//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the RAGreedy function pass for register allocation in // optimized builds. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "regalloc" #include "AllocationOrder.h" #include "LiveIntervalUnion.h" #include "RegAllocBase.h" #include "Spiller.h" #include "VirtRegMap.h" #include "VirtRegRewriter.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Function.h" #include "llvm/PassAnalysisSupport.h" #include "llvm/CodeGen/CalcSpillWeights.h" #include "llvm/CodeGen/LiveIntervalAnalysis.h" #include "llvm/CodeGen/LiveStackAnalysis.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterCoalescer.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", createGreedyRegisterAllocator); namespace { class RAGreedy : public MachineFunctionPass, public RegAllocBase { // context MachineFunction *MF; const TargetMachine *TM; MachineRegisterInfo *MRI; BitVector ReservedRegs; // analyses LiveStacks *LS; // state std::auto_ptr SpillerInstance; public: RAGreedy(); /// Return the pass name. virtual const char* getPassName() const { return "Basic Register Allocator"; } /// RAGreedy analysis usage. virtual void getAnalysisUsage(AnalysisUsage &AU) const; virtual void releaseMemory(); virtual Spiller &spiller() { return *SpillerInstance; } virtual float getPriority(LiveInterval *LI); virtual unsigned selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &SplitVRegs); /// Perform register allocation. virtual bool runOnMachineFunction(MachineFunction &mf); static char ID; private: bool checkUncachedInterference(LiveInterval &, unsigned); bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg); bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg); }; } // end anonymous namespace char RAGreedy::ID = 0; FunctionPass* llvm::createGreedyRegisterAllocator() { return new RAGreedy(); } RAGreedy::RAGreedy(): MachineFunctionPass(ID) { initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); initializeLiveStacksPass(*PassRegistry::getPassRegistry()); initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); } void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); if (StrongPHIElim) AU.addRequiredID(StrongPHIEliminationID); AU.addRequiredTransitive(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(MachineDominatorsID); AU.addPreservedID(MachineDominatorsID); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } void RAGreedy::releaseMemory() { SpillerInstance.reset(0); RegAllocBase::releaseMemory(); } float RAGreedy::getPriority(LiveInterval *LI) { float Priority = LI->weight; // Prioritize hinted registers so they are allocated first. std::pair Hint; if (Hint.first || Hint.second) { // The hint can be target specific, a virtual register, or a physreg. Priority *= 2; // Prefer physreg hints above anything else. if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second)) Priority *= 2; } return Priority; } // Check interference without using the cache. bool RAGreedy::checkUncachedInterference(LiveInterval &VirtReg, unsigned PhysReg) { LiveIntervalUnion::Query subQ(&VirtReg, &PhysReg2LiveUnion[PhysReg]); if (subQ.checkInterference()) return true; for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) { subQ.init(&VirtReg, &PhysReg2LiveUnion[*AliasI]); if (subQ.checkInterference()) return true; } return false; } // Attempt to reassign this virtual register to a different physical register. // // FIXME: we are not yet caching these "second-level" interferences discovered // in the sub-queries. These interferences can change with each call to // selectOrSplit. However, we could implement a "may-interfere" cache that // could be conservatively dirtied when we reassign or split. // // FIXME: This may result in a lot of alias queries. We could summarize alias // live intervals in their parent register's live union, but it's messy. bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg) { assert(OldPhysReg == VRM->getPhys(InterferingVReg.reg) && "inconsistent phys reg assigment"); AllocationOrder Order(InterferingVReg.reg, *VRM, ReservedRegs); while (unsigned PhysReg = Order.next()) { if (PhysReg == OldPhysReg) continue; if (checkUncachedInterference(InterferingVReg, PhysReg)) continue; DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " << TRI->getName(OldPhysReg) << " to " << TRI->getName(PhysReg) << '\n'); // Reassign the interfering virtual reg to this physical reg. PhysReg2LiveUnion[OldPhysReg].extract(InterferingVReg); VRM->clearVirt(InterferingVReg.reg); VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg); PhysReg2LiveUnion[PhysReg].unify(InterferingVReg); return true; } return false; } // Collect all virtual regs currently assigned to PhysReg that interfere with // VirtReg. // // Currently, for simplicity, we only attempt to reassign a single interference // within the same register class. bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) { LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); // Limit the interference search to one interference. Q.collectInterferingVRegs(1); assert(Q.interferingVRegs().size() == 1 && "expected at least one interference"); // Do not attempt reassignment unless we find only a single interference. if (!Q.seenAllInterferences()) return false; // Don't allow any interferences on aliases. for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) { if (query(VirtReg, *AliasI).checkInterference()) return false; } return reassignVReg(*Q.interferingVRegs()[0], PhysReg); } unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, SmallVectorImpl &SplitVRegs) { // Populate a list of physical register spill candidates. SmallVector PhysRegSpillCands, ReassignCands; // Check for an available register in this class. const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg); DEBUG(dbgs() << "RegClass: " << TRC->getName() << ' '); AllocationOrder Order(VirtReg.reg, *VRM, ReservedRegs); while (unsigned PhysReg = Order.next()) { // Check interference and as a side effect, intialize queries for this // VirtReg and its aliases. unsigned InterfReg = checkPhysRegInterference(VirtReg, PhysReg); if (InterfReg == 0) { // Found an available register. return PhysReg; } assert(!VirtReg.empty() && "Empty VirtReg has interference"); LiveInterval *InterferingVirtReg = Queries[InterfReg].firstInterference().liveUnionPos().value(); // The current VirtReg must either be spillable, or one of its interferences // must have less spill weight. if (InterferingVirtReg->weight < VirtReg.weight ) { // For simplicity, only consider reassigning registers in the same class. if (InterfReg == PhysReg) ReassignCands.push_back(PhysReg); else PhysRegSpillCands.push_back(PhysReg); } } // Try to reassign interfering physical register. Priority among // PhysRegSpillCands does not matter yet, because the reassigned virtual // registers will still be assigned to physical registers. for (SmallVectorImpl::iterator PhysRegI = ReassignCands.begin(), PhysRegE = ReassignCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { if (reassignInterferences(VirtReg, *PhysRegI)) // Reassignment successfull. The caller may allocate now to this PhysReg. return *PhysRegI; } PhysRegSpillCands.insert(PhysRegSpillCands.end(), ReassignCands.begin(), ReassignCands.end()); // Try to spill another interfering reg with less spill weight. // // FIXME: do this in two steps: (1) check for unspillable interferences while // accumulating spill weight; (2) spill the interferences with lowest // aggregate spill weight. for (SmallVectorImpl::iterator PhysRegI = PhysRegSpillCands.begin(), PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && "Interference after spill."); // Tell the caller to allocate to this newly freed physical register. return *PhysRegI; } // No other spill candidates were found, so spill the current VirtReg. DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); SmallVector pendingSpills; spiller().spill(&VirtReg, SplitVRegs, pendingSpills); // The live virtual register requesting allocation was spilled, so tell // the caller not to allocate anything during this round. return 0; } bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" << "********** Function: " << ((Value*)mf.getFunction())->getName() << '\n'); MF = &mf; TM = &mf.getTarget(); MRI = &mf.getRegInfo(); const TargetRegisterInfo *TRI = TM->getRegisterInfo(); RegAllocBase::init(*TRI, getAnalysis(), getAnalysis()); ReservedRegs = TRI->getReservedRegs(*MF); SpillerInstance.reset(createSpiller(*this, *MF, *VRM)); allocatePhysRegs(); addMBBLiveIns(MF); // Run rewriter std::auto_ptr rewriter(createVirtRegRewriter()); rewriter->runOnMachineFunction(*MF, *VRM, LIS); // The pass output is in VirtRegMap. Release all the transient data. releaseMemory(); return true; }