//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// // // The LLVM Compiler Infrastructure // // This file was developed by Chris Lattner and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPCISelLowering class. // //===----------------------------------------------------------------------===// #include "PPCISelLowering.h" #include "PPCMachineFunctionInfo.h" #include "PPCPredicates.h" #include "PPCTargetMachine.h" #include "PPCPerfectShuffle.h" #include "llvm/ADT/VectorExtras.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SSARegMap.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/Intrinsics.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Support/CommandLine.h" using namespace llvm; static cl::opt EnablePPCPreinc("enable-ppc-preinc"); PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM) : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) { setPow2DivIsCheap(); // Use _setjmp/_longjmp instead of setjmp/longjmp. setUseUnderscoreSetJmp(true); setUseUnderscoreLongJmp(true); // Set up the register classes. addRegisterClass(MVT::i32, PPC::GPRCRegisterClass); addRegisterClass(MVT::f32, PPC::F4RCRegisterClass); addRegisterClass(MVT::f64, PPC::F8RCRegisterClass); // PowerPC has an i16 but no i8 (or i1) SEXTLOAD setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand); setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand); // PowerPC does not have truncstore for i1. setStoreXAction(MVT::i1, Promote); // PowerPC has pre-inc load and store's. setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Expand); setOperationAction(ISD::ConstantFP, MVT::f32, Expand); // PowerPC has no intrinsics for these particular operations setOperationAction(ISD::MEMMOVE, MVT::Other, Expand); setOperationAction(ISD::MEMSET, MVT::Other, Expand); setOperationAction(ISD::MEMCPY, MVT::Other, Expand); // PowerPC has no SREM/UREM instructions setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // We don't support sin/cos/sqrt/fmod setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); // If we're enabling GP optimizations, use hardware square root if (!TM.getSubtarget().hasFSQRT()) { setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); } setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); // PowerPC does not have BSWAP, CTPOP or CTTZ setOperationAction(ISD::BSWAP, MVT::i32 , Expand); setOperationAction(ISD::CTPOP, MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::BSWAP, MVT::i64 , Expand); setOperationAction(ISD::CTPOP, MVT::i64 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); // PowerPC does not have ROTR setOperationAction(ISD::ROTR, MVT::i32 , Expand); // PowerPC does not have Select setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); // PowerPC wants to turn select_cc of FP into fsel when possible. setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // PowerPC wants to optimize integer setcc a bit setOperationAction(ISD::SETCC, MVT::i32, Custom); // PowerPC does not have BRCOND which requires SetCC setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); // PowerPC does not have [U|S]INT_TO_FP setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand); setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand); // We cannot sextinreg(i1). Expand to shifts. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // Support label based line numbers. setOperationAction(ISD::LOCATION, MVT::Other, Expand); setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); // FIXME - use subtarget debug flags if (!TM.getSubtarget().isDarwin()) setOperationAction(ISD::LABEL, MVT::Other, Expand); // We want to legalize GlobalAddress and ConstantPool nodes into the // appropriate instructions to materialize the address. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); // RET must be custom lowered, to meet ABI requirements setOperationAction(ISD::RET , MVT::Other, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); if (TM.getSubtarget().has64BitSupport()) { // They also have instructions for converting between i64 and fp. setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); // FIXME: disable this lowered code. This generates 64-bit register values, // and we don't model the fact that the top part is clobbered by calls. We // need to flag these together so that the value isn't live across a call. //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote); } else { // PowerPC does not have FP_TO_UINT on 32-bit implementations. setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); } if (TM.getSubtarget().use64BitRegs()) { // 64 bit PowerPC implementations can support i64 types directly addRegisterClass(MVT::i64, PPC::G8RCRegisterClass); // BUILD_PAIR can't be handled natively, and should be expanded to shl/or setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); } else { // 32 bit PowerPC wants to expand i64 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); } if (TM.getSubtarget().hasAltivec()) { // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { // add/sub are legal for all supported vector VT's. setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal); setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal); // We promote all shuffles to v16i8. setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8); // We promote all non-typed operations to v4i32. setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32); setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote); AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32); // No other operations are legal. setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand); setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand); } // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle // with merges, splats, etc. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); setOperationAction(ISD::AND , MVT::v4i32, Legal); setOperationAction(ISD::OR , MVT::v4i32, Legal); setOperationAction(ISD::XOR , MVT::v4i32, Legal); setOperationAction(ISD::LOAD , MVT::v4i32, Legal); setOperationAction(ISD::SELECT, MVT::v4i32, Expand); setOperationAction(ISD::STORE , MVT::v4i32, Legal); addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass); addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass); addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass); addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass); setOperationAction(ISD::MUL, MVT::v4f32, Legal); setOperationAction(ISD::MUL, MVT::v4i32, Custom); setOperationAction(ISD::MUL, MVT::v8i16, Custom); setOperationAction(ISD::MUL, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); } setSetCCResultType(MVT::i32); setShiftAmountType(MVT::i32); setSetCCResultContents(ZeroOrOneSetCCResult); if (TM.getSubtarget().isPPC64()) setStackPointerRegisterToSaveRestore(PPC::X1); else setStackPointerRegisterToSaveRestore(PPC::R1); // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine(ISD::SINT_TO_FP); setTargetDAGCombine(ISD::STORE); setTargetDAGCombine(ISD::BR_CC); setTargetDAGCombine(ISD::BSWAP); computeRegisterProperties(); } const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case PPCISD::FSEL: return "PPCISD::FSEL"; case PPCISD::FCFID: return "PPCISD::FCFID"; case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; case PPCISD::STFIWX: return "PPCISD::STFIWX"; case PPCISD::VMADDFP: return "PPCISD::VMADDFP"; case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP"; case PPCISD::VPERM: return "PPCISD::VPERM"; case PPCISD::Hi: return "PPCISD::Hi"; case PPCISD::Lo: return "PPCISD::Lo"; case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; case PPCISD::SRL: return "PPCISD::SRL"; case PPCISD::SRA: return "PPCISD::SRA"; case PPCISD::SHL: return "PPCISD::SHL"; case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32"; case PPCISD::STD_32: return "PPCISD::STD_32"; case PPCISD::CALL: return "PPCISD::CALL"; case PPCISD::MTCTR: return "PPCISD::MTCTR"; case PPCISD::BCTRL: return "PPCISD::BCTRL"; case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG"; case PPCISD::MFCR: return "PPCISD::MFCR"; case PPCISD::VCMP: return "PPCISD::VCMP"; case PPCISD::VCMPo: return "PPCISD::VCMPo"; case PPCISD::LBRX: return "PPCISD::LBRX"; case PPCISD::STBRX: return "PPCISD::STBRX"; case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; } } //===----------------------------------------------------------------------===// // Node matching predicates, for use by the tblgen matching code. //===----------------------------------------------------------------------===// /// isFloatingPointZero - Return true if this is 0.0 or -0.0. static bool isFloatingPointZero(SDOperand Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) { // Maybe this has already been legalized into the constant pool? if (ConstantPoolSDNode *CP = dyn_cast(Op.getOperand(1))) if (ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0); } return false; } /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if it matches the specified value. static bool isConstantOrUndef(SDOperand Op, unsigned Val) { return Op.getOpcode() == ISD::UNDEF || cast(Op)->getValue() == Val; } /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) { if (!isUnary) { for (unsigned i = 0; i != 16; ++i) if (!isConstantOrUndef(N->getOperand(i), i*2+1)) return false; } else { for (unsigned i = 0; i != 8; ++i) if (!isConstantOrUndef(N->getOperand(i), i*2+1) || !isConstantOrUndef(N->getOperand(i+8), i*2+1)) return false; } return true; } /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) { if (!isUnary) { for (unsigned i = 0; i != 16; i += 2) if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || !isConstantOrUndef(N->getOperand(i+1), i*2+3)) return false; } else { for (unsigned i = 0; i != 8; i += 2) if (!isConstantOrUndef(N->getOperand(i ), i*2+2) || !isConstantOrUndef(N->getOperand(i+1), i*2+3) || !isConstantOrUndef(N->getOperand(i+8), i*2+2) || !isConstantOrUndef(N->getOperand(i+9), i*2+3)) return false; } return true; } /// isVMerge - Common function, used to match vmrg* shuffles. /// static bool isVMerge(SDNode *N, unsigned UnitSize, unsigned LHSStart, unsigned RHSStart) { assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!"); for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j), LHSStart+j+i*UnitSize) || !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j), RHSStart+j+i*UnitSize)) return false; } return true; } /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { if (!isUnary) return isVMerge(N, UnitSize, 8, 24); return isVMerge(N, UnitSize, 8, 8); } /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes). bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) { if (!isUnary) return isVMerge(N, UnitSize, 0, 16); return isVMerge(N, UnitSize, 0, 0); } /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift /// amount, otherwise return -1. int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) { assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!"); // Find the first non-undef value in the shuffle mask. unsigned i; for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i) /*search*/; if (i == 16) return -1; // all undef. // Otherwise, check to see if the rest of the elements are consequtively // numbered from this value. unsigned ShiftAmt = cast(N->getOperand(i))->getValue(); if (ShiftAmt < i) return -1; ShiftAmt -= i; if (!isUnary) { // Check the rest of the elements to see if they are consequtive. for (++i; i != 16; ++i) if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i)) return -1; } else { // Check the rest of the elements to see if they are consequtive. for (++i; i != 16; ++i) if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15)) return -1; } return ShiftAmt; } /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// VSPLTB/VSPLTH/VSPLTW. bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) { assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 16 && (EltSize == 1 || EltSize == 2 || EltSize == 4)); // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned ElementBase = 0; SDOperand Elt = N->getOperand(0); if (ConstantSDNode *EltV = dyn_cast(Elt)) ElementBase = EltV->getValue(); else return false; // FIXME: Handle UNDEF elements too! if (cast(Elt)->getValue() >= 16) return false; // Check that they are consequtive. for (unsigned i = 1; i != EltSize; ++i) { if (!isa(N->getOperand(i)) || cast(N->getOperand(i))->getValue() != i+ElementBase) return false; } assert(isa(Elt) && "Invalid VECTOR_SHUFFLE mask!"); for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; assert(isa(N->getOperand(i)) && "Invalid VECTOR_SHUFFLE mask!"); for (unsigned j = 0; j != EltSize; ++j) if (N->getOperand(i+j) != N->getOperand(j)) return false; } return true; } /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the /// specified isSplatShuffleMask VECTOR_SHUFFLE mask. unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) { assert(isSplatShuffleMask(N, EltSize)); return cast(N->getOperand(0))->getValue() / EltSize; } /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed /// by using a vspltis[bhw] instruction of the specified element size, return /// the constant being splatted. The ByteSize field indicates the number of /// bytes of each element [124] -> [bhw]. SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { SDOperand OpVal(0, 0); // If ByteSize of the splat is bigger than the element size of the // build_vector, then we have a case where we are checking for a splat where // multiple elements of the buildvector are folded together into a single // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). unsigned EltSize = 16/N->getNumOperands(); if (EltSize < ByteSize) { unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. SDOperand UniquedVals[4]; assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); // See if all of the elements in the buildvector agree across. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; // If the element isn't a constant, bail fully out. if (!isa(N->getOperand(i))) return SDOperand(); if (UniquedVals[i&(Multiple-1)].Val == 0) UniquedVals[i&(Multiple-1)] = N->getOperand(i); else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) return SDOperand(); // no match. } // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains // either constant or undef values that are identical for each chunk. See // if these chunks can form into a larger vspltis*. // Check to see if all of the leading entries are either 0 or -1. If // neither, then this won't fit into the immediate field. bool LeadingZero = true; bool LeadingOnes = true; for (unsigned i = 0; i != Multiple-1; ++i) { if (UniquedVals[i].Val == 0) continue; // Must have been undefs. LeadingZero &= cast(UniquedVals[i])->isNullValue(); LeadingOnes &= cast(UniquedVals[i])->isAllOnesValue(); } // Finally, check the least significant entry. if (LeadingZero) { if (UniquedVals[Multiple-1].Val == 0) return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef int Val = cast(UniquedVals[Multiple-1])->getValue(); if (Val < 16) return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4) } if (LeadingOnes) { if (UniquedVals[Multiple-1].Val == 0) return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef int Val =cast(UniquedVals[Multiple-1])->getSignExtended(); if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) return DAG.getTargetConstant(Val, MVT::i32); } return SDOperand(); } // Check to see if this buildvec has a single non-undef value in its elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue; if (OpVal.Val == 0) OpVal = N->getOperand(i); else if (OpVal != N->getOperand(i)) return SDOperand(); } if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def. unsigned ValSizeInBytes = 0; uint64_t Value = 0; if (ConstantSDNode *CN = dyn_cast(OpVal)) { Value = CN->getValue(); ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8; } else if (ConstantFPSDNode *CN = dyn_cast(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); Value = FloatToBits(CN->getValue()); ValSizeInBytes = 4; } // If the splat value is larger than the element value, then we can never do // this splat. The only case that we could fit the replicated bits into our // immediate field for would be zero, and we prefer to use vxor for it. if (ValSizeInBytes < ByteSize) return SDOperand(); // If the element value is larger than the splat value, cut it in half and // check to see if the two halves are equal. Continue doing this until we // get to ByteSize. This allows us to handle 0x01010101 as 0x01. while (ValSizeInBytes > ByteSize) { ValSizeInBytes >>= 1; // If the top half equals the bottom half, we're still ok. if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) != (Value & ((1 << (8*ValSizeInBytes))-1))) return SDOperand(); } // Properly sign extend the value. int ShAmt = (4-ByteSize)*8; int MaskVal = ((int)Value << ShAmt) >> ShAmt; // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. if (MaskVal == 0) return SDOperand(); // Finally, if this value fits in a 5 bit sext field, return it if (((MaskVal << (32-5)) >> (32-5)) == MaskVal) return DAG.getTargetConstant(MaskVal, MVT::i32); return SDOperand(); } //===----------------------------------------------------------------------===// // Addressing Mode Selection //===----------------------------------------------------------------------===// /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. static bool isIntS16Immediate(SDNode *N, short &Imm) { if (N->getOpcode() != ISD::Constant) return false; Imm = (short)cast(N)->getValue(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)cast(N)->getValue(); else return Imm == (int64_t)cast(N)->getValue(); } static bool isIntS16Immediate(SDOperand Op, short &Imm) { return isIntS16Immediate(Op.Val, Imm); } /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented with [r+imm]. bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base, SDOperand &Index, SelectionDAG &DAG) { short imm = 0; if (N.getOpcode() == ISD::ADD) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i if (N.getOperand(1).getOpcode() == PPCISD::Lo) return false; // r+i Base = N.getOperand(0); Index = N.getOperand(1); return true; } else if (N.getOpcode() == ISD::OR) { if (isIntS16Immediate(N.getOperand(1), imm)) return false; // r+i can fold it if we can. // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are provably // disjoint. uint64_t LHSKnownZero, LHSKnownOne; uint64_t RHSKnownZero, RHSKnownOne; ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne); if (LHSKnownZero) { ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne); // If all of the bits are known zero on the LHS or RHS, the add won't // carry. if ((LHSKnownZero | RHSKnownZero) == ~0U) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } } } return false; } /// Returns true if the address N can be represented by a base register plus /// a signed 16-bit displacement [r+imm], and if it is not better /// represented as reg+reg. bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp, SDOperand &Base, SelectionDAG &DAG){ // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm)) { Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast(N.getOperand(1).getOperand(1))->getValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm)) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. uint64_t LHSKnownZero, LHSKnownOne; ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne); if ((LHSKnownZero|~(unsigned)imm) == ~0U) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. // If this address fits entirely in a 16-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm)) { Disp = DAG.getTargetConstant(Imm, CN->getValueType(0)); Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); return true; } // FIXME: Handle small sext constant offsets in PPC64 mode also! if (CN->getValueType(0) == MVT::i32) { int Addr = (int)CN->getValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr, MVT::i32); Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32); return true; } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast(N)) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N; return true; // [r+0] } /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base, SDOperand &Index, SelectionDAG &DAG) { // Check to see if we can easily represent this as an [r+r] address. This // will fail if it thinks that the address is more profitably represented as // reg+imm, e.g. where imm = 0. if (SelectAddressRegReg(N, Base, Index, DAG)) return true; // If the operand is an addition, always emit this as [r+r], since this is // better (for code size, and execution, as the memop does the add for free) // than emitting an explicit add. if (N.getOpcode() == ISD::ADD) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } // Otherwise, do it the hard way, using R0 as the base register. Base = DAG.getRegister(PPC::R0, N.getValueType()); Index = N; return true; } /// SelectAddressRegImmShift - Returns true if the address N can be /// represented by a base register plus a signed 14-bit displacement /// [r+imm*4]. Suitable for use by STD and friends. bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base, SelectionDAG &DAG) { // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG)) return false; if (N.getOpcode() == ISD::ADD) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!cast(N.getOperand(1).getOperand(1))->getValue() && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { short imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. uint64_t LHSKnownZero, LHSKnownOne; ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne); if ((LHSKnownZero|~(unsigned)imm) == ~0U) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. Base = N.getOperand(0); Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. // If this address fits entirely in a 14-bit sext immediate field, codegen // this as "d, 0" short Imm; if (isIntS16Immediate(CN, Imm)) { Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy()); Base = DAG.getRegister(PPC::R0, CN->getValueType(0)); return true; } // FIXME: Handle small sext constant offsets in PPC64 mode also! if (CN->getValueType(0) == MVT::i32) { int Addr = (int)CN->getValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32); Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32); return true; } } Disp = DAG.getTargetConstant(0, getPointerTy()); if (FrameIndexSDNode *FI = dyn_cast(N)) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N; return true; // [r+0] } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base, SDOperand &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) { // Disabled by default for now. if (!EnablePPCPreinc) return false; SDOperand Ptr; MVT::ValueType VT; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getLoadedVT(); } else if (StoreSDNode *ST = dyn_cast(N)) { ST = ST; Ptr = ST->getBasePtr(); VT = ST->getStoredVT(); } else return false; // PowerPC doesn't have preinc load/store instructions for vectors. if (MVT::isVector(VT)) return false; // TODO: Check reg+reg first. // LDU/STU use reg+imm*4, others use reg+imm. if (VT != MVT::i64) { // reg + imm if (!SelectAddressRegImm(Ptr, Offset, Base, DAG)) return false; } else { // reg + imm * 4. if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG)) return false; } if (LoadSDNode *LD = dyn_cast(N)) { // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of // sext i32 to i64 when addr mode is r+i. if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 && LD->getExtensionType() == ISD::SEXTLOAD && isa(Offset)) return false; } AM = ISD::PRE_INC; return true; } //===----------------------------------------------------------------------===// // LowerOperation implementation //===----------------------------------------------------------------------===// static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast(Op); Constant *C = CP->getConstVal(); SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment()); SDOperand Zero = DAG.getConstant(0, PtrVT); const TargetMachine &TM = DAG.getTarget(); SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero); SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); return Lo; } static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast(Op); SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); SDOperand Zero = DAG.getConstant(0, PtrVT); const TargetMachine &TM = DAG.getTarget(); SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero); SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); return Lo; } static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { MVT::ValueType PtrVT = Op.getValueType(); GlobalAddressSDNode *GSDN = cast(Op); GlobalValue *GV = GSDN->getGlobal(); SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset()); SDOperand Zero = DAG.getConstant(0, PtrVT); const TargetMachine &TM = DAG.getTarget(); SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero); SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero); // If this is a non-darwin platform, we don't support non-static relo models // yet. if (TM.getRelocationModel() == Reloc::Static || !TM.getSubtarget().isDarwin()) { // Generate non-pic code that has direct accesses to globals. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); } if (TM.getRelocationModel() == Reloc::PIC_) { // With PIC, the first instruction is actually "GR+hi(&G)". Hi = DAG.getNode(ISD::ADD, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi); } Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo); if (!TM.getSubtarget().hasLazyResolverStub(GV)) return Lo; // If the global is weak or external, we have to go through the lazy // resolution stub. return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0); } static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) { ISD::CondCode CC = cast(Op.getOperand(2))->get(); // If we're comparing for equality to zero, expose the fact that this is // implented as a ctlz/srl pair on ppc, so that the dag combiner can // fold the new nodes. if (ConstantSDNode *C = dyn_cast(Op.getOperand(1))) { if (C->isNullValue() && CC == ISD::SETEQ) { MVT::ValueType VT = Op.getOperand(0).getValueType(); SDOperand Zext = Op.getOperand(0); if (VT < MVT::i32) { VT = MVT::i32; Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0)); } unsigned Log2b = Log2_32(MVT::getSizeInBits(VT)); SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext); SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz, DAG.getConstant(Log2b, MVT::i32)); return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc); } // Leave comparisons against 0 and -1 alone for now, since they're usually // optimized. FIXME: revisit this when we can custom lower all setcc // optimizations. if (C->isAllOnesValue() || C->isNullValue()) return SDOperand(); } // If we have an integer seteq/setne, turn it into a compare against zero // by xor'ing the rhs with the lhs, which is faster than setting a // condition register, reading it back out, and masking the correct bit. The // normal approach here uses sub to do this instead of xor. Using xor exposes // the result to other bit-twiddling opportunities. MVT::ValueType LHSVT = Op.getOperand(0).getValueType(); if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { MVT::ValueType VT = Op.getValueType(); SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0), Op.getOperand(1)); return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC); } return SDOperand(); } static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, unsigned VarArgsFrameIndex) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); SrcValueSDNode *SV = cast(Op.getOperand(2)); return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(), SV->getOffset()); } static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG, int &VarArgsFrameIndex) { // TODO: add description of PPC stack frame format, or at least some docs. // MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); SSARegMap *RegMap = MF.getSSARegMap(); SmallVector ArgValues; SDOperand Root = Op.getOperand(0); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; unsigned PtrByteSize = isPPC64 ? 8 : 4; unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64); static const unsigned GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; static const unsigned VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]); const unsigned Num_FPR_Regs = sizeof(FPR)/sizeof(FPR[0]); const unsigned Num_VR_Regs = sizeof( VR)/sizeof( VR[0]); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; // Add DAG nodes to load the arguments or copy them out of registers. On // entry to a function on PPC, the arguments start after the linkage area, // although the first ones are often in registers. for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) { SDOperand ArgVal; bool needsLoad = false; MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8; unsigned ArgSize = ObjSize; unsigned CurArgOffset = ArgOffset; switch (ObjectVT) { default: assert(0 && "Unhandled argument type!"); case MVT::i32: // All int arguments reserve stack space. ArgOffset += PtrByteSize; if (GPR_idx != Num_GPR_Regs) { unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); MF.addLiveIn(GPR[GPR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32); ++GPR_idx; } else { needsLoad = true; ArgSize = PtrByteSize; } break; case MVT::i64: // PPC64 // All int arguments reserve stack space. ArgOffset += 8; if (GPR_idx != Num_GPR_Regs) { unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass); MF.addLiveIn(GPR[GPR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64); ++GPR_idx; } else { needsLoad = true; } break; case MVT::f32: case MVT::f64: // All FP arguments reserve stack space. ArgOffset += isPPC64 ? 8 : ObjSize; // Every 4 bytes of argument space consumes one of the GPRs available for // argument passing. if (GPR_idx != Num_GPR_Regs) { ++GPR_idx; if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64) ++GPR_idx; } if (FPR_idx != Num_FPR_Regs) { unsigned VReg; if (ObjectVT == MVT::f32) VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass); else VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass); MF.addLiveIn(FPR[FPR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); ++FPR_idx; } else { needsLoad = true; } break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: // Note that vector arguments in registers don't reserve stack space. if (VR_idx != Num_VR_Regs) { unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass); MF.addLiveIn(VR[VR_idx], VReg); ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT); ++VR_idx; } else { // This should be simple, but requires getting 16-byte aligned stack // values. assert(0 && "Loading VR argument not implemented yet!"); needsLoad = true; } break; } // We need to load the argument to a virtual register if we determined above // that we ran out of physical registers of the appropriate type if (needsLoad) { // If the argument is actually used, emit a load from the right stack // slot. if (!Op.Val->hasNUsesOfValue(0, ArgNo)) { int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset + (ArgSize - ObjSize)); SDOperand FIN = DAG.getFrameIndex(FI, PtrVT); ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); } else { // Don't emit a dead load. ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT); } } ArgValues.push_back(ArgVal); } // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; if (isVarArg) { VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8, ArgOffset); SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by deferencing the // result of va_next. SmallVector MemOps; for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) { unsigned VReg; if (isPPC64) VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass); else VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass); MF.addLiveIn(GPR[GPR_idx], VReg); SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT); SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT); FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff); } if (!MemOps.empty()) Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size()); } ArgValues.push_back(Root); // Return the new list of results. std::vector RetVT(Op.Val->value_begin(), Op.Val->value_end()); return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); } /// isCallCompatibleAddress - Return the immediate to use if the specified /// 32-bit value is representable in the immediate field of a BxA instruction. static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) { ConstantSDNode *C = dyn_cast(Op); if (!C) return 0; int Addr = C->getValue(); if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. (Addr << 6 >> 6) != Addr) return 0; // Top 6 bits have to be sext of immediate. return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val; } static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) { SDOperand Chain = Op.getOperand(0); bool isVarArg = cast(Op.getOperand(2))->getValue() != 0; SDOperand Callee = Op.getOperand(4); unsigned NumOps = (Op.getNumOperands() - 5) / 2; MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); bool isPPC64 = PtrVT == MVT::i64; unsigned PtrByteSize = isPPC64 ? 8 : 4; // args_to_use will accumulate outgoing args for the PPCISD::CALL case in // SelectExpr to use to put the arguments in the appropriate registers. std::vector args_to_use; // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. We start with 24/48 bytes, which is // prereserved space for [SP][CR][LR][3 x unused]. unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64); // Add up all the space actually used. for (unsigned i = 0; i != NumOps; ++i) { unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8; ArgSize = std::max(ArgSize, PtrByteSize); NumBytes += ArgSize; } // The prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if its varargs. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. NumBytes = std::max(NumBytes, PPCFrameInfo::getMinCallFrameSize(isPPC64)); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT)); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDOperand StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64); unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; static const unsigned GPR_32[] = { // 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; static const unsigned GPR_64[] = { // 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const unsigned FPR[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13 }; static const unsigned VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]); const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]); const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]); const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32; std::vector > RegsToPass; SmallVector MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { SDOperand Arg = Op.getOperand(5+2*i); // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff); // On PPC64, promote integers to 64-bit values. if (isPPC64 && Arg.getValueType() == MVT::i32) { unsigned Flags = cast(Op.getOperand(5+2*i+1))->getValue(); unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, MVT::i64, Arg); } switch (Arg.getValueType()) { default: assert(0 && "Unexpected ValueType for argument!"); case MVT::i32: case MVT::i64: if (GPR_idx != NumGPRs) { RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg)); } else { MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); } ArgOffset += PtrByteSize; break; case MVT::f32: case MVT::f64: if (isVarArg && isPPC64) { // Float varargs need to be promoted to double. if (Arg.getValueType() == MVT::f32) Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg); } if (FPR_idx != NumFPRs) { RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg)); if (isVarArg) { SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0); MemOpChains.push_back(Store); // Float varargs are always shadowed in available integer registers if (GPR_idx != NumGPRs) { SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){ SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType()); PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour); SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } } else { // If we have any FPRs remaining, we may also have GPRs remaining. // Args passed in FPRs consume either 1 (f32) or 2 (f64) available // GPRs. if (GPR_idx != NumGPRs) ++GPR_idx; if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64) ++GPR_idx; } } else { MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); } if (isPPC64) ArgOffset += 8; else ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8; break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: assert(!isVarArg && "Don't support passing vectors to varargs yet!"); assert(VR_idx != NumVRs && "Don't support passing more than 12 vector args yet!"); RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); break; } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOpChains[0], MemOpChains.size()); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDOperand InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } std::vector NodeTys; NodeTys.push_back(MVT::Other); // Returns a chain NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. SmallVector Ops; unsigned CallOpc = PPCISD::CALL; // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (GlobalAddressSDNode *G = dyn_cast(Callee)) Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType()); else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType()); else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) // If this is an absolute destination address, use the munged value. Callee = SDOperand(Dest, 0); else { // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair // to do the call, we can't use PPCISD::CALL. SDOperand MTCTROps[] = {Chain, Callee, InFlag}; Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0)); InFlag = Chain.getValue(1); // Copy the callee address into R12 on darwin. Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag); InFlag = Chain.getValue(1); NodeTys.clear(); NodeTys.push_back(MVT::Other); NodeTys.push_back(MVT::Flag); Ops.push_back(Chain); CallOpc = PPCISD::BCTRL; Callee.Val = 0; } // If this is a direct call, pass the chain and the callee. if (Callee.Val) { Ops.push_back(Chain); Ops.push_back(Callee); } // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); if (InFlag.Val) Ops.push_back(InFlag); Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); SDOperand ResultVals[3]; unsigned NumResults = 0; NodeTys.clear(); // If the call has results, copy the values out of the ret val registers. switch (Op.Val->getValueType(0)) { default: assert(0 && "Unexpected ret value!"); case MVT::Other: break; case MVT::i32: if (Op.Val->getValueType(1) == MVT::i32) { Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1); ResultVals[0] = Chain.getValue(0); Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, Chain.getValue(2)).getValue(1); ResultVals[1] = Chain.getValue(0); NumResults = 2; NodeTys.push_back(MVT::i32); } else { Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1); ResultVals[0] = Chain.getValue(0); NumResults = 1; } NodeTys.push_back(MVT::i32); break; case MVT::i64: Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1); ResultVals[0] = Chain.getValue(0); NumResults = 1; NodeTys.push_back(MVT::i64); break; case MVT::f32: case MVT::f64: Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0), InFlag).getValue(1); ResultVals[0] = Chain.getValue(0); NumResults = 1; NodeTys.push_back(Op.Val->getValueType(0)); break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0), InFlag).getValue(1); ResultVals[0] = Chain.getValue(0); NumResults = 1; NodeTys.push_back(Op.Val->getValueType(0)); break; } Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, DAG.getConstant(NumBytes, PtrVT)); NodeTys.push_back(MVT::Other); // If the function returns void, just return the chain. if (NumResults == 0) return Chain; // Otherwise, merge everything together with a MERGE_VALUES node. ResultVals[NumResults++] = Chain; SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals, NumResults); return Res.getValue(Op.ResNo); } static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { SDOperand Copy; switch(Op.getNumOperands()) { default: assert(0 && "Do not know how to return this many arguments!"); abort(); case 1: return SDOperand(); // ret void is legal case 3: { MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); unsigned ArgReg; if (ArgVT == MVT::i32) { ArgReg = PPC::R3; } else if (ArgVT == MVT::i64) { ArgReg = PPC::X3; } else if (MVT::isVector(ArgVT)) { ArgReg = PPC::V2; } else { assert(MVT::isFloatingPoint(ArgVT)); ArgReg = PPC::F1; } Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1), SDOperand()); // If we haven't noted the R3/F1 are live out, do so now. if (DAG.getMachineFunction().liveout_empty()) DAG.getMachineFunction().addLiveOut(ArgReg); break; } case 5: Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3), SDOperand()); Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1)); // If we haven't noted the R3+R4 are live out, do so now. if (DAG.getMachineFunction().liveout_empty()) { DAG.getMachineFunction().addLiveOut(PPC::R3); DAG.getMachineFunction().addLiveOut(PPC::R4); } break; } return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); } static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { // When we pop the dynamic allocation we need to restore the SP link. // Get the corect type for pointers. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Construct the stack pointer operand. bool IsPPC64 = Subtarget.isPPC64(); unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1; SDOperand StackPtr = DAG.getRegister(SP, PtrVT); // Get the operands for the STACKRESTORE. SDOperand Chain = Op.getOperand(0); SDOperand SaveSP = Op.getOperand(1); // Load the old link SP. SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0); // Restore the stack pointer. Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP); // Store the old link SP. return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0); } static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { MachineFunction &MF = DAG.getMachineFunction(); bool IsPPC64 = Subtarget.isPPC64(); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int FPSI = FI->getFramePointerSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!FPSI) { // Find out what the fix offset of the frame pointer save area. int Offset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64); // Allocate the frame index for frame pointer save area. FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, Offset); // Save the result. FI->setFramePointerSaveIndex(FPSI); } // Get the inputs. SDOperand Chain = Op.getOperand(0); SDOperand Size = Op.getOperand(1); // Get the corect type for pointers. MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); // Negate the size. SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT, DAG.getConstant(0, PtrVT), Size); // Construct a node for the frame pointer save index. SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT); // Build a DYNALLOC node. SDOperand Ops[3] = { Chain, NegSize, FPSIdx }; SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3); } /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when /// possible. static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) { // Not FP? Not a fsel. if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) || !MVT::isFloatingPoint(Op.getOperand(2).getValueType())) return SDOperand(); ISD::CondCode CC = cast(Op.getOperand(4))->get(); // Cannot handle SETEQ/SETNE. if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand(); MVT::ValueType ResVT = Op.getValueType(); MVT::ValueType CmpVT = Op.getOperand(0).getValueType(); SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3); // If the RHS of the comparison is a 0.0, we don't need to do the // subtraction at all. if (isFloatingPointZero(RHS)) switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETULT: case ISD::SETOLT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETUGE: case ISD::SETOGE: case ISD::SETGE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV); case ISD::SETUGT: case ISD::SETOGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt case ISD::SETULE: case ISD::SETOLE: case ISD::SETLE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, ResVT, DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV); } SDOperand Cmp; switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETULT: case ISD::SETOLT: case ISD::SETLT: Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); case ISD::SETUGE: case ISD::SETOGE: case ISD::SETGE: Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); case ISD::SETUGT: case ISD::SETOGT: case ISD::SETGT: Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV); case ISD::SETULE: case ISD::SETOLE: case ISD::SETLE: Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV); } return SDOperand(); } static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType())); SDOperand Src = Op.getOperand(0); if (Src.getValueType() == MVT::f32) Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src); SDOperand Tmp; switch (Op.getValueType()) { default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!"); case MVT::i32: Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src); break; case MVT::i64: Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src); break; } // Convert the FP value to an int value through memory. SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp); if (Op.getValueType() == MVT::i32) Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits); return Bits; } static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { if (Op.getOperand(0).getValueType() == MVT::i64) { SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0)); SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits); if (Op.getValueType() == MVT::f32) FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); return FP; } assert(Op.getOperand(0).getValueType() == MVT::i32 && "Unhandled SINT_TO_FP type in custom expander!"); // Since we only generate this in 64-bit mode, we can take advantage of // 64-bit registers. In particular, sign extend the input value into the // 64-bit register with extsw, store the WHOLE 64-bit value into the stack // then lfd it and fcfid it. MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(8, 8); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32, Op.getOperand(0)); // STD the extended value into the stack slot. SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other, DAG.getEntryNode(), Ext64, FIdx, DAG.getSrcValue(NULL)); // Load the value as a double. SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0); // FCFID it and return it. SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld); if (Op.getValueType() == MVT::f32) FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP); return FP; } static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDOperand Lo = Op.getOperand(0); SDOperand Hi = Op.getOperand(1); SDOperand Amt = Op.getOperand(2); SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, DAG.getConstant(32, MVT::i32), Amt); SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt); SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1); SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, DAG.getConstant(-32U, MVT::i32)); SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5); SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt); SDOperand OutOps[] = { OutLo, OutHi }; return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32), OutOps, 2); } static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!"); // Otherwise, expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDOperand Lo = Op.getOperand(0); SDOperand Hi = Op.getOperand(1); SDOperand Amt = Op.getOperand(2); SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, DAG.getConstant(32, MVT::i32), Amt); SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, DAG.getConstant(-32U, MVT::i32)); SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5); SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6); SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt); SDOperand OutOps[] = { OutLo, OutHi }; return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32), OutOps, 2); } static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) { assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!"); // Otherwise, expand into a bunch of logical ops, followed by a select_cc. SDOperand Lo = Op.getOperand(0); SDOperand Hi = Op.getOperand(1); SDOperand Amt = Op.getOperand(2); SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32, DAG.getConstant(32, MVT::i32), Amt); SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt); SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1); SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3); SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt, DAG.getConstant(-32U, MVT::i32)); SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5); SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt); SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32), Tmp4, Tmp6, ISD::SETLE); SDOperand OutOps[] = { OutLo, OutHi }; return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32), OutOps, 2); } //===----------------------------------------------------------------------===// // Vector related lowering. // // If this is a vector of constants or undefs, get the bits. A bit in // UndefBits is set if the corresponding element of the vector is an // ISD::UNDEF value. For undefs, the corresponding VectorBits values are // zero. Return true if this is not an array of constants, false if it is. // static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2], uint64_t UndefBits[2]) { // Start with zero'd results. VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0; unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType()); for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) { SDOperand OpVal = BV->getOperand(i); unsigned PartNo = i >= e/2; // In the upper 128 bits? unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t. uint64_t EltBits = 0; if (OpVal.getOpcode() == ISD::UNDEF) { uint64_t EltUndefBits = ~0U >> (32-EltBitSize); UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize); continue; } else if (ConstantSDNode *CN = dyn_cast(OpVal)) { EltBits = CN->getValue() & (~0U >> (32-EltBitSize)); } else if (ConstantFPSDNode *CN = dyn_cast(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); EltBits = FloatToBits(CN->getValue()); } else { // Nonconstant element. return true; } VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize); } //printf("%llx %llx %llx %llx\n", // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]); return false; } // If this is a splat (repetition) of a value across the whole vector, return // the smallest size that splats it. For example, "0x01010101010101..." is a // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and // SplatSize = 1 byte. static bool isConstantSplat(const uint64_t Bits128[2], const uint64_t Undef128[2], unsigned &SplatBits, unsigned &SplatUndef, unsigned &SplatSize) { // Don't let undefs prevent splats from matching. See if the top 64-bits are // the same as the lower 64-bits, ignoring undefs. if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0])) return false; // Can't be a splat if two pieces don't match. uint64_t Bits64 = Bits128[0] | Bits128[1]; uint64_t Undef64 = Undef128[0] & Undef128[1]; // Check that the top 32-bits are the same as the lower 32-bits, ignoring // undefs. if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64)) return false; // Can't be a splat if two pieces don't match. uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32); uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32); // If the top 16-bits are different than the lower 16-bits, ignoring // undefs, we have an i32 splat. if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) { SplatBits = Bits32; SplatUndef = Undef32; SplatSize = 4; return true; } uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16); uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16); // If the top 8-bits are different than the lower 8-bits, ignoring // undefs, we have an i16 splat. if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) { SplatBits = Bits16; SplatUndef = Undef16; SplatSize = 2; return true; } // Otherwise, we have an 8-bit splat. SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8); SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8); SplatSize = 1; return true; } /// BuildSplatI - Build a canonical splati of Val with an element size of /// SplatSize. Cast the result to VT. static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT, SelectionDAG &DAG) { assert(Val >= -16 && Val <= 15 && "vsplti is out of range!"); static const MVT::ValueType VTys[] = { // canonical VT to use for each size. MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 }; MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; // Force vspltis[hw] -1 to vspltisb -1 to canonicalize. if (Val == -1) SplatSize = 1; MVT::ValueType CanonicalVT = VTys[SplatSize-1]; // Build a canonical splat for this value. SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT)); SmallVector Ops; Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt); SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, &Ops[0], Ops.size()); return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res); } /// BuildIntrinsicOp - Return a binary operator intrinsic node with the /// specified intrinsic ID. static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS, SelectionDAG &DAG, MVT::ValueType DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = LHS.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, DAG.getConstant(IID, MVT::i32), LHS, RHS); } /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the /// specified intrinsic ID. static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1, SDOperand Op2, SelectionDAG &DAG, MVT::ValueType DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op0.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT, DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2); } /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified /// amount. The result has the specified value type. static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt, MVT::ValueType VT, SelectionDAG &DAG) { // Force LHS/RHS to be the right type. LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS); RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS); SDOperand Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = DAG.getConstant(i+Amt, MVT::i32); SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS, DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16)); return DAG.getNode(ISD::BIT_CONVERT, VT, T); } // If this is a case we can't handle, return null and let the default // expansion code take care of it. If we CAN select this case, and if it // selects to a single instruction, return Op. Otherwise, if we can codegen // this case more efficiently than a constant pool load, lower it to the // sequence of ops that should be used. static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { // If this is a vector of constants or undefs, get the bits. A bit in // UndefBits is set if the corresponding element of the vector is an // ISD::UNDEF value. For undefs, the corresponding VectorBits values are // zero. uint64_t VectorBits[2]; uint64_t UndefBits[2]; if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits)) return SDOperand(); // Not a constant vector. // If this is a splat (repetition) of a value across the whole vector, return // the smallest size that splats it. For example, "0x01010101010101..." is a // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and // SplatSize = 1 byte. unsigned SplatBits, SplatUndef, SplatSize; if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){ bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0; // First, handle single instruction cases. // All zeros? if (SplatBits == 0) { // Canonicalize all zero vectors to be v4i32. if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { SDOperand Z = DAG.getConstant(0, MVT::i32); Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z); Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z); } return Op; } // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize); if (SextVal >= -16 && SextVal <= 15) return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG); // Two instruction sequences. // If this value is in the range [-32,30] and is even, use: // tmp = VSPLTI[bhw], result = add tmp, tmp if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) { Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG); return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op); } // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important // for fneg/fabs. if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { // Make -1 and vspltisw -1: SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG); // Make the VSLW intrinsic, computing 0x8000_0000. SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, OnesV, DAG); // xor by OnesV to invert it. Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // Check to see if this is a wide variety of vsplti*, binop self cases. unsigned SplatBitSize = SplatSize*8; static const char SplatCsts[] = { -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 }; for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){ // Indirect through the SplatCsts array so that we favor 'vsplti -1' for // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' int i = SplatCsts[idx]; // Figure out what shift amount will be used by altivec if shifted by i in // this splat size. unsigned TypeShiftAmt = i & (SplatBitSize-1); // vsplti + shl self. if (SextVal == (i << (int)TypeShiftAmt)) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, Intrinsic::ppc_altivec_vslw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // vsplti + srl self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, Intrinsic::ppc_altivec_vsrw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // vsplti + sra self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0, Intrinsic::ppc_altivec_vsraw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // vsplti + rol self. if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, Intrinsic::ppc_altivec_vrlw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res); } // t = vsplti c, result = vsldoi t, t, 1 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) { SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG); } // t = vsplti c, result = vsldoi t, t, 2 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) { SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG); } // t = vsplti c, result = vsldoi t, t, 3 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) { SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG); return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG); } } // Three instruction sequences. // Odd, in range [17,31]: (vsplti C)-(vsplti -16). if (SextVal >= 0 && SextVal <= 31) { SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG); SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); } // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16). if (SextVal >= -31 && SextVal <= 0) { SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG); SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG); LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS); } } return SDOperand(); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VMRGHW, OP_VMRGLW, OP_VSPLTISW0, OP_VSPLTISW1, OP_VSPLTISW2, OP_VSPLTISW3, OP_VSLDOI4, OP_VSLDOI8, OP_VSLDOI12 }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDOperand OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG); unsigned ShufIdxs[16]; switch (OpNum) { default: assert(0 && "Unknown i32 permute!"); case OP_VMRGHW: ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; break; case OP_VMRGLW: ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; break; case OP_VSPLTISW0: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+0; break; case OP_VSPLTISW1: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+4; break; case OP_VSPLTISW2: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+8; break; case OP_VSPLTISW3: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+12; break; case OP_VSLDOI4: return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG); case OP_VSLDOI8: return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG); case OP_VSLDOI12: return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG); } SDOperand Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32); return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS, DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); } /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this /// is a shuffle we can handle in a single instruction, return it. Otherwise, /// return the code it can be lowered into. Worst case, it can always be /// lowered into a vperm. static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { SDOperand V1 = Op.getOperand(0); SDOperand V2 = Op.getOperand(1); SDOperand PermMask = Op.getOperand(2); // Cases that are handled by instructions that take permute immediates // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be // selected by the instruction selector. if (V2.getOpcode() == ISD::UNDEF) { if (PPC::isSplatShuffleMask(PermMask.Val, 1) || PPC::isSplatShuffleMask(PermMask.Val, 2) || PPC::isSplatShuffleMask(PermMask.Val, 4) || PPC::isVPKUWUMShuffleMask(PermMask.Val, true) || PPC::isVPKUHUMShuffleMask(PermMask.Val, true) || PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 || PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) || PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) || PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) || PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) || PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) || PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) { return Op; } } // Altivec has a variety of "shuffle immediates" that take two vector inputs // and produce a fixed permutation. If any of these match, do not lower to // VPERM. if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) || PPC::isVPKUHUMShuffleMask(PermMask.Val, false) || PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 || PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) || PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) || PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) || PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) || PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) || PPC::isVMRGHShuffleMask(PermMask.Val, 4, false)) return Op; // Check to see if this is a shuffle of 4-byte values. If so, we can use our // perfect shuffle table to emit an optimal matching sequence. unsigned PFIndexes[4]; bool isFourElementShuffle = true; for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number unsigned EltNo = 8; // Start out undef. for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF) continue; // Undef, ignore it. unsigned ByteSource = cast(PermMask.getOperand(i*4+j))->getValue(); if ((ByteSource & 3) != j) { isFourElementShuffle = false; break; } if (EltNo == 8) { EltNo = ByteSource/4; } else if (EltNo != ByteSource/4) { isFourElementShuffle = false; break; } } PFIndexes[i] = EltNo; } // If this shuffle can be expressed as a shuffle of 4-byte elements, use the // perfect shuffle vector to determine if it is cost effective to do this as // discrete instructions, or whether we should use a vperm. if (isFourElementShuffle) { // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); // Determining when to avoid vperm is tricky. Many things affect the cost // of vperm, particularly how many times the perm mask needs to be computed. // For example, if the perm mask can be hoisted out of a loop or is already // used (perhaps because there are multiple permutes with the same shuffle // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of // the loop requires an extra register. // // As a compromise, we only emit discrete instructions if the shuffle can be // generated in 3 or fewer operations. When we have loop information // available, if this block is within a loop, we should avoid using vperm // for 3-operation perms and use a constant pool load instead. if (Cost < 3) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG); } // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant // vector that will get spilled to the constant pool. if (V2.getOpcode() == ISD::UNDEF) V2 = V1; // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except // that it is in input element units, not in bytes. Convert now. MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType()); unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8; SmallVector ResultMask; for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) { unsigned SrcElt; if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF) SrcElt = 0; else SrcElt = cast(PermMask.getOperand(i))->getValue(); for (unsigned j = 0; j != BytesPerElement; ++j) ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j, MVT::i8)); } SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, &ResultMask[0], ResultMask.size()); return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask); } /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an /// altivec comparison. If it is, return true and fill in Opc/isDot with /// information about the intrinsic. static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc, bool &isDot) { unsigned IntrinsicID = cast(Intrin.getOperand(0))->getValue(); CompareOpc = -1; isDot = false; switch (IntrinsicID) { default: return false; // Comparison predicates. case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break; case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break; // Normal Comparisons. case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break; case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break; } return true; } /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom /// lower, do it, otherwise return null. static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { // If this is a lowered altivec predicate compare, CompareOpc is set to the // opcode number of the comparison. int CompareOpc; bool isDot; if (!getAltivecCompareInfo(Op, CompareOpc, isDot)) return SDOperand(); // Don't custom lower most intrinsics. // If this is a non-dot comparison, make the VCMP node and we are done. if (!isDot) { SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(CompareOpc, MVT::i32)); return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp); } // Create the PPCISD altivec 'dot' comparison node. SDOperand Ops[] = { Op.getOperand(2), // LHS Op.getOperand(3), // RHS DAG.getConstant(CompareOpc, MVT::i32) }; std::vector VTs; VTs.push_back(Op.getOperand(2).getValueType()); VTs.push_back(MVT::Flag); SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); // Now that we have the comparison, emit a copy from the CR to a GPR. // This is flagged to the above dot comparison. SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32, DAG.getRegister(PPC::CR6, MVT::i32), CompNode.getValue(1)); // Unpack the result based on how the target uses it. unsigned BitNo; // Bit # of CR6. bool InvertBit; // Invert result? switch (cast(Op.getOperand(1))->getValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Return the value of the EQ bit of CR6. BitNo = 0; InvertBit = false; break; case 1: // Return the inverted value of the EQ bit of CR6. BitNo = 0; InvertBit = true; break; case 2: // Return the value of the LT bit of CR6. BitNo = 2; InvertBit = false; break; case 3: // Return the inverted value of the LT bit of CR6. BitNo = 2; InvertBit = true; break; } // Shift the bit into the low position. Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags, DAG.getConstant(8-(3-BitNo), MVT::i32)); // Isolate the bit. Flags = DAG.getNode(ISD::AND, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); // If we are supposed to, toggle the bit. if (InvertBit) Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags, DAG.getConstant(1, MVT::i32)); return Flags; } static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { // Create a stack slot that is 16-byte aligned. MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = FrameInfo->CreateStackObject(16, 16); MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); // Store the input value into Value#0 of the stack slot. SDOperand Store = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), FIdx, NULL, 0); // Load it out. return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0); } static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) { if (Op.getValueType() == MVT::v4i32) { SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG); SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt. SDOperand RHSSwap = // = vrlw RHS, 16 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG); // Shrinkify inputs to v8i16. LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS); RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS); RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap); // Low parts multiplied together, generating 32-bit results (we ignore the // top parts). SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, LHS, RHS, DAG, MVT::v4i32); SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, LHS, RHSSwap, Zero, DAG, MVT::v4i32); // Shift the high parts up 16 bits. HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG); return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd); } else if (Op.getValueType() == MVT::v8i16) { SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG); return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm, LHS, RHS, Zero, DAG); } else if (Op.getValueType() == MVT::v16i8) { SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1); // Multiply the even 8-bit parts, producing 16-bit sums. SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, LHS, RHS, DAG, MVT::v8i16); EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts); // Multiply the odd 8-bit parts, producing 16-bit sums. SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, LHS, RHS, DAG, MVT::v8i16); OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts); // Merge the results together. SDOperand Ops[16]; for (unsigned i = 0; i != 8; ++i) { Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8); Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8); } return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts, DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16)); } else { assert(0 && "Unknown mul to lower!"); abort(); } } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { switch (Op.getOpcode()) { default: assert(0 && "Wasn't expecting to be able to lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex); case ISD::CALL: return LowerCALL(Op, DAG); case ISD::RET: return LowerRET(Op, DAG); case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); // Lower 64-bit shifts. case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); // Vector-related lowering. case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); // Frame & Return address. Currently unimplemented case ISD::RETURNADDR: break; case ISD::FRAMEADDR: break; } return SDOperand(); } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// MachineBasicBlock * PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, MachineBasicBlock *BB) { const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); assert((MI->getOpcode() == PPC::SELECT_CC_I4 || MI->getOpcode() == PPC::SELECT_CC_I8 || MI->getOpcode() == PPC::SELECT_CC_F4 || MI->getOpcode() == PPC::SELECT_CC_F8 || MI->getOpcode() == PPC::SELECT_CC_VRRC) && "Unexpected instr type to insert"); // To "insert" a SELECT_CC instruction, we actually have to insert the diamond // control-flow pattern. The incoming instruction knows the destination vreg // to set, the condition code register to branch on, the true/false values to // select between, and a branch opcode to use. const BasicBlock *LLVM_BB = BB->getBasicBlock(); ilist::iterator It = BB; ++It; // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC copy1MBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); unsigned SelectPred = MI->getOperand(4).getImm(); BuildMI(BB, TII->get(PPC::BCC)) .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); MachineFunction *F = BB->getParent(); F->getBasicBlockList().insert(It, copy0MBB); F->getBasicBlockList().insert(It, sinkMBB); // Update machine-CFG edges by first adding all successors of the current // block to the new block which will contain the Phi node for the select. for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), e = BB->succ_end(); i != e; ++i) sinkMBB->addSuccessor(*i); // Next, remove all successors of the current block, and add the true // and fallthrough blocks as its successors. while(!BB->succ_empty()) BB->removeSuccessor(BB->succ_begin()); BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg()) .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); delete MI; // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { TargetMachine &TM = getTargetMachine(); SelectionDAG &DAG = DCI.DAG; switch (N->getOpcode()) { default: break; case PPCISD::SHL: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->getValue() == 0) // 0 << V -> 0. return N->getOperand(0); } break; case PPCISD::SRL: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->getValue() == 0) // 0 >>u V -> 0. return N->getOperand(0); } break; case PPCISD::SRA: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->getValue() == 0 || // 0 >>s V -> 0. C->isAllOnesValue()) // -1 >>s V -> -1. return N->getOperand(0); } break; case ISD::SINT_TO_FP: if (TM.getSubtarget().has64BitSupport()) { if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) { // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores. // We allow the src/dst to be either f32/f64, but the intermediate // type must be i64. if (N->getOperand(0).getValueType() == MVT::i64) { SDOperand Val = N->getOperand(0).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); DCI.AddToWorklist(Val.Val); } Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val); DCI.AddToWorklist(Val.Val); Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val); DCI.AddToWorklist(Val.Val); if (N->getValueType(0) == MVT::f32) { Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val); DCI.AddToWorklist(Val.Val); } return Val; } else if (N->getOperand(0).getValueType() == MVT::i32) { // If the intermediate type is i32, we can avoid the load/store here // too. } } } break; case ISD::STORE: // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)). if (TM.getSubtarget().hasSTFIWX() && N->getOperand(1).getOpcode() == ISD::FP_TO_SINT && N->getOperand(1).getValueType() == MVT::i32) { SDOperand Val = N->getOperand(1).getOperand(0); if (Val.getValueType() == MVT::f32) { Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val); DCI.AddToWorklist(Val.Val); } Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val); DCI.AddToWorklist(Val.Val); Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val, N->getOperand(2), N->getOperand(3)); DCI.AddToWorklist(Val.Val); return Val; } // Turn STORE (BSWAP) -> sthbrx/stwbrx. if (N->getOperand(1).getOpcode() == ISD::BSWAP && N->getOperand(1).Val->hasOneUse() && (N->getOperand(1).getValueType() == MVT::i32 || N->getOperand(1).getValueType() == MVT::i16)) { SDOperand BSwapOp = N->getOperand(1).getOperand(0); // Do an any-extend to 32-bits if this is a half-word input. if (BSwapOp.getValueType() == MVT::i16) BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp); return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp, N->getOperand(2), N->getOperand(3), DAG.getValueType(N->getOperand(1).getValueType())); } break; case ISD::BSWAP: // Turn BSWAP (LOAD) -> lhbrx/lwbrx. if (ISD::isNON_EXTLoad(N->getOperand(0).Val) && N->getOperand(0).hasOneUse() && (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) { SDOperand Load = N->getOperand(0); LoadSDNode *LD = cast(Load); // Create the byte-swapping load. std::vector VTs; VTs.push_back(MVT::i32); VTs.push_back(MVT::Other); SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset()); SDOperand Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr SV, // SrcValue DAG.getValueType(N->getValueType(0)) // VT }; SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4); // If this is an i16 load, insert the truncate. SDOperand ResVal = BSLoad; if (N->getValueType(0) == MVT::i16) ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad); // First, combine the bswap away. This makes the value produced by the // load dead. DCI.CombineTo(N, ResVal); // Next, combine the load away, we give it a bogus result value but a real // chain result. The result value is dead because the bswap is dead. DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1)); // Return N so it doesn't get rechecked! return SDOperand(N, 0); } break; case PPCISD::VCMP: { // If a VCMPo node already exists with exactly the same operands as this // node, use its result instead of this node (VCMPo computes both a CR6 and // a normal output). // if (!N->getOperand(0).hasOneUse() && !N->getOperand(1).hasOneUse() && !N->getOperand(2).hasOneUse()) { // Scan all of the users of the LHS, looking for VCMPo's that match. SDNode *VCMPoNode = 0; SDNode *LHSN = N->getOperand(0).Val; for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); UI != E; ++UI) if ((*UI)->getOpcode() == PPCISD::VCMPo && (*UI)->getOperand(1) == N->getOperand(1) && (*UI)->getOperand(2) == N->getOperand(2) && (*UI)->getOperand(0) == N->getOperand(0)) { VCMPoNode = *UI; break; } // If there is no VCMPo node, or if the flag value has a single use, don't // transform this. if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1)) break; // Look at the (necessarily single) use of the flag value. If it has a // chain, this transformation is more complex. Note that multiple things // could use the value result, which we should ignore. SDNode *FlagUser = 0; for (SDNode::use_iterator UI = VCMPoNode->use_begin(); FlagUser == 0; ++UI) { assert(UI != VCMPoNode->use_end() && "Didn't find user!"); SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) { FlagUser = User; break; } } } // If the user is a MFCR instruction, we know this is safe. Otherwise we // give up for right now. if (FlagUser->getOpcode() == PPCISD::MFCR) return SDOperand(VCMPoNode, 0); } break; } case ISD::BR_CC: { // If this is a branch on an altivec predicate comparison, lower this so // that we don't have to do a MFCR: instead, branch directly on CR6. This // lowering is done pre-legalize, because the legalizer lowers the predicate // compare down to code that is difficult to reassemble. ISD::CondCode CC = cast(N->getOperand(1))->get(); SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3); int CompareOpc; bool isDot; if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && isa(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) && getAltivecCompareInfo(LHS, CompareOpc, isDot)) { assert(isDot && "Can't compare against a vector result!"); // If this is a comparison against something other than 0/1, then we know // that the condition is never/always true. unsigned Val = cast(RHS)->getValue(); if (Val != 0 && Val != 1) { if (CC == ISD::SETEQ) // Cond never true, remove branch. return N->getOperand(0); // Always !=, turn it into an unconditional branch. return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), N->getOperand(4)); } bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); // Create the PPCISD altivec 'dot' comparison node. std::vector VTs; SDOperand Ops[] = { LHS.getOperand(2), // LHS of compare LHS.getOperand(3), // RHS of compare DAG.getConstant(CompareOpc, MVT::i32) }; VTs.push_back(LHS.getOperand(2).getValueType()); VTs.push_back(MVT::Flag); SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3); // Unpack the result based on how the target uses it. PPC::Predicate CompOpc; switch (cast(LHS.getOperand(1))->getValue()) { default: // Can't happen, don't crash on invalid number though. case 0: // Branch on the value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; break; case 1: // Branch on the inverted value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; break; case 2: // Branch on the value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; break; case 3: // Branch on the inverted value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; break; } return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0), DAG.getConstant(CompOpc, MVT::i32), DAG.getRegister(PPC::CR6, MVT::i32), N->getOperand(4), CompNode.getValue(1)); } break; } } return SDOperand(); } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) const { KnownZero = 0; KnownOne = 0; switch (Op.getOpcode()) { default: break; case PPCISD::LBRX: { // lhbrx is known to have the top bits cleared out. if (cast(Op.getOperand(3))->getVT() == MVT::i16) KnownZero = 0xFFFF0000; break; } case ISD::INTRINSIC_WO_CHAIN: { switch (cast(Op.getOperand(0))->getValue()) { default: break; case Intrinsic::ppc_altivec_vcmpbfp_p: case Intrinsic::ppc_altivec_vcmpeqfp_p: case Intrinsic::ppc_altivec_vcmpequb_p: case Intrinsic::ppc_altivec_vcmpequh_p: case Intrinsic::ppc_altivec_vcmpequw_p: case Intrinsic::ppc_altivec_vcmpgefp_p: case Intrinsic::ppc_altivec_vcmpgtfp_p: case Intrinsic::ppc_altivec_vcmpgtsb_p: case Intrinsic::ppc_altivec_vcmpgtsh_p: case Intrinsic::ppc_altivec_vcmpgtsw_p: case Intrinsic::ppc_altivec_vcmpgtub_p: case Intrinsic::ppc_altivec_vcmpgtuh_p: case Intrinsic::ppc_altivec_vcmpgtuw_p: KnownZero = ~1U; // All bits but the low one are known to be zero. break; } } } } /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. PPCTargetLowering::ConstraintType PPCTargetLowering::getConstraintType(char ConstraintLetter) const { switch (ConstraintLetter) { default: break; case 'b': case 'r': case 'f': case 'v': case 'y': return C_RegisterClass; } return TargetLowering::getConstraintType(ConstraintLetter); } std::pair PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, MVT::ValueType VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'b': // R1-R31 case 'r': // R0-R31 if (VT == MVT::i64 && PPCSubTarget.isPPC64()) return std::make_pair(0U, PPC::G8RCRegisterClass); return std::make_pair(0U, PPC::GPRCRegisterClass); case 'f': if (VT == MVT::f32) return std::make_pair(0U, PPC::F4RCRegisterClass); else if (VT == MVT::f64) return std::make_pair(0U, PPC::F8RCRegisterClass); break; case 'v': return std::make_pair(0U, PPC::VRRCRegisterClass); case 'y': // crrc return std::make_pair(0U, PPC::CRRCRegisterClass); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } // isOperandValidForConstraint SDOperand PPCTargetLowering:: isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) { switch (Letter) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': { if (!isa(Op)) return SDOperand(0,0);// Must be an immediate. unsigned Value = cast(Op)->getValue(); switch (Letter) { default: assert(0 && "Unknown constraint letter!"); case 'I': // "I" is a signed 16-bit constant. if ((short)Value == (int)Value) return Op; break; case 'J': // "J" is a constant with only the high-order 16 bits nonzero. case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. if ((short)Value == 0) return Op; break; case 'K': // "K" is a constant with only the low-order 16 bits nonzero. if ((Value >> 16) == 0) return Op; break; case 'M': // "M" is a constant that is greater than 31. if (Value > 31) return Op; break; case 'N': // "N" is a positive constant that is an exact power of two. if ((int)Value > 0 && isPowerOf2_32(Value)) return Op; break; case 'O': // "O" is the constant zero. if (Value == 0) return Op; break; case 'P': // "P" is a constant whose negation is a signed 16-bit constant. if ((short)-Value == (int)-Value) return Op; break; } break; } } // Handle standard constraint letters. return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG); } /// isLegalAddressImmediate - Return true if the integer value can be used /// as the offset of the target addressing mode. bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const { // PPC allows a sign-extended 16-bit immediate field. return (V > -(1 << 16) && V < (1 << 16)-1); } bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const { return TargetLowering::isLegalAddressImmediate(GV); }