//===-- llvm/Module.h - C++ class to represent a VM module ------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declarations for the Module class that is used to // maintain all the information related to a VM module. // // A module also maintains a GlobalValRefMap object that is used to hold all // constant references to global variables in the module. When a global // variable is destroyed, it should have no entries in the GlobalValueRefMap. // //===----------------------------------------------------------------------===// #ifndef LLVM_MODULE_H #define LLVM_MODULE_H #include "llvm/Function.h" #include "llvm/GlobalVariable.h" class GlobalVariable; class GlobalValueRefMap; // Used by ConstantVals.cpp class ConstantPointerRef; class FunctionType; class SymbolTable; template<> struct ilist_traits : public SymbolTableListTraits { // createNode is used to create a node that marks the end of the list... static Function *createNode(); static iplist &getList(Module *M); }; template<> struct ilist_traits : public SymbolTableListTraits { // createNode is used to create a node that marks the end of the list... static GlobalVariable *createNode(); static iplist &getList(Module *M); }; struct Module : public Annotable { typedef iplist GlobalListType; typedef iplist FunctionListType; // Global Variable iterators... typedef GlobalListType::iterator giterator; typedef GlobalListType::const_iterator const_giterator; typedef std::reverse_iterator reverse_giterator; typedef std::reverse_iterator const_reverse_giterator; // Function iterators... typedef FunctionListType::iterator iterator; typedef FunctionListType::const_iterator const_iterator; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; enum Endianness { AnyEndianness, LittleEndian, BigEndian }; enum PointerSize { AnyPointerSize, Pointer32, Pointer64 }; private: GlobalListType GlobalList; // The Global Variables in the module FunctionListType FunctionList; // The Functions in the module GlobalValueRefMap *GVRefMap; // Keep track of GlobalValueRef's SymbolTable *SymTab; // Symbol Table for the module std::string ModuleID; // Human readable identifier for the module // These flags are probably not the right long-term way to handle this kind of // target information, but it is sufficient for now. Endianness Endian; // True if target is little endian PointerSize PtrSize; // True if target has 32-bit pointers (false = 64-bit) // Accessor for the underlying GVRefMap... only through the Constant class... friend class Constant; friend class ConstantPointerRef; void mutateConstantPointerRef(GlobalValue *OldGV, GlobalValue *NewGV); ConstantPointerRef *getConstantPointerRef(GlobalValue *GV); void destroyConstantPointerRef(ConstantPointerRef *CPR); public: Module(const std::string &ModuleID); ~Module(); const std::string &getModuleIdentifier() const { return ModuleID; } /// Target endian information... Endianness getEndianness() const { return Endian; } void setEndianness(Endianness E) { Endian = E; } /// Target Pointer Size information... PointerSize getPointerSize() const { return PtrSize; } void setPointerSize(PointerSize PS) { PtrSize = PS; } /// getOrInsertFunction - Look up the specified function in the module symbol /// table. If it does not exist, add a prototype for the function and return /// it. Function *getOrInsertFunction(const std::string &Name, const FunctionType *T); /// getOrInsertFunction - Look up the specified function in the module symbol /// table. If it does not exist, add a prototype for the function and return /// it. This version of the method takes a null terminated list of function /// arguments, which makes it easier for clients to use. Function *getOrInsertFunction(const std::string &Name, const Type *RetTy,...); /// getFunction - Look up the specified function in the module symbol table. /// If it does not exist, return null. /// Function *getFunction(const std::string &Name, const FunctionType *Ty); /// getMainFunction - This function looks up main efficiently. This is such a /// common case, that it is a method in Module. If main cannot be found, a /// null pointer is returned. /// Function *getMainFunction(); /// getNamedFunction - Return the first function in the module with the /// specified name, of arbitrary type. This method returns null if a function /// with the specified name is not found. /// Function *getNamedFunction(const std::string &Name); /// addTypeName - Insert an entry in the symbol table mapping Str to Type. If /// there is already an entry for this name, true is returned and the symbol /// table is not modified. /// bool addTypeName(const std::string &Name, const Type *Ty); /// getTypeName - If there is at least one entry in the symbol table for the /// specified type, return it. /// std::string getTypeName(const Type *Ty); /// Get the underlying elements of the Module... inline const GlobalListType &getGlobalList() const { return GlobalList; } inline GlobalListType &getGlobalList() { return GlobalList; } inline const FunctionListType &getFunctionList() const { return FunctionList;} inline FunctionListType &getFunctionList() { return FunctionList;} //===--------------------------------------------------------------------===// // Symbol table support functions... /// getSymbolTable() - Get access to the symbol table for the module, where /// global variables and functions are identified. /// inline SymbolTable &getSymbolTable() { return *SymTab; } inline const SymbolTable &getSymbolTable() const { return *SymTab; } //===--------------------------------------------------------------------===// // Module iterator forwarding functions // inline giterator gbegin() { return GlobalList.begin(); } inline const_giterator gbegin() const { return GlobalList.begin(); } inline giterator gend () { return GlobalList.end(); } inline const_giterator gend () const { return GlobalList.end(); } inline reverse_giterator grbegin() { return GlobalList.rbegin(); } inline const_reverse_giterator grbegin() const { return GlobalList.rbegin(); } inline reverse_giterator grend () { return GlobalList.rend(); } inline const_reverse_giterator grend () const { return GlobalList.rend(); } inline unsigned gsize() const { return GlobalList.size(); } inline bool gempty() const { return GlobalList.empty(); } inline const GlobalVariable &gfront() const { return GlobalList.front(); } inline GlobalVariable &gfront() { return GlobalList.front(); } inline const GlobalVariable &gback() const { return GlobalList.back(); } inline GlobalVariable &gback() { return GlobalList.back(); } inline iterator begin() { return FunctionList.begin(); } inline const_iterator begin() const { return FunctionList.begin(); } inline iterator end () { return FunctionList.end(); } inline const_iterator end () const { return FunctionList.end(); } inline reverse_iterator rbegin() { return FunctionList.rbegin(); } inline const_reverse_iterator rbegin() const { return FunctionList.rbegin(); } inline reverse_iterator rend () { return FunctionList.rend(); } inline const_reverse_iterator rend () const { return FunctionList.rend(); } inline unsigned size() const { return FunctionList.size(); } inline bool empty() const { return FunctionList.empty(); } inline const Function &front() const { return FunctionList.front(); } inline Function &front() { return FunctionList.front(); } inline const Function &back() const { return FunctionList.back(); } inline Function &back() { return FunctionList.back(); } void print(std::ostream &OS) const { print(OS, 0); } void print(std::ostream &OS, AssemblyAnnotationWriter *AAW) const; void dump() const; /// dropAllReferences() - This function causes all the subinstructions to "let /// go" of all references that they are maintaining. This allows one to /// 'delete' a whole class at a time, even though there may be circular /// references... first all references are dropped, and all use counts go to /// zero. Then everything is delete'd for real. Note that no operations are /// valid on an object that has "dropped all references", except operator /// delete. /// void dropAllReferences(); }; inline std::ostream &operator<<(std::ostream &O, const Module *M) { M->print(O); return O; } inline std::ostream &operator<<(std::ostream &O, const Module &M) { M.print(O); return O; } #endif