//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements the SelectionDAGISel class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "isel" #include "ScheduleDAGSDNodes.h" #include "SelectionDAGBuilder.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/DebugInfo.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/GCStrategy.h" #include "llvm/CodeGen/GCMetadata.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetIntrinsicInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/Statistic.h" #include using namespace llvm; STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); #ifndef NDEBUG STATISTIC(NumBBWithOutOfOrderLineInfo, "Number of blocks with out of order line number info"); STATISTIC(NumMBBWithOutOfOrderLineInfo, "Number of machine blocks with out of order line number info"); #endif static cl::opt EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, cl::desc("Enable verbose messages in the \"fast\" " "instruction selector")); static cl::opt EnableFastISelAbort("fast-isel-abort", cl::Hidden, cl::desc("Enable abort calls when \"fast\" instruction fails")); #ifndef NDEBUG static cl::opt ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the first " "dag combine pass")); static cl::opt ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize types")); static cl::opt ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, cl::desc("Pop up a window to show dags before legalize")); static cl::opt ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the second " "dag combine pass")); static cl::opt ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, cl::desc("Pop up a window to show dags before the post legalize types" " dag combine pass")); static cl::opt ViewISelDAGs("view-isel-dags", cl::Hidden, cl::desc("Pop up a window to show isel dags as they are selected")); static cl::opt ViewSchedDAGs("view-sched-dags", cl::Hidden, cl::desc("Pop up a window to show sched dags as they are processed")); static cl::opt ViewSUnitDAGs("view-sunit-dags", cl::Hidden, cl::desc("Pop up a window to show SUnit dags after they are processed")); #else static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, ViewDAGCombine2 = false, ViewDAGCombineLT = false, ViewISelDAGs = false, ViewSchedDAGs = false, ViewSUnitDAGs = false; #endif //===---------------------------------------------------------------------===// /// /// RegisterScheduler class - Track the registration of instruction schedulers. /// //===---------------------------------------------------------------------===// MachinePassRegistry RegisterScheduler::Registry; //===---------------------------------------------------------------------===// /// /// ISHeuristic command line option for instruction schedulers. /// //===---------------------------------------------------------------------===// static cl::opt > ISHeuristic("pre-RA-sched", cl::init(&createDefaultScheduler), cl::desc("Instruction schedulers available (before register" " allocation):")); static RegisterScheduler defaultListDAGScheduler("default", "Best scheduler for the target", createDefaultScheduler); namespace llvm { //===--------------------------------------------------------------------===// /// createDefaultScheduler - This creates an instruction scheduler appropriate /// for the target. ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, CodeGenOpt::Level OptLevel) { const TargetLowering &TLI = IS->getTargetLowering(); if (OptLevel == CodeGenOpt::None) return createSourceListDAGScheduler(IS, OptLevel); if (TLI.getSchedulingPreference() == Sched::Latency) return createTDListDAGScheduler(IS, OptLevel); if (TLI.getSchedulingPreference() == Sched::RegPressure) return createBURRListDAGScheduler(IS, OptLevel); if (TLI.getSchedulingPreference() == Sched::Hybrid) return createHybridListDAGScheduler(IS, OptLevel); assert(TLI.getSchedulingPreference() == Sched::ILP && "Unknown sched type!"); return createILPListDAGScheduler(IS, OptLevel); } } // EmitInstrWithCustomInserter - This method should be implemented by targets // that mark instructions with the 'usesCustomInserter' flag. These // instructions are special in various ways, which require special support to // insert. The specified MachineInstr is created but not inserted into any // basic blocks, and this method is called to expand it into a sequence of // instructions, potentially also creating new basic blocks and control flow. // When new basic blocks are inserted and the edges from MBB to its successors // are modified, the method should insert pairs of into the // DenseMap. MachineBasicBlock * TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { #ifndef NDEBUG dbgs() << "If a target marks an instruction with " "'usesCustomInserter', it must implement " "TargetLowering::EmitInstrWithCustomInserter!"; #endif llvm_unreachable(0); return 0; } //===----------------------------------------------------------------------===// // SelectionDAGISel code //===----------------------------------------------------------------------===// SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) : MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()), FuncInfo(new FunctionLoweringInfo(TLI)), CurDAG(new SelectionDAG(tm)), SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)), GFI(), OptLevel(OL), DAGSize(0) { initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry()); } SelectionDAGISel::~SelectionDAGISel() { delete SDB; delete CurDAG; delete FuncInfo; } void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } /// FunctionCallsSetJmp - Return true if the function has a call to setjmp or /// other function that gcc recognizes as "returning twice". This is used to /// limit code-gen optimizations on the machine function. /// /// FIXME: Remove after is fixed. static bool FunctionCallsSetJmp(const Function *F) { const Module *M = F->getParent(); static const char *ReturnsTwiceFns[] = { "_setjmp", "setjmp", "sigsetjmp", "setjmp_syscall", "savectx", "qsetjmp", "vfork", "getcontext" }; #define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *) for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I) if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) { if (!Callee->use_empty()) for (Value::const_use_iterator I = Callee->use_begin(), E = Callee->use_end(); I != E; ++I) if (const CallInst *CI = dyn_cast(*I)) if (CI->getParent()->getParent() == F) return true; } return false; #undef NUM_RETURNS_TWICE_FNS } /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that /// may trap on it. In this case we have to split the edge so that the path /// through the predecessor block that doesn't go to the phi block doesn't /// execute the possibly trapping instruction. /// /// This is required for correctness, so it must be done at -O0. /// static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) { // Loop for blocks with phi nodes. for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) { PHINode *PN = dyn_cast(BB->begin()); if (PN == 0) continue; ReprocessBlock: // For each block with a PHI node, check to see if any of the input values // are potentially trapping constant expressions. Constant expressions are // the only potentially trapping value that can occur as the argument to a // PHI. for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast(I)); ++I) for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { ConstantExpr *CE = dyn_cast(PN->getIncomingValue(i)); if (CE == 0 || !CE->canTrap()) continue; // The only case we have to worry about is when the edge is critical. // Since this block has a PHI Node, we assume it has multiple input // edges: check to see if the pred has multiple successors. BasicBlock *Pred = PN->getIncomingBlock(i); if (Pred->getTerminator()->getNumSuccessors() == 1) continue; // Okay, we have to split this edge. SplitCriticalEdge(Pred->getTerminator(), GetSuccessorNumber(Pred, BB), SDISel, true); goto ReprocessBlock; } } } bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { // Do some sanity-checking on the command-line options. assert((!EnableFastISelVerbose || EnableFastISel) && "-fast-isel-verbose requires -fast-isel"); assert((!EnableFastISelAbort || EnableFastISel) && "-fast-isel-abort requires -fast-isel"); const Function &Fn = *mf.getFunction(); const TargetInstrInfo &TII = *TM.getInstrInfo(); const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); MF = &mf; RegInfo = &MF->getRegInfo(); AA = &getAnalysis(); GFI = Fn.hasGC() ? &getAnalysis().getFunctionInfo(Fn) : 0; DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); SplitCriticalSideEffectEdges(const_cast(Fn), this); CurDAG->init(*MF); FuncInfo->set(Fn, *MF); SDB->init(GFI, *AA); SelectAllBasicBlocks(Fn); // If the first basic block in the function has live ins that need to be // copied into vregs, emit the copies into the top of the block before // emitting the code for the block. MachineBasicBlock *EntryMBB = MF->begin(); RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII); DenseMap LiveInMap; if (!FuncInfo->ArgDbgValues.empty()) for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(), E = RegInfo->livein_end(); LI != E; ++LI) if (LI->second) LiveInMap.insert(std::make_pair(LI->first, LI->second)); // Insert DBG_VALUE instructions for function arguments to the entry block. for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; unsigned Reg = MI->getOperand(0).getReg(); if (TargetRegisterInfo::isPhysicalRegister(Reg)) EntryMBB->insert(EntryMBB->begin(), MI); else { MachineInstr *Def = RegInfo->getVRegDef(Reg); MachineBasicBlock::iterator InsertPos = Def; // FIXME: VR def may not be in entry block. Def->getParent()->insert(llvm::next(InsertPos), MI); } // If Reg is live-in then update debug info to track its copy in a vreg. DenseMap::iterator LDI = LiveInMap.find(Reg); if (LDI != LiveInMap.end()) { MachineInstr *Def = RegInfo->getVRegDef(LDI->second); MachineBasicBlock::iterator InsertPos = Def; const MDNode *Variable = MI->getOperand(MI->getNumOperands()-1).getMetadata(); unsigned Offset = MI->getOperand(1).getImm(); // Def is never a terminator here, so it is ok to increment InsertPos. BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) .addReg(LDI->second, RegState::Debug) .addImm(Offset).addMetadata(Variable); // If this vreg is directly copied into an exported register then // that COPY instructions also need DBG_VALUE, if it is the only // user of LDI->second. MachineInstr *CopyUseMI = NULL; for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(LDI->second); MachineInstr *UseMI = UI.skipInstruction();) { if (UseMI->isDebugValue()) continue; if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { CopyUseMI = UseMI; continue; } // Otherwise this is another use or second copy use. CopyUseMI = NULL; break; } if (CopyUseMI) { MachineInstr *NewMI = BuildMI(*MF, CopyUseMI->getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug) .addImm(Offset).addMetadata(Variable); EntryMBB->insertAfter(CopyUseMI, NewMI); } } } // Determine if there are any calls in this machine function. MachineFrameInfo *MFI = MF->getFrameInfo(); if (!MFI->hasCalls()) { for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { const MachineBasicBlock *MBB = I; for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end(); II != IE; ++II) { const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode()); if ((TID.isCall() && !TID.isReturn()) || II->isStackAligningInlineAsm()) { MFI->setHasCalls(true); goto done; } } } done:; } // Determine if there is a call to setjmp in the machine function. MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn)); // Replace forward-declared registers with the registers containing // the desired value. MachineRegisterInfo &MRI = MF->getRegInfo(); for (DenseMap::iterator I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); I != E; ++I) { unsigned From = I->first; unsigned To = I->second; // If To is also scheduled to be replaced, find what its ultimate // replacement is. for (;;) { DenseMap::iterator J = FuncInfo->RegFixups.find(To); if (J == E) break; To = J->second; } // Replace it. MRI.replaceRegWith(From, To); } // Release function-specific state. SDB and CurDAG are already cleared // at this point. FuncInfo->clear(); return true; } void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, bool &HadTailCall) { // Lower all of the non-terminator instructions. If a call is emitted // as a tail call, cease emitting nodes for this block. Terminators // are handled below. for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) SDB->visit(*I); // Make sure the root of the DAG is up-to-date. CurDAG->setRoot(SDB->getControlRoot()); HadTailCall = SDB->HasTailCall; SDB->clear(); // Final step, emit the lowered DAG as machine code. CodeGenAndEmitDAG(); return; } void SelectionDAGISel::ComputeLiveOutVRegInfo() { SmallPtrSet VisitedNodes; SmallVector Worklist; Worklist.push_back(CurDAG->getRoot().getNode()); APInt Mask; APInt KnownZero; APInt KnownOne; do { SDNode *N = Worklist.pop_back_val(); // If we've already seen this node, ignore it. if (!VisitedNodes.insert(N)) continue; // Otherwise, add all chain operands to the worklist. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) if (N->getOperand(i).getValueType() == MVT::Other) Worklist.push_back(N->getOperand(i).getNode()); // If this is a CopyToReg with a vreg dest, process it. if (N->getOpcode() != ISD::CopyToReg) continue; unsigned DestReg = cast(N->getOperand(1))->getReg(); if (!TargetRegisterInfo::isVirtualRegister(DestReg)) continue; // Ignore non-scalar or non-integer values. SDValue Src = N->getOperand(2); EVT SrcVT = Src.getValueType(); if (!SrcVT.isInteger() || SrcVT.isVector()) continue; unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne); } while (!Worklist.empty()); } void SelectionDAGISel::CodeGenAndEmitDAG() { std::string GroupName; if (TimePassesIsEnabled) GroupName = "Instruction Selection and Scheduling"; std::string BlockName; if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || ViewSUnitDAGs) BlockName = MF->getFunction()->getNameStr() + ":" + FuncInfo->MBB->getBasicBlock()->getNameStr(); DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump()); if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); // Run the DAG combiner in pre-legalize mode. { NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled); CurDAG->Combine(Unrestricted, *AA, OptLevel); } DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump()); // Second step, hack on the DAG until it only uses operations and types that // the target supports. if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + BlockName); bool Changed; { NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled); Changed = CurDAG->LegalizeTypes(); } DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump()); if (Changed) { if (ViewDAGCombineLT) CurDAG->viewGraph("dag-combine-lt input for " + BlockName); // Run the DAG combiner in post-type-legalize mode. { NamedRegionTimer T("DAG Combining after legalize types", GroupName, TimePassesIsEnabled); CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); } DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n"; CurDAG->dump()); } { NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled); Changed = CurDAG->LegalizeVectors(); } if (Changed) { { NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled); CurDAG->LegalizeTypes(); } if (ViewDAGCombineLT) CurDAG->viewGraph("dag-combine-lv input for " + BlockName); // Run the DAG combiner in post-type-legalize mode. { NamedRegionTimer T("DAG Combining after legalize vectors", GroupName, TimePassesIsEnabled); CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); } DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n"; CurDAG->dump()); } if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); { NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled); CurDAG->Legalize(OptLevel); } DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump()); if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); // Run the DAG combiner in post-legalize mode. { NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled); CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); } DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump()); if (OptLevel != CodeGenOpt::None) ComputeLiveOutVRegInfo(); if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); // Third, instruction select all of the operations to machine code, adding the // code to the MachineBasicBlock. { NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled); DoInstructionSelection(); } DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump()); if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); // Schedule machine code. ScheduleDAGSDNodes *Scheduler = CreateScheduler(); { NamedRegionTimer T("Instruction Scheduling", GroupName, TimePassesIsEnabled); Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt); } if (ViewSUnitDAGs) Scheduler->viewGraph(); // Emit machine code to BB. This can change 'BB' to the last block being // inserted into. MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; { NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(); FuncInfo->InsertPt = Scheduler->InsertPos; } // If the block was split, make sure we update any references that are used to // update PHI nodes later on. if (FirstMBB != LastMBB) SDB->UpdateSplitBlock(FirstMBB, LastMBB); // Free the scheduler state. { NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName, TimePassesIsEnabled); delete Scheduler; } // Free the SelectionDAG state, now that we're finished with it. CurDAG->clear(); } void SelectionDAGISel::DoInstructionSelection() { DEBUG(errs() << "===== Instruction selection begins:\n"); PreprocessISelDAG(); // Select target instructions for the DAG. { // Number all nodes with a topological order and set DAGSize. DAGSize = CurDAG->AssignTopologicalOrder(); // Create a dummy node (which is not added to allnodes), that adds // a reference to the root node, preventing it from being deleted, // and tracking any changes of the root. HandleSDNode Dummy(CurDAG->getRoot()); ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); ++ISelPosition; // The AllNodes list is now topological-sorted. Visit the // nodes by starting at the end of the list (the root of the // graph) and preceding back toward the beginning (the entry // node). while (ISelPosition != CurDAG->allnodes_begin()) { SDNode *Node = --ISelPosition; // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, // but there are currently some corner cases that it misses. Also, this // makes it theoretically possible to disable the DAGCombiner. if (Node->use_empty()) continue; SDNode *ResNode = Select(Node); // FIXME: This is pretty gross. 'Select' should be changed to not return // anything at all and this code should be nuked with a tactical strike. // If node should not be replaced, continue with the next one. if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) continue; // Replace node. if (ResNode) ReplaceUses(Node, ResNode); // If after the replacement this node is not used any more, // remove this dead node. if (Node->use_empty()) { // Don't delete EntryToken, etc. ISelUpdater ISU(ISelPosition); CurDAG->RemoveDeadNode(Node, &ISU); } } CurDAG->setRoot(Dummy.getValue()); } DEBUG(errs() << "===== Instruction selection ends:\n"); PostprocessISelDAG(); } /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and /// do other setup for EH landing-pad blocks. void SelectionDAGISel::PrepareEHLandingPad() { // Add a label to mark the beginning of the landing pad. Deletion of the // landing pad can thus be detected via the MachineModuleInfo. MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB); const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) .addSym(Label); // Mark exception register as live in. unsigned Reg = TLI.getExceptionAddressRegister(); if (Reg) FuncInfo->MBB->addLiveIn(Reg); // Mark exception selector register as live in. Reg = TLI.getExceptionSelectorRegister(); if (Reg) FuncInfo->MBB->addLiveIn(Reg); // FIXME: Hack around an exception handling flaw (PR1508): the personality // function and list of typeids logically belong to the invoke (or, if you // like, the basic block containing the invoke), and need to be associated // with it in the dwarf exception handling tables. Currently however the // information is provided by an intrinsic (eh.selector) that can be moved // to unexpected places by the optimizers: if the unwind edge is critical, // then breaking it can result in the intrinsics being in the successor of // the landing pad, not the landing pad itself. This results // in exceptions not being caught because no typeids are associated with // the invoke. This may not be the only way things can go wrong, but it // is the only way we try to work around for the moment. const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock(); const BranchInst *Br = dyn_cast(LLVMBB->getTerminator()); if (Br && Br->isUnconditional()) { // Critical edge? BasicBlock::const_iterator I, E; for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) if (isa(I)) break; if (I == E) // No catch info found - try to extract some from the successor. CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo); } } bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI, FastISel *FastIS) { // Don't try to fold volatile loads. Target has to deal with alignment // constraints. if (LI->isVolatile()) return false; // Figure out which vreg this is going into. unsigned LoadReg = FastIS->getRegForValue(LI); assert(LoadReg && "Load isn't already assigned a vreg? "); // Check to see what the uses of this vreg are. If it has no uses, or more // than one use (at the machine instr level) then we can't fold it. MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg); if (RI == RegInfo->reg_end()) return false; // See if there is exactly one use of the vreg. If there are multiple uses, // then the instruction got lowered to multiple machine instructions or the // use of the loaded value ended up being multiple operands of the result, in // either case, we can't fold this. MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI; if (PostRI != RegInfo->reg_end()) return false; assert(RI.getOperand().isUse() && "The only use of the vreg must be a use, we haven't emitted the def!"); MachineInstr *User = &*RI; // Set the insertion point properly. Folding the load can cause generation of // other random instructions (like sign extends) for addressing modes, make // sure they get inserted in a logical place before the new instruction. FuncInfo->InsertPt = User; FuncInfo->MBB = User->getParent(); // Ask the target to try folding the load. return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI); } #ifndef NDEBUG /// CheckLineNumbers - Check if basic block instructions follow source order /// or not. static void CheckLineNumbers(const BasicBlock *BB) { unsigned Line = 0; unsigned Col = 0; for (BasicBlock::const_iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { const DebugLoc DL = BI->getDebugLoc(); if (DL.isUnknown()) continue; unsigned L = DL.getLine(); unsigned C = DL.getCol(); if (L < Line || (L == Line && C < Col)) { ++NumBBWithOutOfOrderLineInfo; return; } Line = L; Col = C; } } /// CheckLineNumbers - Check if machine basic block instructions follow source /// order or not. static void CheckLineNumbers(const MachineBasicBlock *MBB) { unsigned Line = 0; unsigned Col = 0; for (MachineBasicBlock::const_iterator MBI = MBB->begin(), MBE = MBB->end(); MBI != MBE; ++MBI) { const DebugLoc DL = MBI->getDebugLoc(); if (DL.isUnknown()) continue; unsigned L = DL.getLine(); unsigned C = DL.getCol(); if (L < Line || (L == Line && C < Col)) { ++NumMBBWithOutOfOrderLineInfo; return; } Line = L; Col = C; } } #endif void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { // Initialize the Fast-ISel state, if needed. FastISel *FastIS = 0; if (EnableFastISel) FastIS = TLI.createFastISel(*FuncInfo); // Iterate over all basic blocks in the function. ReversePostOrderTraversal RPOT(&Fn); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) { const BasicBlock *LLVMBB = *I; #ifndef NDEBUG CheckLineNumbers(LLVMBB); #endif if (OptLevel != CodeGenOpt::None) { bool AllPredsVisited = true; for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); PI != PE; ++PI) { if (!FuncInfo->VisitedBBs.count(*PI)) { AllPredsVisited = false; break; } } if (AllPredsVisited) { for (BasicBlock::const_iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E && isa(I); ++I) { FuncInfo->ComputePHILiveOutRegInfo(cast(I)); } } else { for (BasicBlock::const_iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E && isa(I); ++I) { FuncInfo->InvalidatePHILiveOutRegInfo(cast(I)); } } FuncInfo->VisitedBBs.insert(LLVMBB); } FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); BasicBlock::const_iterator const End = LLVMBB->end(); BasicBlock::const_iterator BI = End; FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI(); // Setup an EH landing-pad block. if (FuncInfo->MBB->isLandingPad()) PrepareEHLandingPad(); // Lower any arguments needed in this block if this is the entry block. if (LLVMBB == &Fn.getEntryBlock()) LowerArguments(LLVMBB); // Before doing SelectionDAG ISel, see if FastISel has been requested. if (FastIS) { FastIS->startNewBlock(); // Emit code for any incoming arguments. This must happen before // beginning FastISel on the entry block. if (LLVMBB == &Fn.getEntryBlock()) { CurDAG->setRoot(SDB->getControlRoot()); SDB->clear(); CodeGenAndEmitDAG(); // If we inserted any instructions at the beginning, make a note of // where they are, so we can be sure to emit subsequent instructions // after them. if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt)); else FastIS->setLastLocalValue(0); } // Do FastISel on as many instructions as possible. for (; BI != Begin; --BI) { const Instruction *Inst = llvm::prior(BI); // If we no longer require this instruction, skip it. if (!Inst->mayWriteToMemory() && !isa(Inst) && !isa(Inst) && !FuncInfo->isExportedInst(Inst)) continue; // Bottom-up: reset the insert pos at the top, after any local-value // instructions. FastIS->recomputeInsertPt(); // Try to select the instruction with FastISel. if (FastIS->SelectInstruction(Inst)) { // If fast isel succeeded, check to see if there is a single-use // non-volatile load right before the selected instruction, and see if // the load is used by the instruction. If so, try to fold it. const Instruction *BeforeInst = 0; if (Inst != Begin) BeforeInst = llvm::prior(llvm::prior(BI)); if (BeforeInst && isa(BeforeInst) && BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst && TryToFoldFastISelLoad(cast(BeforeInst), FastIS)) --BI; // If we succeeded, don't re-select the load. continue; } // Then handle certain instructions as single-LLVM-Instruction blocks. if (isa(Inst)) { ++NumFastIselFailures; if (EnableFastISelVerbose || EnableFastISelAbort) { dbgs() << "FastISel missed call: "; Inst->dump(); } if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) { unsigned &R = FuncInfo->ValueMap[Inst]; if (!R) R = FuncInfo->CreateRegs(Inst->getType()); } bool HadTailCall = false; SelectBasicBlock(Inst, BI, HadTailCall); // If the call was emitted as a tail call, we're done with the block. if (HadTailCall) { --BI; break; } continue; } // Otherwise, give up on FastISel for the rest of the block. // For now, be a little lenient about non-branch terminators. if (!isa(Inst) || isa(Inst)) { ++NumFastIselFailures; if (EnableFastISelVerbose || EnableFastISelAbort) { dbgs() << "FastISel miss: "; Inst->dump(); } if (EnableFastISelAbort) // The "fast" selector couldn't handle something and bailed. // For the purpose of debugging, just abort. llvm_unreachable("FastISel didn't select the entire block"); } break; } FastIS->recomputeInsertPt(); } if (Begin != BI) ++NumDAGBlocks; else ++NumFastIselBlocks; // Run SelectionDAG instruction selection on the remainder of the block // not handled by FastISel. If FastISel is not run, this is the entire // block. bool HadTailCall; SelectBasicBlock(Begin, BI, HadTailCall); FinishBasicBlock(); FuncInfo->PHINodesToUpdate.clear(); } delete FastIS; #ifndef NDEBUG for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end(); MBI != MBE; ++MBI) CheckLineNumbers(MBI); #endif } void SelectionDAGISel::FinishBasicBlock() { DEBUG(dbgs() << "Total amount of phi nodes to update: " << FuncInfo->PHINodesToUpdate.size() << "\n"; for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) dbgs() << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); // Next, now that we know what the last MBB the LLVM BB expanded is, update // PHI nodes in successors. if (SDB->SwitchCases.empty() && SDB->JTCases.empty() && SDB->BitTestCases.empty()) { for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) continue; PHI->addOperand( MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); } return; } for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered if (!SDB->BitTestCases[i].Emitted) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->BitTestCases[i].Parent; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code if (j+1 != ej) SDB->visitBitTestCase(SDB->BitTestCases[i], SDB->BitTestCases[i].Cases[j+1].ThisBB, SDB->BitTestCases[i].Reg, SDB->BitTestCases[i].Cases[j], FuncInfo->MBB); else SDB->visitBitTestCase(SDB->BitTestCases[i], SDB->BitTestCases[i].Default, SDB->BitTestCases[i].Reg, SDB->BitTestCases[i].Cases[j], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // Update PHI Nodes for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); // This is "default" BB. We have two jumps to it. From "header" BB and // from last "case" BB. if (PHIBB == SDB->BitTestCases[i].Default) { PHI->addOperand(MachineOperand:: CreateReg(FuncInfo->PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); PHI->addOperand(MachineOperand:: CreateReg(FuncInfo->PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. back().ThisBB)); } // One of "cases" BB. for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; if (cBB->isSuccessor(PHIBB)) { PHI->addOperand(MachineOperand:: CreateReg(FuncInfo->PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(cBB)); } } } } SDB->BitTestCases.clear(); // If the JumpTable record is filled in, then we need to emit a jump table. // Updating the PHI nodes is tricky in this case, since we need to determine // whether the PHI is a successor of the range check MBB or the jump table MBB for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { // Lower header first, if it wasn't already lowered if (!SDB->JTCases[i].first.Emitted) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); } // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->JTCases[i].second.MBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Emit the code SDB->visitJumpTable(SDB->JTCases[i].second); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Update PHI Nodes for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); pi != pe; ++pi) { MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first; MachineBasicBlock *PHIBB = PHI->getParent(); assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); // "default" BB. We can go there only from header BB. if (PHIBB == SDB->JTCases[i].second.Default) { PHI->addOperand (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, false)); PHI->addOperand (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); } // JT BB. Just iterate over successors here if (FuncInfo->MBB->isSuccessor(PHIBB)) { PHI->addOperand (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, false)); PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); } } } SDB->JTCases.clear(); // If the switch block involved a branch to one of the actual successors, we // need to update PHI nodes in that block. for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; assert(PHI->isPHI() && "This is not a machine PHI node that we are updating!"); if (FuncInfo->MBB->isSuccessor(PHI->getParent())) { PHI->addOperand( MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB)); } } // If we generated any switch lowering information, build and codegen any // additional DAGs necessary. for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { // Set the current basic block to the mbb we wish to insert the code into FuncInfo->MBB = SDB->SwitchCases[i].ThisBB; FuncInfo->InsertPt = FuncInfo->MBB->end(); // Determine the unique successors. SmallVector Succs; Succs.push_back(SDB->SwitchCases[i].TrueBB); if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB) Succs.push_back(SDB->SwitchCases[i].FalseBB); // Emit the code. Note that this could result in FuncInfo->MBB being split. SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB); CurDAG->setRoot(SDB->getRoot()); SDB->clear(); CodeGenAndEmitDAG(); // Remember the last block, now that any splitting is done, for use in // populating PHI nodes in successors. MachineBasicBlock *ThisBB = FuncInfo->MBB; // Handle any PHI nodes in successors of this chunk, as if we were coming // from the original BB before switch expansion. Note that PHI nodes can // occur multiple times in PHINodesToUpdate. We have to be very careful to // handle them the right number of times. for (unsigned i = 0, e = Succs.size(); i != e; ++i) { FuncInfo->MBB = Succs[i]; FuncInfo->InsertPt = FuncInfo->MBB->end(); // FuncInfo->MBB may have been removed from the CFG if a branch was // constant folded. if (ThisBB->isSuccessor(FuncInfo->MBB)) { for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin(); Phi != FuncInfo->MBB->end() && Phi->isPHI(); ++Phi) { // This value for this PHI node is recorded in PHINodesToUpdate. for (unsigned pn = 0; ; ++pn) { assert(pn != FuncInfo->PHINodesToUpdate.size() && "Didn't find PHI entry!"); if (FuncInfo->PHINodesToUpdate[pn].first == Phi) { Phi->addOperand(MachineOperand:: CreateReg(FuncInfo->PHINodesToUpdate[pn].second, false)); Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); break; } } } } } } SDB->SwitchCases.clear(); } /// Create the scheduler. If a specific scheduler was specified /// via the SchedulerRegistry, use it, otherwise select the /// one preferred by the target. /// ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); if (!Ctor) { Ctor = ISHeuristic; RegisterScheduler::setDefault(Ctor); } return Ctor(this, OptLevel); } //===----------------------------------------------------------------------===// // Helper functions used by the generated instruction selector. //===----------------------------------------------------------------------===// // Calls to these methods are generated by tblgen. /// CheckAndMask - The isel is trying to match something like (and X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { const APInt &ActualMask = RHS->getAPIntValue(); const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (ActualMask.intersects(~DesiredMask)) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. APInt NeededMask = DesiredMask & ~ActualMask; if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// CheckOrMask - The isel is trying to match something like (or X, 255). If /// the dag combiner simplified the 255, we still want to match. RHS is the /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value /// specified in the .td file (e.g. 255). bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, int64_t DesiredMaskS) const { const APInt &ActualMask = RHS->getAPIntValue(); const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); // If the actual mask exactly matches, success! if (ActualMask == DesiredMask) return true; // If the actual AND mask is allowing unallowed bits, this doesn't match. if (ActualMask.intersects(~DesiredMask)) return false; // Otherwise, the DAG Combiner may have proven that the value coming in is // either already zero or is not demanded. Check for known zero input bits. APInt NeededMask = DesiredMask & ~ActualMask; APInt KnownZero, KnownOne; CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); // If all the missing bits in the or are already known to be set, match! if ((NeededMask & KnownOne) == NeededMask) return true; // TODO: check to see if missing bits are just not demanded. // Otherwise, this pattern doesn't match. return false; } /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated /// by tblgen. Others should not call it. void SelectionDAGISel:: SelectInlineAsmMemoryOperands(std::vector &Ops) { std::vector InOps; std::swap(InOps, Ops); Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); if (InOps[e-1].getValueType() == MVT::Glue) --e; // Don't process a glue operand if it is here. while (i != e) { unsigned Flags = cast(InOps[i])->getZExtValue(); if (!InlineAsm::isMemKind(Flags)) { // Just skip over this operand, copying the operands verbatim. Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); i += InlineAsm::getNumOperandRegisters(Flags) + 1; } else { assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && "Memory operand with multiple values?"); // Otherwise, this is a memory operand. Ask the target to select it. std::vector SelOps; if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) report_fatal_error("Could not match memory address. Inline asm" " failure!"); // Add this to the output node. unsigned NewFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32)); Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); i += 2; } } // Add the glue input back if present. if (e != InOps.size()) Ops.push_back(InOps.back()); } /// findGlueUse - Return use of MVT::Glue value produced by the specified /// SDNode. /// static SDNode *findGlueUse(SDNode *N) { unsigned FlagResNo = N->getNumValues()-1; for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { SDUse &Use = I.getUse(); if (Use.getResNo() == FlagResNo) return Use.getUser(); } return NULL; } /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". /// This function recursively traverses up the operand chain, ignoring /// certain nodes. static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, SDNode *Root, SmallPtrSet &Visited, bool IgnoreChains) { // The NodeID's are given uniques ID's where a node ID is guaranteed to be // greater than all of its (recursive) operands. If we scan to a point where // 'use' is smaller than the node we're scanning for, then we know we will // never find it. // // The Use may be -1 (unassigned) if it is a newly allocated node. This can // happen because we scan down to newly selected nodes in the case of glue // uses. if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) return false; // Don't revisit nodes if we already scanned it and didn't fail, we know we // won't fail if we scan it again. if (!Visited.insert(Use)) return false; for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { // Ignore chain uses, they are validated by HandleMergeInputChains. if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) continue; SDNode *N = Use->getOperand(i).getNode(); if (N == Def) { if (Use == ImmedUse || Use == Root) continue; // We are not looking for immediate use. assert(N != Root); return true; } // Traverse up the operand chain. if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) return true; } return false; } /// IsProfitableToFold - Returns true if it's profitable to fold the specific /// operand node N of U during instruction selection that starts at Root. bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { if (OptLevel == CodeGenOpt::None) return false; return N.hasOneUse(); } /// IsLegalToFold - Returns true if the specific operand node N of /// U can be folded during instruction selection that starts at Root. bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, CodeGenOpt::Level OptLevel, bool IgnoreChains) { if (OptLevel == CodeGenOpt::None) return false; // If Root use can somehow reach N through a path that that doesn't contain // U then folding N would create a cycle. e.g. In the following // diagram, Root can reach N through X. If N is folded into into Root, then // X is both a predecessor and a successor of U. // // [N*] // // ^ ^ // // / \ // // [U*] [X]? // // ^ ^ // // \ / // // \ / // // [Root*] // // // * indicates nodes to be folded together. // // If Root produces glue, then it gets (even more) interesting. Since it // will be "glued" together with its glue use in the scheduler, we need to // check if it might reach N. // // [N*] // // ^ ^ // // / \ // // [U*] [X]? // // ^ ^ // // \ \ // // \ | // // [Root*] | // // ^ | // // f | // // | / // // [Y] / // // ^ / // // f / // // | / // // [GU] // // // If GU (glue use) indirectly reaches N (the load), and Root folds N // (call it Fold), then X is a predecessor of GU and a successor of // Fold. But since Fold and GU are glued together, this will create // a cycle in the scheduling graph. // If the node has glue, walk down the graph to the "lowest" node in the // glueged set. EVT VT = Root->getValueType(Root->getNumValues()-1); while (VT == MVT::Glue) { SDNode *GU = findGlueUse(Root); if (GU == NULL) break; Root = GU; VT = Root->getValueType(Root->getNumValues()-1); // If our query node has a glue result with a use, we've walked up it. If // the user (which has already been selected) has a chain or indirectly uses // the chain, our WalkChainUsers predicate will not consider it. Because of // this, we cannot ignore chains in this predicate. IgnoreChains = false; } SmallPtrSet Visited; return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); } SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { std::vector Ops(N->op_begin(), N->op_end()); SelectInlineAsmMemoryOperands(Ops); std::vector VTs; VTs.push_back(MVT::Other); VTs.push_back(MVT::Glue); SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), VTs, &Ops[0], Ops.size()); New->setNodeId(-1); return New.getNode(); } SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); } /// GetVBR - decode a vbr encoding whose top bit is set. LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { assert(Val >= 128 && "Not a VBR"); Val &= 127; // Remove first vbr bit. unsigned Shift = 7; uint64_t NextBits; do { NextBits = MatcherTable[Idx++]; Val |= (NextBits&127) << Shift; Shift += 7; } while (NextBits & 128); return Val; } /// UpdateChainsAndGlue - When a match is complete, this method updates uses of /// interior glue and chain results to use the new glue and chain results. void SelectionDAGISel:: UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain, const SmallVectorImpl &ChainNodesMatched, SDValue InputGlue, const SmallVectorImpl &GlueResultNodesMatched, bool isMorphNodeTo) { SmallVector NowDeadNodes; ISelUpdater ISU(ISelPosition); // Now that all the normal results are replaced, we replace the chain and // glue results if present. if (!ChainNodesMatched.empty()) { assert(InputChain.getNode() != 0 && "Matched input chains but didn't produce a chain"); // Loop over all of the nodes we matched that produced a chain result. // Replace all the chain results with the final chain we ended up with. for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { SDNode *ChainNode = ChainNodesMatched[i]; // If this node was already deleted, don't look at it. if (ChainNode->getOpcode() == ISD::DELETED_NODE) continue; // Don't replace the results of the root node if we're doing a // MorphNodeTo. if (ChainNode == NodeToMatch && isMorphNodeTo) continue; SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); if (ChainVal.getValueType() == MVT::Glue) ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); // If the node became dead and we haven't already seen it, delete it. if (ChainNode->use_empty() && !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) NowDeadNodes.push_back(ChainNode); } } // If the result produces glue, update any glue results in the matched // pattern with the glue result. if (InputGlue.getNode() != 0) { // Handle any interior nodes explicitly marked. for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) { SDNode *FRN = GlueResultNodesMatched[i]; // If this node was already deleted, don't look at it. if (FRN->getOpcode() == ISD::DELETED_NODE) continue; assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue && "Doesn't have a glue result"); CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), InputGlue, &ISU); // If the node became dead and we haven't already seen it, delete it. if (FRN->use_empty() && !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN)) NowDeadNodes.push_back(FRN); } } if (!NowDeadNodes.empty()) CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); DEBUG(errs() << "ISEL: Match complete!\n"); } enum ChainResult { CR_Simple, CR_InducesCycle, CR_LeadsToInteriorNode }; /// WalkChainUsers - Walk down the users of the specified chained node that is /// part of the pattern we're matching, looking at all of the users we find. /// This determines whether something is an interior node, whether we have a /// non-pattern node in between two pattern nodes (which prevent folding because /// it would induce a cycle) and whether we have a TokenFactor node sandwiched /// between pattern nodes (in which case the TF becomes part of the pattern). /// /// The walk we do here is guaranteed to be small because we quickly get down to /// already selected nodes "below" us. static ChainResult WalkChainUsers(SDNode *ChainedNode, SmallVectorImpl &ChainedNodesInPattern, SmallVectorImpl &InteriorChainedNodes) { ChainResult Result = CR_Simple; for (SDNode::use_iterator UI = ChainedNode->use_begin(), E = ChainedNode->use_end(); UI != E; ++UI) { // Make sure the use is of the chain, not some other value we produce. if (UI.getUse().getValueType() != MVT::Other) continue; SDNode *User = *UI; // If we see an already-selected machine node, then we've gone beyond the // pattern that we're selecting down into the already selected chunk of the // DAG. if (User->isMachineOpcode() || User->getOpcode() == ISD::HANDLENODE) // Root of the graph. continue; if (User->getOpcode() == ISD::CopyToReg || User->getOpcode() == ISD::CopyFromReg || User->getOpcode() == ISD::INLINEASM || User->getOpcode() == ISD::EH_LABEL) { // If their node ID got reset to -1 then they've already been selected. // Treat them like a MachineOpcode. if (User->getNodeId() == -1) continue; } // If we have a TokenFactor, we handle it specially. if (User->getOpcode() != ISD::TokenFactor) { // If the node isn't a token factor and isn't part of our pattern, then it // must be a random chained node in between two nodes we're selecting. // This happens when we have something like: // x = load ptr // call // y = x+4 // store y -> ptr // Because we structurally match the load/store as a read/modify/write, // but the call is chained between them. We cannot fold in this case // because it would induce a cycle in the graph. if (!std::count(ChainedNodesInPattern.begin(), ChainedNodesInPattern.end(), User)) return CR_InducesCycle; // Otherwise we found a node that is part of our pattern. For example in: // x = load ptr // y = x+4 // store y -> ptr // This would happen when we're scanning down from the load and see the // store as a user. Record that there is a use of ChainedNode that is // part of the pattern and keep scanning uses. Result = CR_LeadsToInteriorNode; InteriorChainedNodes.push_back(User); continue; } // If we found a TokenFactor, there are two cases to consider: first if the // TokenFactor is just hanging "below" the pattern we're matching (i.e. no // uses of the TF are in our pattern) we just want to ignore it. Second, // the TokenFactor can be sandwiched in between two chained nodes, like so: // [Load chain] // ^ // | // [Load] // ^ ^ // | \ DAG's like cheese // / \ do you? // / | // [TokenFactor] [Op] // ^ ^ // | | // \ / // \ / // [Store] // // In this case, the TokenFactor becomes part of our match and we rewrite it // as a new TokenFactor. // // To distinguish these two cases, do a recursive walk down the uses. switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { case CR_Simple: // If the uses of the TokenFactor are just already-selected nodes, ignore // it, it is "below" our pattern. continue; case CR_InducesCycle: // If the uses of the TokenFactor lead to nodes that are not part of our // pattern that are not selected, folding would turn this into a cycle, // bail out now. return CR_InducesCycle; case CR_LeadsToInteriorNode: break; // Otherwise, keep processing. } // Okay, we know we're in the interesting interior case. The TokenFactor // is now going to be considered part of the pattern so that we rewrite its // uses (it may have uses that are not part of the pattern) with the // ultimate chain result of the generated code. We will also add its chain // inputs as inputs to the ultimate TokenFactor we create. Result = CR_LeadsToInteriorNode; ChainedNodesInPattern.push_back(User); InteriorChainedNodes.push_back(User); continue; } return Result; } /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains /// operation for when the pattern matched at least one node with a chains. The /// input vector contains a list of all of the chained nodes that we match. We /// must determine if this is a valid thing to cover (i.e. matching it won't /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will /// be used as the input node chain for the generated nodes. static SDValue HandleMergeInputChains(SmallVectorImpl &ChainNodesMatched, SelectionDAG *CurDAG) { // Walk all of the chained nodes we've matched, recursively scanning down the // users of the chain result. This adds any TokenFactor nodes that are caught // in between chained nodes to the chained and interior nodes list. SmallVector InteriorChainedNodes; for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, InteriorChainedNodes) == CR_InducesCycle) return SDValue(); // Would induce a cycle. } // Okay, we have walked all the matched nodes and collected TokenFactor nodes // that we are interested in. Form our input TokenFactor node. SmallVector InputChains; for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { // Add the input chain of this node to the InputChains list (which will be // the operands of the generated TokenFactor) if it's not an interior node. SDNode *N = ChainNodesMatched[i]; if (N->getOpcode() != ISD::TokenFactor) { if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) continue; // Otherwise, add the input chain. SDValue InChain = ChainNodesMatched[i]->getOperand(0); assert(InChain.getValueType() == MVT::Other && "Not a chain"); InputChains.push_back(InChain); continue; } // If we have a token factor, we want to add all inputs of the token factor // that are not part of the pattern we're matching. for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), N->getOperand(op).getNode())) InputChains.push_back(N->getOperand(op)); } } SDValue Res; if (InputChains.size() == 1) return InputChains[0]; return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), MVT::Other, &InputChains[0], InputChains.size()); } /// MorphNode - Handle morphing a node in place for the selector. SDNode *SelectionDAGISel:: MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { // It is possible we're using MorphNodeTo to replace a node with no // normal results with one that has a normal result (or we could be // adding a chain) and the input could have glue and chains as well. // In this case we need to shift the operands down. // FIXME: This is a horrible hack and broken in obscure cases, no worse // than the old isel though. int OldGlueResultNo = -1, OldChainResultNo = -1; unsigned NTMNumResults = Node->getNumValues(); if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { OldGlueResultNo = NTMNumResults-1; if (NTMNumResults != 1 && Node->getValueType(NTMNumResults-2) == MVT::Other) OldChainResultNo = NTMNumResults-2; } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) OldChainResultNo = NTMNumResults-1; // Call the underlying SelectionDAG routine to do the transmogrification. Note // that this deletes operands of the old node that become dead. SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); // MorphNodeTo can operate in two ways: if an existing node with the // specified operands exists, it can just return it. Otherwise, it // updates the node in place to have the requested operands. if (Res == Node) { // If we updated the node in place, reset the node ID. To the isel, // this should be just like a newly allocated machine node. Res->setNodeId(-1); } unsigned ResNumResults = Res->getNumValues(); // Move the glue if needed. if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && (unsigned)OldGlueResultNo != ResNumResults-1) CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo), SDValue(Res, ResNumResults-1)); if ((EmitNodeInfo & OPFL_GlueOutput) != 0) --ResNumResults; // Move the chain reference if needed. if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && (unsigned)OldChainResultNo != ResNumResults-1) CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), SDValue(Res, ResNumResults-1)); // Otherwise, no replacement happened because the node already exists. Replace // Uses of the old node with the new one. if (Res != Node) CurDAG->ReplaceAllUsesWith(Node, Res); return Res; } /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const SmallVectorImpl > &RecordedNodes) { // Accept if it is exactly the same as a previously recorded node. unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); return N == RecordedNodes[RecNo].first; } /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, SelectionDAGISel &SDISel) { return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); } /// CheckNodePredicate - Implements OP_CheckNodePredicate. LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, SelectionDAGISel &SDISel, SDNode *N) { return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDNode *N) { uint16_t Opc = MatcherTable[MatcherIndex++]; Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; return N->getOpcode() == Opc; } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering &TLI) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (N.getValueType() == VT) return true; // Handle the case when VT is iPTR. return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering &TLI, unsigned ChildNo) { if (ChildNo >= N.getNumOperands()) return false; // Match fails if out of range child #. return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { return cast(N)->get() == (ISD::CondCode)MatcherTable[MatcherIndex++]; } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, const TargetLowering &TLI) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (cast(N)->getVT() == VT) return true; // Handle the case when VT is iPTR. return VT == MVT::iPTR && cast(N)->getVT() == TLI.getPointerTy(); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); ConstantSDNode *C = dyn_cast(N); return C != 0 && C->getSExtValue() == Val; } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, SelectionDAGISel &SDISel) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); if (N->getOpcode() != ISD::AND) return false; ConstantSDNode *C = dyn_cast(N->getOperand(1)); return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); } LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, SelectionDAGISel &SDISel) { int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); if (N->getOpcode() != ISD::OR) return false; ConstantSDNode *C = dyn_cast(N->getOperand(1)); return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); } /// IsPredicateKnownToFail - If we know how and can do so without pushing a /// scope, evaluate the current node. If the current predicate is known to /// fail, set Result=true and return anything. If the current predicate is /// known to pass, set Result=false and return the MatcherIndex to continue /// with. If the current predicate is unknown, set Result=false and return the /// MatcherIndex to continue with. static unsigned IsPredicateKnownToFail(const unsigned char *Table, unsigned Index, SDValue N, bool &Result, SelectionDAGISel &SDISel, SmallVectorImpl > &RecordedNodes) { switch (Table[Index++]) { default: Result = false; return Index-1; // Could not evaluate this predicate. case SelectionDAGISel::OPC_CheckSame: Result = !::CheckSame(Table, Index, N, RecordedNodes); return Index; case SelectionDAGISel::OPC_CheckPatternPredicate: Result = !::CheckPatternPredicate(Table, Index, SDISel); return Index; case SelectionDAGISel::OPC_CheckPredicate: Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); return Index; case SelectionDAGISel::OPC_CheckOpcode: Result = !::CheckOpcode(Table, Index, N.getNode()); return Index; case SelectionDAGISel::OPC_CheckType: Result = !::CheckType(Table, Index, N, SDISel.TLI); return Index; case SelectionDAGISel::OPC_CheckChild0Type: case SelectionDAGISel::OPC_CheckChild1Type: case SelectionDAGISel::OPC_CheckChild2Type: case SelectionDAGISel::OPC_CheckChild3Type: case SelectionDAGISel::OPC_CheckChild4Type: case SelectionDAGISel::OPC_CheckChild5Type: case SelectionDAGISel::OPC_CheckChild6Type: case SelectionDAGISel::OPC_CheckChild7Type: Result = !::CheckChildType(Table, Index, N, SDISel.TLI, Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); return Index; case SelectionDAGISel::OPC_CheckCondCode: Result = !::CheckCondCode(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckValueType: Result = !::CheckValueType(Table, Index, N, SDISel.TLI); return Index; case SelectionDAGISel::OPC_CheckInteger: Result = !::CheckInteger(Table, Index, N); return Index; case SelectionDAGISel::OPC_CheckAndImm: Result = !::CheckAndImm(Table, Index, N, SDISel); return Index; case SelectionDAGISel::OPC_CheckOrImm: Result = !::CheckOrImm(Table, Index, N, SDISel); return Index; } } namespace { struct MatchScope { /// FailIndex - If this match fails, this is the index to continue with. unsigned FailIndex; /// NodeStack - The node stack when the scope was formed. SmallVector NodeStack; /// NumRecordedNodes - The number of recorded nodes when the scope was formed. unsigned NumRecordedNodes; /// NumMatchedMemRefs - The number of matched memref entries. unsigned NumMatchedMemRefs; /// InputChain/InputGlue - The current chain/glue SDValue InputChain, InputGlue; /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. bool HasChainNodesMatched, HasGlueResultNodesMatched; }; } SDNode *SelectionDAGISel:: SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, unsigned TableSize) { // FIXME: Should these even be selected? Handle these cases in the caller? switch (NodeToMatch->getOpcode()) { default: break; case ISD::EntryToken: // These nodes remain the same. case ISD::BasicBlock: case ISD::Register: //case ISD::VALUETYPE: //case ISD::CONDCODE: case ISD::HANDLENODE: case ISD::MDNODE_SDNODE: case ISD::TargetConstant: case ISD::TargetConstantFP: case ISD::TargetConstantPool: case ISD::TargetFrameIndex: case ISD::TargetExternalSymbol: case ISD::TargetBlockAddress: case ISD::TargetJumpTable: case ISD::TargetGlobalTLSAddress: case ISD::TargetGlobalAddress: case ISD::TokenFactor: case ISD::CopyFromReg: case ISD::CopyToReg: case ISD::EH_LABEL: NodeToMatch->setNodeId(-1); // Mark selected. return 0; case ISD::AssertSext: case ISD::AssertZext: CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); return 0; case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); case ISD::UNDEF: return Select_UNDEF(NodeToMatch); } assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); // Set up the node stack with NodeToMatch as the only node on the stack. SmallVector NodeStack; SDValue N = SDValue(NodeToMatch, 0); NodeStack.push_back(N); // MatchScopes - Scopes used when matching, if a match failure happens, this // indicates where to continue checking. SmallVector MatchScopes; // RecordedNodes - This is the set of nodes that have been recorded by the // state machine. The second value is the parent of the node, or null if the // root is recorded. SmallVector, 8> RecordedNodes; // MatchedMemRefs - This is the set of MemRef's we've seen in the input // pattern. SmallVector MatchedMemRefs; // These are the current input chain and glue for use when generating nodes. // Various Emit operations change these. For example, emitting a copytoreg // uses and updates these. SDValue InputChain, InputGlue; // ChainNodesMatched - If a pattern matches nodes that have input/output // chains, the OPC_EmitMergeInputChains operation is emitted which indicates // which ones they are. The result is captured into this list so that we can // update the chain results when the pattern is complete. SmallVector ChainNodesMatched; SmallVector GlueResultNodesMatched; DEBUG(errs() << "ISEL: Starting pattern match on root node: "; NodeToMatch->dump(CurDAG); errs() << '\n'); // Determine where to start the interpreter. Normally we start at opcode #0, // but if the state machine starts with an OPC_SwitchOpcode, then we // accelerate the first lookup (which is guaranteed to be hot) with the // OpcodeOffset table. unsigned MatcherIndex = 0; if (!OpcodeOffset.empty()) { // Already computed the OpcodeOffset table, just index into it. if (N.getOpcode() < OpcodeOffset.size()) MatcherIndex = OpcodeOffset[N.getOpcode()]; DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n"); } else if (MatcherTable[0] == OPC_SwitchOpcode) { // Otherwise, the table isn't computed, but the state machine does start // with an OPC_SwitchOpcode instruction. Populate the table now, since this // is the first time we're selecting an instruction. unsigned Idx = 1; while (1) { // Get the size of this case. unsigned CaseSize = MatcherTable[Idx++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, Idx); if (CaseSize == 0) break; // Get the opcode, add the index to the table. uint16_t Opc = MatcherTable[Idx++]; Opc |= (unsigned short)MatcherTable[Idx++] << 8; if (Opc >= OpcodeOffset.size()) OpcodeOffset.resize((Opc+1)*2); OpcodeOffset[Opc] = Idx; Idx += CaseSize; } // Okay, do the lookup for the first opcode. if (N.getOpcode() < OpcodeOffset.size()) MatcherIndex = OpcodeOffset[N.getOpcode()]; } while (1) { assert(MatcherIndex < TableSize && "Invalid index"); #ifndef NDEBUG unsigned CurrentOpcodeIndex = MatcherIndex; #endif BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; switch (Opcode) { case OPC_Scope: { // Okay, the semantics of this operation are that we should push a scope // then evaluate the first child. However, pushing a scope only to have // the first check fail (which then pops it) is inefficient. If we can // determine immediately that the first check (or first several) will // immediately fail, don't even bother pushing a scope for them. unsigned FailIndex; while (1) { unsigned NumToSkip = MatcherTable[MatcherIndex++]; if (NumToSkip & 128) NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); // Found the end of the scope with no match. if (NumToSkip == 0) { FailIndex = 0; break; } FailIndex = MatcherIndex+NumToSkip; unsigned MatcherIndexOfPredicate = MatcherIndex; (void)MatcherIndexOfPredicate; // silence warning. // If we can't evaluate this predicate without pushing a scope (e.g. if // it is a 'MoveParent') or if the predicate succeeds on this node, we // push the scope and evaluate the full predicate chain. bool Result; MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, Result, *this, RecordedNodes); if (!Result) break; DEBUG(errs() << " Skipped scope entry (due to false predicate) at " << "index " << MatcherIndexOfPredicate << ", continuing at " << FailIndex << "\n"); ++NumDAGIselRetries; // Otherwise, we know that this case of the Scope is guaranteed to fail, // move to the next case. MatcherIndex = FailIndex; } // If the whole scope failed to match, bail. if (FailIndex == 0) break; // Push a MatchScope which indicates where to go if the first child fails // to match. MatchScope NewEntry; NewEntry.FailIndex = FailIndex; NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); NewEntry.NumRecordedNodes = RecordedNodes.size(); NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); NewEntry.InputChain = InputChain; NewEntry.InputGlue = InputGlue; NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty(); MatchScopes.push_back(NewEntry); continue; } case OPC_RecordNode: { // Remember this node, it may end up being an operand in the pattern. SDNode *Parent = 0; if (NodeStack.size() > 1) Parent = NodeStack[NodeStack.size()-2].getNode(); RecordedNodes.push_back(std::make_pair(N, Parent)); continue; } case OPC_RecordChild0: case OPC_RecordChild1: case OPC_RecordChild2: case OPC_RecordChild3: case OPC_RecordChild4: case OPC_RecordChild5: case OPC_RecordChild6: case OPC_RecordChild7: { unsigned ChildNo = Opcode-OPC_RecordChild0; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), N.getNode())); continue; } case OPC_RecordMemRef: MatchedMemRefs.push_back(cast(N)->getMemOperand()); continue; case OPC_CaptureGlueInput: // If the current node has an input glue, capture it in InputGlue. if (N->getNumOperands() != 0 && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) InputGlue = N->getOperand(N->getNumOperands()-1); continue; case OPC_MoveChild: { unsigned ChildNo = MatcherTable[MatcherIndex++]; if (ChildNo >= N.getNumOperands()) break; // Match fails if out of range child #. N = N.getOperand(ChildNo); NodeStack.push_back(N); continue; } case OPC_MoveParent: // Pop the current node off the NodeStack. NodeStack.pop_back(); assert(!NodeStack.empty() && "Node stack imbalance!"); N = NodeStack.back(); continue; case OPC_CheckSame: if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; continue; case OPC_CheckPatternPredicate: if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; continue; case OPC_CheckPredicate: if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, N.getNode())) break; continue; case OPC_CheckComplexPat: { unsigned CPNum = MatcherTable[MatcherIndex++]; unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, RecordedNodes[RecNo].first, CPNum, RecordedNodes)) break; continue; } case OPC_CheckOpcode: if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; continue; case OPC_CheckType: if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; continue; case OPC_SwitchOpcode: { unsigned CurNodeOpcode = N.getOpcode(); unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; unsigned CaseSize; while (1) { // Get the size of this case. CaseSize = MatcherTable[MatcherIndex++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); if (CaseSize == 0) break; uint16_t Opc = MatcherTable[MatcherIndex++]; Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; // If the opcode matches, then we will execute this case. if (CurNodeOpcode == Opc) break; // Otherwise, skip over this case. MatcherIndex += CaseSize; } // If no cases matched, bail out. if (CaseSize == 0) break; // Otherwise, execute the case we found. DEBUG(errs() << " OpcodeSwitch from " << SwitchStart << " to " << MatcherIndex << "\n"); continue; } case OPC_SwitchType: { MVT CurNodeVT = N.getValueType().getSimpleVT(); unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; unsigned CaseSize; while (1) { // Get the size of this case. CaseSize = MatcherTable[MatcherIndex++]; if (CaseSize & 128) CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); if (CaseSize == 0) break; MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (CaseVT == MVT::iPTR) CaseVT = TLI.getPointerTy(); // If the VT matches, then we will execute this case. if (CurNodeVT == CaseVT) break; // Otherwise, skip over this case. MatcherIndex += CaseSize; } // If no cases matched, bail out. if (CaseSize == 0) break; // Otherwise, execute the case we found. DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); continue; } case OPC_CheckChild0Type: case OPC_CheckChild1Type: case OPC_CheckChild2Type: case OPC_CheckChild3Type: case OPC_CheckChild4Type: case OPC_CheckChild5Type: case OPC_CheckChild6Type: case OPC_CheckChild7Type: if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, Opcode-OPC_CheckChild0Type)) break; continue; case OPC_CheckCondCode: if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckValueType: if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; continue; case OPC_CheckInteger: if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; continue; case OPC_CheckAndImm: if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; continue; case OPC_CheckOrImm: if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; continue; case OPC_CheckFoldableChainNode: { assert(NodeStack.size() != 1 && "No parent node"); // Verify that all intermediate nodes between the root and this one have // a single use. bool HasMultipleUses = false; for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) if (!NodeStack[i].hasOneUse()) { HasMultipleUses = true; break; } if (HasMultipleUses) break; // Check to see that the target thinks this is profitable to fold and that // we can fold it without inducing cycles in the graph. if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), NodeToMatch) || !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), NodeToMatch, OptLevel, true/*We validate our own chains*/)) break; continue; } case OPC_EmitInteger: { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; int64_t Val = MatcherTable[MatcherIndex++]; if (Val & 128) Val = GetVBR(Val, MatcherTable, MatcherIndex); RecordedNodes.push_back(std::pair( CurDAG->getTargetConstant(Val, VT), (SDNode*)0)); continue; } case OPC_EmitRegister: { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; unsigned RegNo = MatcherTable[MatcherIndex++]; RecordedNodes.push_back(std::pair( CurDAG->getRegister(RegNo, VT), (SDNode*)0)); continue; } case OPC_EmitRegister2: { // For targets w/ more than 256 register names, the register enum // values are stored in two bytes in the matcher table (just like // opcodes). MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; unsigned RegNo = MatcherTable[MatcherIndex++]; RegNo |= MatcherTable[MatcherIndex++] << 8; RecordedNodes.push_back(std::pair( CurDAG->getRegister(RegNo, VT), (SDNode*)0)); continue; } case OPC_EmitConvertToTarget: { // Convert from IMM/FPIMM to target version. unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); SDValue Imm = RecordedNodes[RecNo].first; if (Imm->getOpcode() == ISD::Constant) { int64_t Val = cast(Imm)->getZExtValue(); Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); } else if (Imm->getOpcode() == ISD::ConstantFP) { const ConstantFP *Val=cast(Imm)->getConstantFPValue(); Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); } RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); continue; } case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1 // These are space-optimized forms of OPC_EmitMergeInputChains. assert(InputChain.getNode() == 0 && "EmitMergeInputChains should be the first chain producing node"); assert(ChainNodesMatched.empty() && "Should only have one EmitMergeInputChains per match"); // Read all of the chained nodes. unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); // FIXME: What if other value results of the node have uses not matched // by this pattern? if (ChainNodesMatched.back() != NodeToMatch && !RecordedNodes[RecNo].first.hasOneUse()) { ChainNodesMatched.clear(); break; } // Merge the input chains if they are not intra-pattern references. InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); if (InputChain.getNode() == 0) break; // Failed to merge. continue; } case OPC_EmitMergeInputChains: { assert(InputChain.getNode() == 0 && "EmitMergeInputChains should be the first chain producing node"); // This node gets a list of nodes we matched in the input that have // chains. We want to token factor all of the input chains to these nodes // together. However, if any of the input chains is actually one of the // nodes matched in this pattern, then we have an intra-match reference. // Ignore these because the newly token factored chain should not refer to // the old nodes. unsigned NumChains = MatcherTable[MatcherIndex++]; assert(NumChains != 0 && "Can't TF zero chains"); assert(ChainNodesMatched.empty() && "Should only have one EmitMergeInputChains per match"); // Read all of the chained nodes. for (unsigned i = 0; i != NumChains; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); // FIXME: What if other value results of the node have uses not matched // by this pattern? if (ChainNodesMatched.back() != NodeToMatch && !RecordedNodes[RecNo].first.hasOneUse()) { ChainNodesMatched.clear(); break; } } // If the inner loop broke out, the match fails. if (ChainNodesMatched.empty()) break; // Merge the input chains if they are not intra-pattern references. InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); if (InputChain.getNode() == 0) break; // Failed to merge. continue; } case OPC_EmitCopyToReg: { unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); unsigned DestPhysReg = MatcherTable[MatcherIndex++]; if (InputChain.getNode() == 0) InputChain = CurDAG->getEntryNode(); InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), DestPhysReg, RecordedNodes[RecNo].first, InputGlue); InputGlue = InputChain.getValue(1); continue; } case OPC_EmitNodeXForm: { unsigned XFormNo = MatcherTable[MatcherIndex++]; unsigned RecNo = MatcherTable[MatcherIndex++]; assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); RecordedNodes.push_back(std::pair(Res, (SDNode*) 0)); continue; } case OPC_EmitNode: case OPC_MorphNodeTo: { uint16_t TargetOpc = MatcherTable[MatcherIndex++]; TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; // Get the result VT list. unsigned NumVTs = MatcherTable[MatcherIndex++]; SmallVector VTs; for (unsigned i = 0; i != NumVTs; ++i) { MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; VTs.push_back(VT); } if (EmitNodeInfo & OPFL_Chain) VTs.push_back(MVT::Other); if (EmitNodeInfo & OPFL_GlueOutput) VTs.push_back(MVT::Glue); // This is hot code, so optimize the two most common cases of 1 and 2 // results. SDVTList VTList; if (VTs.size() == 1) VTList = CurDAG->getVTList(VTs[0]); else if (VTs.size() == 2) VTList = CurDAG->getVTList(VTs[0], VTs[1]); else VTList = CurDAG->getVTList(VTs.data(), VTs.size()); // Get the operand list. unsigned NumOps = MatcherTable[MatcherIndex++]; SmallVector Ops; for (unsigned i = 0; i != NumOps; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; if (RecNo & 128) RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); Ops.push_back(RecordedNodes[RecNo].first); } // If there are variadic operands to add, handle them now. if (EmitNodeInfo & OPFL_VariadicInfo) { // Determine the start index to copy from. unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && "Invalid variadic node"); // Copy all of the variadic operands, not including a potential glue // input. for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); i != e; ++i) { SDValue V = NodeToMatch->getOperand(i); if (V.getValueType() == MVT::Glue) break; Ops.push_back(V); } } // If this has chain/glue inputs, add them. if (EmitNodeInfo & OPFL_Chain) Ops.push_back(InputChain); if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0) Ops.push_back(InputGlue); // Create the node. SDNode *Res = 0; if (Opcode != OPC_MorphNodeTo) { // If this is a normal EmitNode command, just create the new node and // add the results to the RecordedNodes list. Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), VTList, Ops.data(), Ops.size()); // Add all the non-glue/non-chain results to the RecordedNodes list. for (unsigned i = 0, e = VTs.size(); i != e; ++i) { if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; RecordedNodes.push_back(std::pair(SDValue(Res, i), (SDNode*) 0)); } } else { Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), EmitNodeInfo); } // If the node had chain/glue results, update our notion of the current // chain and glue. if (EmitNodeInfo & OPFL_GlueOutput) { InputGlue = SDValue(Res, VTs.size()-1); if (EmitNodeInfo & OPFL_Chain) InputChain = SDValue(Res, VTs.size()-2); } else if (EmitNodeInfo & OPFL_Chain) InputChain = SDValue(Res, VTs.size()-1); // If the OPFL_MemRefs glue is set on this node, slap all of the // accumulated memrefs onto it. // // FIXME: This is vastly incorrect for patterns with multiple outputs // instructions that access memory and for ComplexPatterns that match // loads. if (EmitNodeInfo & OPFL_MemRefs) { MachineSDNode::mmo_iterator MemRefs = MF->allocateMemRefsArray(MatchedMemRefs.size()); std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs); cast(Res) ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size()); } DEBUG(errs() << " " << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") << " node: "; Res->dump(CurDAG); errs() << "\n"); // If this was a MorphNodeTo then we're completely done! if (Opcode == OPC_MorphNodeTo) { // Update chain and glue uses. UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, InputGlue, GlueResultNodesMatched, true); return Res; } continue; } case OPC_MarkGlueResults: { unsigned NumNodes = MatcherTable[MatcherIndex++]; // Read and remember all the glue-result nodes. for (unsigned i = 0; i != NumNodes; ++i) { unsigned RecNo = MatcherTable[MatcherIndex++]; if (RecNo & 128) RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); } continue; } case OPC_CompleteMatch: { // The match has been completed, and any new nodes (if any) have been // created. Patch up references to the matched dag to use the newly // created nodes. unsigned NumResults = MatcherTable[MatcherIndex++]; for (unsigned i = 0; i != NumResults; ++i) { unsigned ResSlot = MatcherTable[MatcherIndex++]; if (ResSlot & 128) ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); SDValue Res = RecordedNodes[ResSlot].first; assert(i < NodeToMatch->getNumValues() && NodeToMatch->getValueType(i) != MVT::Other && NodeToMatch->getValueType(i) != MVT::Glue && "Invalid number of results to complete!"); assert((NodeToMatch->getValueType(i) == Res.getValueType() || NodeToMatch->getValueType(i) == MVT::iPTR || Res.getValueType() == MVT::iPTR || NodeToMatch->getValueType(i).getSizeInBits() == Res.getValueType().getSizeInBits()) && "invalid replacement"); CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); } // If the root node defines glue, add it to the glue nodes to update list. if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue) GlueResultNodesMatched.push_back(NodeToMatch); // Update chain and glue uses. UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched, InputGlue, GlueResultNodesMatched, false); assert(NodeToMatch->use_empty() && "Didn't replace all uses of the node?"); // FIXME: We just return here, which interacts correctly with SelectRoot // above. We should fix this to not return an SDNode* anymore. return 0; } } // If the code reached this point, then the match failed. See if there is // another child to try in the current 'Scope', otherwise pop it until we // find a case to check. DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n"); ++NumDAGIselRetries; while (1) { if (MatchScopes.empty()) { CannotYetSelect(NodeToMatch); return 0; } // Restore the interpreter state back to the point where the scope was // formed. MatchScope &LastScope = MatchScopes.back(); RecordedNodes.resize(LastScope.NumRecordedNodes); NodeStack.clear(); NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); N = NodeStack.back(); if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); MatcherIndex = LastScope.FailIndex; DEBUG(errs() << " Continuing at " << MatcherIndex << "\n"); InputChain = LastScope.InputChain; InputGlue = LastScope.InputGlue; if (!LastScope.HasChainNodesMatched) ChainNodesMatched.clear(); if (!LastScope.HasGlueResultNodesMatched) GlueResultNodesMatched.clear(); // Check to see what the offset is at the new MatcherIndex. If it is zero // we have reached the end of this scope, otherwise we have another child // in the current scope to try. unsigned NumToSkip = MatcherTable[MatcherIndex++]; if (NumToSkip & 128) NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); // If we have another child in this scope to match, update FailIndex and // try it. if (NumToSkip != 0) { LastScope.FailIndex = MatcherIndex+NumToSkip; break; } // End of this scope, pop it and try the next child in the containing // scope. MatchScopes.pop_back(); } } } void SelectionDAGISel::CannotYetSelect(SDNode *N) { std::string msg; raw_string_ostream Msg(msg); Msg << "Cannot select: "; if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && N->getOpcode() != ISD::INTRINSIC_VOID) { N->printrFull(Msg, CurDAG); } else { bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; unsigned iid = cast(N->getOperand(HasInputChain))->getZExtValue(); if (iid < Intrinsic::num_intrinsics) Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) Msg << "target intrinsic %" << TII->getName(iid); else Msg << "unknown intrinsic #" << iid; } report_fatal_error(Msg.str()); } char SelectionDAGISel::ID = 0;