//===- CorrelatedExprs.cpp - Pass to detect and eliminated c.e.'s ---------===// // // Correlated Expression Elimination propogates information from conditional // branches to blocks dominated by destinations of the branch. It propogates // information from the condition check itself into the body of the branch, // allowing transformations like these for example: // // if (i == 7) // ... 4*i; // constant propogation // // M = i+1; N = j+1; // if (i == j) // X = M-N; // = M-M == 0; // // This is called Correlated Expression Elimination because we eliminate or // simplify expressions that are correlated with the direction of a branch. In // this way we use static information to give us some information about the // dynamic value of a variable. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Pass.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/iOperators.h" #include "llvm/ConstantHandling.h" #include "llvm/Assembly/Writer.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/CFG.h" #include "Support/PostOrderIterator.h" #include "Support/StatisticReporter.h" #include namespace { Statistic<>NumSetCCRemoved("cee\t\t- Number of setcc instruction eliminated"); Statistic<>NumOperandsCann("cee\t\t- Number of operands cannonicalized"); Statistic<>BranchRevectors("cee\t\t- Number of branches revectored"); class ValueInfo; class Relation { Value *Val; // Relation to what value? Instruction::BinaryOps Rel; // SetCC relation, or Add if no information public: Relation(Value *V) : Val(V), Rel(Instruction::Add) {} bool operator<(const Relation &R) const { return Val < R.Val; } Value *getValue() const { return Val; } Instruction::BinaryOps getRelation() const { return Rel; } // contradicts - Return true if the relationship specified by the operand // contradicts already known information. // bool contradicts(Instruction::BinaryOps Rel, const ValueInfo &VI) const; // incorporate - Incorporate information in the argument into this relation // entry. This assumes that the information doesn't contradict itself. If // any new information is gained, true is returned, otherwise false is // returned to indicate that nothing was updated. // bool incorporate(Instruction::BinaryOps Rel, ValueInfo &VI); // KnownResult - Whether or not this condition determines the result of a // setcc in the program. False & True are intentionally 0 & 1 so we can // convert to bool by casting after checking for unknown. // enum KnownResult { KnownFalse = 0, KnownTrue = 1, Unknown = 2 }; // getImpliedResult - If this relationship between two values implies that // the specified relationship is true or false, return that. If we cannot // determine the result required, return Unknown. // KnownResult getImpliedResult(Instruction::BinaryOps Rel) const; // print - Output this relation to the specified stream void print(std::ostream &OS) const; void dump() const; }; // ValueInfo - One instance of this record exists for every value with // relationships between other values. It keeps track of all of the // relationships to other values in the program (specified with Relation) that // are known to be valid in a region. // class ValueInfo { // RelationShips - this value is know to have the specified relationships to // other values. There can only be one entry per value, and this list is // kept sorted by the Val field. std::vector Relationships; // If information about this value is known or propogated from constant // expressions, this range contains the possible values this value may hold. ConstantRange Bounds; // If we find that this value is equal to another value that has a lower // rank, this value is used as it's replacement. // Value *Replacement; public: ValueInfo(const Type *Ty) : Bounds(Ty->isIntegral() ? Ty : Type::IntTy), Replacement(0) {} // getBounds() - Return the constant bounds of the value... const ConstantRange &getBounds() const { return Bounds; } ConstantRange &getBounds() { return Bounds; } const std::vector &getRelationships() { return Relationships; } // getReplacement - Return the value this value is to be replaced with if it // exists, otherwise return null. // Value *getReplacement() const { return Replacement; } // setReplacement - Used by the replacement calculation pass to figure out // what to replace this value with, if anything. // void setReplacement(Value *Repl) { Replacement = Repl; } // getRelation - return the relationship entry for the specified value. // This can invalidate references to other Relation's, so use it carefully. // Relation &getRelation(Value *V) { // Binary search for V's entry... std::vector::iterator I = std::lower_bound(Relationships.begin(), Relationships.end(), V); // If we found the entry, return it... if (I != Relationships.end() && I->getValue() == V) return *I; // Insert and return the new relationship... return *Relationships.insert(I, V); } const Relation *requestRelation(Value *V) const { // Binary search for V's entry... std::vector::const_iterator I = std::lower_bound(Relationships.begin(), Relationships.end(), V); if (I != Relationships.end() && I->getValue() == V) return &*I; return 0; } // print - Output information about this value relation... void print(std::ostream &OS, Value *V) const; void dump() const; }; // RegionInfo - Keeps track of all of the value relationships for a region. A // region is the are dominated by a basic block. RegionInfo's keep track of // the RegionInfo for their dominator, because anything known in a dominator // is known to be true in a dominated block as well. // class RegionInfo { BasicBlock *BB; // ValueMap - Tracks the ValueInformation known for this region typedef std::map ValueMapTy; ValueMapTy ValueMap; public: RegionInfo(BasicBlock *bb) : BB(bb) {} // getEntryBlock - Return the block that dominates all of the members of // this region. BasicBlock *getEntryBlock() const { return BB; } const RegionInfo &operator=(const RegionInfo &RI) { ValueMap = RI.ValueMap; return *this; } // print - Output information about this region... void print(std::ostream &OS) const; // Allow external access. typedef ValueMapTy::iterator iterator; iterator begin() { return ValueMap.begin(); } iterator end() { return ValueMap.end(); } ValueInfo &getValueInfo(Value *V) { ValueMapTy::iterator I = ValueMap.lower_bound(V); if (I != ValueMap.end() && I->first == V) return I->second; return ValueMap.insert(I, std::make_pair(V, V->getType()))->second; } const ValueInfo *requestValueInfo(Value *V) const { ValueMapTy::const_iterator I = ValueMap.find(V); if (I != ValueMap.end()) return &I->second; return 0; } }; /// CEE - Correlated Expression Elimination class CEE : public FunctionPass { std::map RankMap; std::map RegionInfoMap; DominatorSet *DS; DominatorTree *DT; public: virtual bool runOnFunction(Function &F); // We don't modify the program, so we preserve all analyses virtual void getAnalysisUsage(AnalysisUsage &AU) const { //AU.preservesCFG(); AU.addRequired(); AU.addRequired(); }; // print - Implement the standard print form to print out analysis // information. virtual void print(std::ostream &O, const Module *M) const; private: RegionInfo &getRegionInfo(BasicBlock *BB) { std::map::iterator I = RegionInfoMap.lower_bound(BB); if (I != RegionInfoMap.end() && I->first == BB) return I->second; return RegionInfoMap.insert(I, std::make_pair(BB, BB))->second; } void BuildRankMap(Function &F); unsigned getRank(Value *V) const { if (isa(V) || isa(V)) return 0; std::map::const_iterator I = RankMap.find(V); if (I != RankMap.end()) return I->second; return 0; // Must be some other global thing } bool TransformRegion(BasicBlock *BB, std::set &VisitedBlocks); BasicBlock *isCorrelatedBranchBlock(BasicBlock *BB, RegionInfo &RI); void PropogateBranchInfo(BranchInst *BI); void PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI); void PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, RegionInfo &RI); void UpdateUsersOfValue(Value *V, RegionInfo &RI); void IncorporateInstruction(Instruction *Inst, RegionInfo &RI); void ComputeReplacements(RegionInfo &RI); // getSetCCResult - Given a setcc instruction, determine if the result is // determined by facts we already know about the region under analysis. // Return KnownTrue, KnownFalse, or Unknown based on what we can determine. // Relation::KnownResult getSetCCResult(SetCondInst *SC, const RegionInfo &RI); bool SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI); bool SimplifyInstruction(Instruction *Inst, const RegionInfo &RI); }; RegisterOpt X("cee", "Correlated Expression Elimination"); } Pass *createCorrelatedExpressionEliminationPass() { return new CEE(); } bool CEE::runOnFunction(Function &F) { // Build a rank map for the function... BuildRankMap(F); // Traverse the dominator tree, computing information for each node in the // tree. Note that our traversal will not even touch unreachable basic // blocks. DS = &getAnalysis(); DT = &getAnalysis(); std::set VisitedBlocks; bool Changed = TransformRegion(&F.getEntryNode(), VisitedBlocks); RegionInfoMap.clear(); RankMap.clear(); return Changed; } // TransformRegion - Transform the region starting with BB according to the // calculated region information for the block. Transforming the region // involves analyzing any information this block provides to successors, // propogating the information to successors, and finally transforming // successors. // // This method processes the function in depth first order, which guarantees // that we process the immediate dominator of a block before the block itself. // Because we are passing information from immediate dominators down to // dominatees, we obviously have to process the information source before the // information consumer. // bool CEE::TransformRegion(BasicBlock *BB, std::set &VisitedBlocks){ // Prevent infinite recursion... if (VisitedBlocks.count(BB)) return false; VisitedBlocks.insert(BB); // Get the computed region information for this block... RegionInfo &RI = getRegionInfo(BB); // Compute the replacement information for this block... ComputeReplacements(RI); // If debugging, print computed region information... DEBUG(RI.print(std::cerr)); // Simplify the contents of this block... bool Changed = SimplifyBasicBlock(*BB, RI); // Get the terminator of this basic block... TerminatorInst *TI = BB->getTerminator(); // If this is a conditional branch, make sure that there is a branch target // for each successor that can hold any information gleaned from the branch, // by breaking any critical edges that may be laying about. // if (TI->getNumSuccessors() > 1) { // If any of the successors has multiple incoming branches, add a new dummy // destination branch that only contains an unconditional branch to the real // target. for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { BasicBlock *Succ = TI->getSuccessor(i); // If there is more than one predecessor of the destination block, break // this critical edge by inserting a new block. This updates dominatorset // and dominatortree information. // if (isCriticalEdge(TI, i)) SplitCriticalEdge(TI, i, this); } } // Loop over all of the blocks that this block is the immediate dominator for. // Because all information known in this region is also known in all of the // blocks that are dominated by this one, we can safely propogate the // information down now. // DominatorTree::Node *BBN = (*DT)[BB]; for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) { BasicBlock *Dominated = BBN->getChildren()[i]->getNode(); assert(RegionInfoMap.find(Dominated) == RegionInfoMap.end() && "RegionInfo should be calculated in dominanace order!"); getRegionInfo(Dominated) = RI; } // Now that all of our successors have information if they deserve it, // propogate any information our terminator instruction finds to our // successors. if (BranchInst *BI = dyn_cast(TI)) if (BI->isConditional()) PropogateBranchInfo(BI); // If this is a branch to a block outside our region that simply performs // another conditional branch, one whose outcome is known inside of this // region, then vector this outgoing edge directly to the known destination. // for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { while (BasicBlock *Dest = isCorrelatedBranchBlock(TI->getSuccessor(i), RI)){ TI->setSuccessor(i, Dest); ++BranchRevectors; } } // Now that all of our successors have information, recursively process them. for (unsigned i = 0, e = BBN->getChildren().size(); i != e; ++i) Changed |= TransformRegion(BBN->getChildren()[i]->getNode(), VisitedBlocks); // for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) //Changed |= TransformRegion(TI->getSuccessor(i), VisitedBlocks); return Changed; } // If this block is a simple block not in the current region, which contains // only a conditional branch, we determine if the outcome of the branch can be // determined from information inside of the region. Instead of going to this // block, we can instead go to the destination we know is the right target. // BasicBlock *CEE::isCorrelatedBranchBlock(BasicBlock *BB, RegionInfo &RI) { // Check to see if we dominate the block. If so, this block will get the // condition turned to a constant anyway. // //if (DS->dominates(RI.getEntryBlock(), BB)) // return 0; // Check to see if this is a conditional branch... if (BranchInst *BI = dyn_cast(BB->getTerminator())) if (BI->isConditional()) { // Make sure that the block is either empty, or only contains a setcc. if (BB->size() == 1 || (BB->size() == 2 && &BB->front() == BI->getCondition() && BI->getCondition()->use_size() == 1)) if (SetCondInst *SCI = dyn_cast(BI->getCondition())) { Relation::KnownResult Result = getSetCCResult(SCI, RI); if (Result == Relation::KnownTrue) return BI->getSuccessor(0); else if (Result == Relation::KnownFalse) return BI->getSuccessor(1); } } return 0; } // BuildRankMap - This method builds the rank map data structure which gives // each instruction/value in the function a value based on how early it appears // in the function. We give constants and globals rank 0, arguments are // numbered starting at one, and instructions are numbered in reverse post-order // from where the arguments leave off. This gives instructions in loops higher // values than instructions not in loops. // void CEE::BuildRankMap(Function &F) { unsigned Rank = 1; // Skip rank zero. // Number the arguments... for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I) RankMap[I] = Rank++; // Number the instructions in reverse post order... ReversePostOrderTraversal RPOT(&F); for (ReversePostOrderTraversal::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end(); BBI != E; ++BBI) if (BBI->getType() != Type::VoidTy) RankMap[BBI] = Rank++; } // PropogateBranchInfo - When this method is invoked, we need to propogate // information derived from the branch condition into the true and false // branches of BI. Since we know that there aren't any critical edges in the // flow graph, this can proceed unconditionally. // void CEE::PropogateBranchInfo(BranchInst *BI) { assert(BI->isConditional() && "Must be a conditional branch!"); BasicBlock *BB = BI->getParent(); BasicBlock *TrueBB = BI->getSuccessor(0); BasicBlock *FalseBB = BI->getSuccessor(1); // Propogate information into the true block... // PropogateEquality(BI->getCondition(), ConstantBool::True, getRegionInfo(TrueBB)); // Propogate information into the false block... // PropogateEquality(BI->getCondition(), ConstantBool::False, getRegionInfo(FalseBB)); } // PropogateEquality - If we discover that two values are equal to each other in // a specified region, propogate this knowledge recursively. // void CEE::PropogateEquality(Value *Op0, Value *Op1, RegionInfo &RI) { if (Op0 == Op1) return; // Gee whiz. Are these really equal each other? if (isa(Op0)) // Make sure the constant is always Op1 std::swap(Op0, Op1); // Make sure we don't already know these are equal, to avoid infinite loops... ValueInfo &VI = RI.getValueInfo(Op0); // Get information about the known relationship between Op0 & Op1 Relation &KnownRelation = VI.getRelation(Op1); // If we already know they're equal, don't reprocess... if (KnownRelation.getRelation() == Instruction::SetEQ) return; // If this is boolean, check to see if one of the operands is a constant. If // it's a constant, then see if the other one is one of a setcc instruction, // an AND, OR, or XOR instruction. // if (ConstantBool *CB = dyn_cast(Op1)) { if (Instruction *Inst = dyn_cast(Op0)) { // If we know that this instruction is an AND instruction, and the result // is true, this means that both operands to the OR are known to be true // as well. // if (CB->getValue() && Inst->getOpcode() == Instruction::And) { PropogateEquality(Inst->getOperand(0), CB, RI); PropogateEquality(Inst->getOperand(1), CB, RI); } // If we know that this instruction is an OR instruction, and the result // is false, this means that both operands to the OR are know to be false // as well. // if (!CB->getValue() && Inst->getOpcode() == Instruction::Or) { PropogateEquality(Inst->getOperand(0), CB, RI); PropogateEquality(Inst->getOperand(1), CB, RI); } // If we know that this instruction is a NOT instruction, we know that the // operand is known to be the inverse of whatever the current value is. // if (BinaryOperator *BOp = dyn_cast(Inst)) if (BinaryOperator::isNot(BOp)) PropogateEquality(BinaryOperator::getNotArgument(BOp), ConstantBool::get(!CB->getValue()), RI); // If we know the value of a SetCC instruction, propogate the information // about the relation into this region as well. // if (SetCondInst *SCI = dyn_cast(Inst)) { if (CB->getValue()) { // If we know the condition is true... // Propogate info about the LHS to the RHS & RHS to LHS PropogateRelation(SCI->getOpcode(), SCI->getOperand(0), SCI->getOperand(1), RI); PropogateRelation(SCI->getSwappedCondition(), SCI->getOperand(1), SCI->getOperand(0), RI); } else { // If we know the condition is false... // We know the opposite of the condition is true... Instruction::BinaryOps C = SCI->getInverseCondition(); PropogateRelation(C, SCI->getOperand(0), SCI->getOperand(1), RI); PropogateRelation(SetCondInst::getSwappedCondition(C), SCI->getOperand(1), SCI->getOperand(0), RI); } } } } // Propogate information about Op0 to Op1 & visa versa PropogateRelation(Instruction::SetEQ, Op0, Op1, RI); PropogateRelation(Instruction::SetEQ, Op1, Op0, RI); } // PropogateRelation - We know that the specified relation is true in all of the // blocks in the specified region. Propogate the information about Op0 and // anything derived from it into this region. // void CEE::PropogateRelation(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, RegionInfo &RI) { assert(Op0->getType() == Op1->getType() && "Equal types expected!"); // Constants are already pretty well understood. We will apply information // about the constant to Op1 in another call to PropogateRelation. // if (isa(Op0)) return; // Get the region information for this block to update... ValueInfo &VI = RI.getValueInfo(Op0); // Get information about the known relationship between Op0 & Op1 Relation &Op1R = VI.getRelation(Op1); // Quick bailout for common case if we are reprocessing an instruction... if (Op1R.getRelation() == Opcode) return; // If we already have information that contradicts the current information we // are propogating, ignore this info. Something bad must have happened! // if (Op1R.contradicts(Opcode, VI)) { Op1R.contradicts(Opcode, VI); std::cerr << "Contradiction found for opcode: " << Instruction::getOpcodeName(Opcode) << "\n"; Op1R.print(std::cerr); return; } // If the information propogted is new, then we want process the uses of this // instruction to propogate the information down to them. // if (Op1R.incorporate(Opcode, VI)) UpdateUsersOfValue(Op0, RI); } // UpdateUsersOfValue - The information about V in this region has been updated. // Propogate this to all consumers of the value. // void CEE::UpdateUsersOfValue(Value *V, RegionInfo &RI) { for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) if (Instruction *Inst = dyn_cast(*I)) { // If this is an instruction using a value that we know something about, // try to propogate information to the value produced by the // instruction. We can only do this if it is an instruction we can // propogate information for (a setcc for example), and we only WANT to // do this if the instruction dominates this region. // // If the instruction doesn't dominate this region, then it cannot be // used in this region and we don't care about it. If the instruction // is IN this region, then we will simplify the instruction before we // get to uses of it anyway, so there is no reason to bother with it // here. This check is also effectively checking to make sure that Inst // is in the same function as our region (in case V is a global f.e.). // if (DS->properlyDominates(Inst->getParent(), RI.getEntryBlock())) IncorporateInstruction(Inst, RI); } } // IncorporateInstruction - We just updated the information about one of the // operands to the specified instruction. Update the information about the // value produced by this instruction // void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) { if (SetCondInst *SCI = dyn_cast(Inst)) { // See if we can figure out a result for this instruction... Relation::KnownResult Result = getSetCCResult(SCI, RI); if (Result != Relation::Unknown) { PropogateEquality(SCI, Result ? ConstantBool::True : ConstantBool::False, RI); } } } // ComputeReplacements - Some values are known to be equal to other values in a // region. For example if there is a comparison of equality between a variable // X and a constant C, we can replace all uses of X with C in the region we are // interested in. We generalize this replacement to replace variables with // other variables if they are equal and there is a variable with lower rank // than the current one. This offers a cannonicalizing property that exposes // more redundancies for later transformations to take advantage of. // void CEE::ComputeReplacements(RegionInfo &RI) { // Loop over all of the values in the region info map... for (RegionInfo::iterator I = RI.begin(), E = RI.end(); I != E; ++I) { ValueInfo &VI = I->second; // If we know that this value is a particular constant, set Replacement to // the constant... Value *Replacement = VI.getBounds().getSingleElement(); // If this value is not known to be some constant, figure out the lowest // rank value that it is known to be equal to (if anything). // if (Replacement == 0) { // Find out if there are any equality relationships with values of lower // rank than VI itself... unsigned MinRank = getRank(I->first); // Loop over the relationships known about Op0. const std::vector &Relationships = VI.getRelationships(); for (unsigned i = 0, e = Relationships.size(); i != e; ++i) if (Relationships[i].getRelation() == Instruction::SetEQ) { unsigned R = getRank(Relationships[i].getValue()); if (R < MinRank) { MinRank = R; Replacement = Relationships[i].getValue(); } } } // If we found something to replace this value with, keep track of it. if (Replacement) VI.setReplacement(Replacement); } } // SimplifyBasicBlock - Given information about values in region RI, simplify // the instructions in the specified basic block. // bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) { bool Changed = false; for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { Instruction *Inst = &*I++; // Convert instruction arguments to canonical forms... Changed |= SimplifyInstruction(Inst, RI); if (SetCondInst *SCI = dyn_cast(Inst)) { // Try to simplify a setcc instruction based on inherited information Relation::KnownResult Result = getSetCCResult(SCI, RI); if (Result != Relation::Unknown) { DEBUG(std::cerr << "Replacing setcc with " << Result << " constant: " << SCI); SCI->replaceAllUsesWith(ConstantBool::get((bool)Result)); // The instruction is now dead, remove it from the program. SCI->getParent()->getInstList().erase(SCI); ++NumSetCCRemoved; Changed = true; } } } return Changed; } // SimplifyInstruction - Inspect the operands of the instruction, converting // them to their cannonical form if possible. This takes care of, for example, // replacing a value 'X' with a constant 'C' if the instruction in question is // dominated by a true seteq 'X', 'C'. // bool CEE::SimplifyInstruction(Instruction *I, const RegionInfo &RI) { bool Changed = false; for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (const ValueInfo *VI = RI.requestValueInfo(I->getOperand(i))) if (Value *Repl = VI->getReplacement()) { // If we know if a replacement with lower rank than Op0, make the // replacement now. DEBUG(std::cerr << "In Inst: " << I << " Replacing operand #" << i << " with " << Repl << "\n"); I->setOperand(i, Repl); Changed = true; ++NumOperandsCann; } return Changed; } // SimplifySetCC - Try to simplify a setcc instruction based on information // inherited from a dominating setcc instruction. V is one of the operands to // the setcc instruction, and VI is the set of information known about it. We // take two cases into consideration here. If the comparison is against a // constant value, we can use the constant range to see if the comparison is // possible to succeed. If it is not a comparison against a constant, we check // to see if there is a known relationship between the two values. If so, we // may be able to eliminate the check. // Relation::KnownResult CEE::getSetCCResult(SetCondInst *SCI, const RegionInfo &RI) { Value *Op0 = SCI->getOperand(0), *Op1 = SCI->getOperand(1); Instruction::BinaryOps Opcode = SCI->getOpcode(); if (isa(Op0)) { if (isa(Op1)) { if (Constant *Result = ConstantFoldInstruction(SCI)) { // Wow, this is easy, directly eliminate the SetCondInst. DEBUG(std::cerr << "Replacing setcc with constant fold: " << SCI); return cast(Result)->getValue() ? Relation::KnownTrue : Relation::KnownFalse; } } else { // We want to swap this instruction so that operand #0 is the constant. std::swap(Op0, Op1); Opcode = SCI->getSwappedCondition(); } } // Try to figure out what the result of this comparison will be... Relation::KnownResult Result = Relation::Unknown; // We have to know something about the relationship to prove anything... if (const ValueInfo *Op0VI = RI.requestValueInfo(Op0)) { // At this point, we know that if we have a constant argument that it is in // Op1. Check to see if we know anything about comparing value with a // constant, and if we can use this info to fold the setcc. // if (ConstantIntegral *C = dyn_cast(Op1)) { // Check to see if we already know the result of this comparison... ConstantRange R = ConstantRange(Opcode, C); ConstantRange Int = R.intersectWith(Op0VI->getBounds()); // If the intersection of the two ranges is empty, then the condition // could never be true! // if (Int.isEmptySet()) { Result = Relation::KnownFalse; // Otherwise, if VI.getBounds() (the possible values) is a subset of R // (the allowed values) then we know that the condition must always be // true! // } else if (Int == Op0VI->getBounds()) { Result = Relation::KnownTrue; } } else { // If we are here, we know that the second argument is not a constant // integral. See if we know anything about Op0 & Op1 that allows us to // fold this anyway. // // Do we have value information about Op0 and a relation to Op1? if (const Relation *Op2R = Op0VI->requestRelation(Op1)) Result = Op2R->getImpliedResult(Opcode); } } return Result; } //===----------------------------------------------------------------------===// // Relation Implementation //===----------------------------------------------------------------------===// // CheckCondition - Return true if the specified condition is false. Bound may // be null. static bool CheckCondition(Constant *Bound, Constant *C, Instruction::BinaryOps BO) { assert(C != 0 && "C is not specified!"); if (Bound == 0) return false; ConstantBool *Val; switch (BO) { default: assert(0 && "Unknown Condition code!"); case Instruction::SetEQ: Val = *Bound == *C; break; case Instruction::SetNE: Val = *Bound != *C; break; case Instruction::SetLT: Val = *Bound < *C; break; case Instruction::SetGT: Val = *Bound > *C; break; case Instruction::SetLE: Val = *Bound <= *C; break; case Instruction::SetGE: Val = *Bound >= *C; break; } // ConstantHandling code may not succeed in the comparison... if (Val == 0) return false; return !Val->getValue(); // Return true if the condition is false... } // contradicts - Return true if the relationship specified by the operand // contradicts already known information. // bool Relation::contradicts(Instruction::BinaryOps Op, const ValueInfo &VI) const { assert (Op != Instruction::Add && "Invalid relation argument!"); // If this is a relationship with a constant, make sure that this relationship // does not contradict properties known about the bounds of the constant. // if (ConstantIntegral *C = dyn_cast(Val)) if (ConstantRange(Op, C).intersectWith(VI.getBounds()).isEmptySet()) return true; switch (Rel) { default: assert(0 && "Unknown Relationship code!"); case Instruction::Add: return false; // Nothing known, nothing contradicts case Instruction::SetEQ: return Op == Instruction::SetLT || Op == Instruction::SetGT || Op == Instruction::SetNE; case Instruction::SetNE: return Op == Instruction::SetEQ; case Instruction::SetLE: return Op == Instruction::SetGT; case Instruction::SetGE: return Op == Instruction::SetLT; case Instruction::SetLT: return Op == Instruction::SetEQ || Op == Instruction::SetGT || Op == Instruction::SetGE; case Instruction::SetGT: return Op == Instruction::SetEQ || Op == Instruction::SetLT || Op == Instruction::SetLE; } } // incorporate - Incorporate information in the argument into this relation // entry. This assumes that the information doesn't contradict itself. If any // new information is gained, true is returned, otherwise false is returned to // indicate that nothing was updated. // bool Relation::incorporate(Instruction::BinaryOps Op, ValueInfo &VI) { assert(!contradicts(Op, VI) && "Cannot incorporate contradictory information!"); // If this is a relationship with a constant, make sure that we update the // range that is possible for the value to have... // if (ConstantIntegral *C = dyn_cast(Val)) VI.getBounds() = ConstantRange(Op, C).intersectWith(VI.getBounds()); switch (Rel) { default: assert(0 && "Unknown prior value!"); case Instruction::Add: Rel = Op; return true; case Instruction::SetEQ: return false; // Nothing is more precise case Instruction::SetNE: return false; // Nothing is more precise case Instruction::SetLT: return false; // Nothing is more precise case Instruction::SetGT: return false; // Nothing is more precise case Instruction::SetLE: if (Op == Instruction::SetEQ || Op == Instruction::SetLT) { Rel = Op; return true; } else if (Op == Instruction::SetNE) { Rel = Instruction::SetLT; return true; } return false; case Instruction::SetGE: return Op == Instruction::SetLT; if (Op == Instruction::SetEQ || Op == Instruction::SetGT) { Rel = Op; return true; } else if (Op == Instruction::SetNE) { Rel = Instruction::SetGT; return true; } return false; } } // getImpliedResult - If this relationship between two values implies that // the specified relationship is true or false, return that. If we cannot // determine the result required, return Unknown. // Relation::KnownResult Relation::getImpliedResult(Instruction::BinaryOps Op) const { if (Rel == Op) return KnownTrue; if (Rel == SetCondInst::getInverseCondition(Op)) return KnownFalse; switch (Rel) { default: assert(0 && "Unknown prior value!"); case Instruction::SetEQ: if (Op == Instruction::SetLE || Op == Instruction::SetGE) return KnownTrue; if (Op == Instruction::SetLT || Op == Instruction::SetGT) return KnownFalse; break; case Instruction::SetLT: if (Op == Instruction::SetNE || Op == Instruction::SetLE) return KnownTrue; if (Op == Instruction::SetEQ) return KnownFalse; break; case Instruction::SetGT: if (Op == Instruction::SetNE || Op == Instruction::SetGE) return KnownTrue; if (Op == Instruction::SetEQ) return KnownFalse; break; case Instruction::SetNE: case Instruction::SetLE: case Instruction::SetGE: case Instruction::Add: break; } return Unknown; } //===----------------------------------------------------------------------===// // Printing Support... //===----------------------------------------------------------------------===// // print - Implement the standard print form to print out analysis information. void CEE::print(std::ostream &O, const Module *M) const { O << "\nPrinting Correlated Expression Info:\n"; for (std::map::const_iterator I = RegionInfoMap.begin(), E = RegionInfoMap.end(); I != E; ++I) I->second.print(O); } // print - Output information about this region... void RegionInfo::print(std::ostream &OS) const { if (ValueMap.empty()) return; OS << " RegionInfo for basic block: " << BB->getName() << "\n"; for (std::map::const_iterator I = ValueMap.begin(), E = ValueMap.end(); I != E; ++I) I->second.print(OS, I->first); OS << "\n"; } // print - Output information about this value relation... void ValueInfo::print(std::ostream &OS, Value *V) const { if (Relationships.empty()) return; if (V) { OS << " ValueInfo for: "; WriteAsOperand(OS, V); } OS << "\n Bounds = " << Bounds << "\n"; if (Replacement) { OS << " Replacement = "; WriteAsOperand(OS, Replacement); OS << "\n"; } for (unsigned i = 0, e = Relationships.size(); i != e; ++i) Relationships[i].print(OS); } // print - Output this relation to the specified stream void Relation::print(std::ostream &OS) const { OS << " is "; switch (Rel) { default: OS << "*UNKNOWN*"; break; case Instruction::SetEQ: OS << "== "; break; case Instruction::SetNE: OS << "!= "; break; case Instruction::SetLT: OS << "< "; break; case Instruction::SetGT: OS << "> "; break; case Instruction::SetLE: OS << "<= "; break; case Instruction::SetGE: OS << ">= "; break; } WriteAsOperand(OS, Val); OS << "\n"; } void Relation::dump() const { print(std::cerr); } void ValueInfo::dump() const { print(std::cerr, 0); }