerCasts(GEP->getOperand(0)); } return Ptr; } // vim: sw=2 ai