//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SDNode class and derived classes, which are used to // represent the nodes and operations present in a SelectionDAG. These nodes // and operations are machine code level operations, with some similarities to // the GCC RTL representation. // // Clients should include the SelectionDAG.h file instead of this file directly. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H #define LLVM_CODEGEN_SELECTIONDAGNODES_H #include "llvm/Value.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/iterator" #include "llvm/ADT/APFloat.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Support/DataTypes.h" #include namespace llvm { class SelectionDAG; class GlobalValue; class MachineBasicBlock; class MachineConstantPoolValue; class SDNode; template struct DenseMapKeyInfo; template struct simplify_type; template struct ilist_traits; template class iplist; template class ilist_iterator; /// SDVTList - This represents a list of ValueType's that has been intern'd by /// a SelectionDAG. Instances of this simple value class are returned by /// SelectionDAG::getVTList(...). /// struct SDVTList { const MVT::ValueType *VTs; unsigned short NumVTs; }; /// ISD namespace - This namespace contains an enum which represents all of the /// SelectionDAG node types and value types. /// namespace ISD { namespace ParamFlags { enum Flags { NoFlagSet = 0, ZExt = 1<<0, ///< Parameter should be zero extended ZExtOffs = 0, SExt = 1<<1, ///< Parameter should be sign extended SExtOffs = 1, InReg = 1<<2, ///< Parameter should be passed in register InRegOffs = 2, StructReturn = 1<<3, ///< Hidden struct-return pointer StructReturnOffs = 3, ByVal = 1<<4, ///< Struct passed by value ByValOffs = 4, Nest = 1<<5, ///< Parameter is nested function static chain NestOffs = 5, ByValAlign = 0xF << 6, //< The alignment of the struct ByValAlignOffs = 6, ByValSize = 0x1ffff << 10, //< The size of the struct ByValSizeOffs = 10, OrigAlignment = 0x1F<<27, OrigAlignmentOffs = 27 }; } //===--------------------------------------------------------------------===// /// ISD::NodeType enum - This enum defines all of the operators valid in a /// SelectionDAG. /// enum NodeType { // DELETED_NODE - This is an illegal flag value that is used to catch // errors. This opcode is not a legal opcode for any node. DELETED_NODE, // EntryToken - This is the marker used to indicate the start of the region. EntryToken, // Token factor - This node takes multiple tokens as input and produces a // single token result. This is used to represent the fact that the operand // operators are independent of each other. TokenFactor, // AssertSext, AssertZext - These nodes record if a register contains a // value that has already been zero or sign extended from a narrower type. // These nodes take two operands. The first is the node that has already // been extended, and the second is a value type node indicating the width // of the extension AssertSext, AssertZext, // Various leaf nodes. STRING, BasicBlock, VALUETYPE, CONDCODE, Register, Constant, ConstantFP, GlobalAddress, GlobalTLSAddress, FrameIndex, JumpTable, ConstantPool, ExternalSymbol, // The address of the GOT GLOBAL_OFFSET_TABLE, // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and // llvm.returnaddress on the DAG. These nodes take one operand, the index // of the frame or return address to return. An index of zero corresponds // to the current function's frame or return address, an index of one to the // parent's frame or return address, and so on. FRAMEADDR, RETURNADDR, // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to // first (possible) on-stack argument. This is needed for correct stack // adjustment during unwind. FRAME_TO_ARGS_OFFSET, // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the // address of the exception block on entry to an landing pad block. EXCEPTIONADDR, // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents // the selection index of the exception thrown. EHSELECTION, // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents // 'eh_return' gcc dwarf builtin, which is used to return from // exception. The general meaning is: adjust stack by OFFSET and pass // execution to HANDLER. Many platform-related details also :) EH_RETURN, // TargetConstant* - Like Constant*, but the DAG does not do any folding or // simplification of the constant. TargetConstant, TargetConstantFP, // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or // anything else with this node, and this is valid in the target-specific // dag, turning into a GlobalAddress operand. TargetGlobalAddress, TargetGlobalTLSAddress, TargetFrameIndex, TargetJumpTable, TargetConstantPool, TargetExternalSymbol, /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) /// This node represents a target intrinsic function with no side effects. /// The first operand is the ID number of the intrinsic from the /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The /// node has returns the result of the intrinsic. INTRINSIC_WO_CHAIN, /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) /// This node represents a target intrinsic function with side effects that /// returns a result. The first operand is a chain pointer. The second is /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The /// operands to the intrinsic follow. The node has two results, the result /// of the intrinsic and an output chain. INTRINSIC_W_CHAIN, /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) /// This node represents a target intrinsic function with side effects that /// does not return a result. The first operand is a chain pointer. The /// second is the ID number of the intrinsic from the llvm::Intrinsic /// namespace. The operands to the intrinsic follow. INTRINSIC_VOID, // CopyToReg - This node has three operands: a chain, a register number to // set to this value, and a value. CopyToReg, // CopyFromReg - This node indicates that the input value is a virtual or // physical register that is defined outside of the scope of this // SelectionDAG. The register is available from the RegSDNode object. CopyFromReg, // UNDEF - An undefined node UNDEF, /// FORMAL_ARGUMENTS(CHAIN, CC#, ISVARARG, FLAG0, ..., FLAGn) - This node /// represents the formal arguments for a function. CC# is a Constant value /// indicating the calling convention of the function, and ISVARARG is a /// flag that indicates whether the function is varargs or not. This node /// has one result value for each incoming argument, plus one for the output /// chain. It must be custom legalized. See description of CALL node for /// FLAG argument contents explanation. /// FORMAL_ARGUMENTS, /// RV1, RV2...RVn, CHAIN = CALL(CHAIN, CC#, ISVARARG, ISTAILCALL, CALLEE, /// ARG0, FLAG0, ARG1, FLAG1, ... ARGn, FLAGn) /// This node represents a fully general function call, before the legalizer /// runs. This has one result value for each argument / flag pair, plus /// a chain result. It must be custom legalized. Flag argument indicates /// misc. argument attributes. Currently: /// Bit 0 - signness /// Bit 1 - 'inreg' attribute /// Bit 2 - 'sret' attribute /// Bit 4 - 'byval' attribute /// Bit 5 - 'nest' attribute /// Bit 6-9 - alignment of byval structures /// Bit 10-26 - size of byval structures /// Bits 31:27 - argument ABI alignment in the first argument piece and /// alignment '1' in other argument pieces. CALL, // EXTRACT_ELEMENT - This is used to get the first or second (determined by // a Constant, which is required to be operand #1), element of the aggregate // value specified as operand #0. This is only for use before legalization, // for values that will be broken into multiple registers. EXTRACT_ELEMENT, // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given // two values of the same integer value type, this produces a value twice as // big. Like EXTRACT_ELEMENT, this can only be used before legalization. BUILD_PAIR, // MERGE_VALUES - This node takes multiple discrete operands and returns // them all as its individual results. This nodes has exactly the same // number of inputs and outputs, and is only valid before legalization. // This node is useful for some pieces of the code generator that want to // think about a single node with multiple results, not multiple nodes. MERGE_VALUES, // Simple integer binary arithmetic operators. ADD, SUB, MUL, SDIV, UDIV, SREM, UREM, // CARRY_FALSE - This node is used when folding other nodes, // like ADDC/SUBC, which indicate the carry result is always false. CARRY_FALSE, // Carry-setting nodes for multiple precision addition and subtraction. // These nodes take two operands of the same value type, and produce two // results. The first result is the normal add or sub result, the second // result is the carry flag result. ADDC, SUBC, // Carry-using nodes for multiple precision addition and subtraction. These // nodes take three operands: The first two are the normal lhs and rhs to // the add or sub, and the third is the input carry flag. These nodes // produce two results; the normal result of the add or sub, and the output // carry flag. These nodes both read and write a carry flag to allow them // to them to be chained together for add and sub of arbitrarily large // values. ADDE, SUBE, // Simple binary floating point operators. FADD, FSUB, FMUL, FDIV, FREM, // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This // DAG node does not require that X and Y have the same type, just that they // are both floating point. X and the result must have the same type. // FCOPYSIGN(f32, f64) is allowed. FCOPYSIGN, /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector /// with the specified, possibly variable, elements. The number of elements /// is required to be a power of two. BUILD_VECTOR, /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element /// at IDX replaced with VAL. INSERT_VECTOR_ELT, /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR /// identified by the (potentially variable) element number IDX. EXTRACT_VECTOR_ELT, /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of /// vector type with the same length and element type, this produces a /// concatenated vector result value, with length equal to the sum of the /// lengths of the input vectors. CONCAT_VECTORS, /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an /// vector value) starting with the (potentially variable) element number /// IDX, which must be a multiple of the result vector length. EXTRACT_SUBVECTOR, /// VECTOR_SHUFFLE(VEC1, VEC2, SHUFFLEVEC) - Returns a vector, of the same /// type as VEC1/VEC2. SHUFFLEVEC is a BUILD_VECTOR of constant int values /// (regardless of whether its datatype is legal or not) that indicate /// which value each result element will get. The elements of VEC1/VEC2 are /// enumerated in order. This is quite similar to the Altivec 'vperm' /// instruction, except that the indices must be constants and are in terms /// of the element size of VEC1/VEC2, not in terms of bytes. VECTOR_SHUFFLE, /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a /// scalar value into the low element of the resultant vector type. The top /// elements of the vector are undefined. SCALAR_TO_VECTOR, // EXTRACT_SUBREG - This node is used to extract a sub-register value. // This node takes a superreg and a constant sub-register index as operands. EXTRACT_SUBREG, // INSERT_SUBREG - This node is used to insert a sub-register value. // This node takes a superreg, a subreg value, and a constant sub-register // index as operands. INSERT_SUBREG, // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing // an unsigned/signed value of type i[2*n], then return the top part. MULHU, MULHS, // Bitwise operators - logical and, logical or, logical xor, shift left, // shift right algebraic (shift in sign bits), shift right logical (shift in // zeroes), rotate left, rotate right, and byteswap. AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP, // Counting operators CTTZ, CTLZ, CTPOP, // Select(COND, TRUEVAL, FALSEVAL) SELECT, // Select with condition operator - This selects between a true value and // a false value (ops #2 and #3) based on the boolean result of comparing // the lhs and rhs (ops #0 and #1) of a conditional expression with the // condition code in op #4, a CondCodeSDNode. SELECT_CC, // SetCC operator - This evaluates to a boolean (i1) true value if the // condition is true. The operands to this are the left and right operands // to compare (ops #0, and #1) and the condition code to compare them with // (op #2) as a CondCodeSDNode. SETCC, // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded // integer shift operations, just like ADD/SUB_PARTS. The operation // ordering is: // [Lo,Hi] = op [LoLHS,HiLHS], Amt SHL_PARTS, SRA_PARTS, SRL_PARTS, // Conversion operators. These are all single input single output // operations. For all of these, the result type must be strictly // wider or narrower (depending on the operation) than the source // type. // SIGN_EXTEND - Used for integer types, replicating the sign bit // into new bits. SIGN_EXTEND, // ZERO_EXTEND - Used for integer types, zeroing the new bits. ZERO_EXTEND, // ANY_EXTEND - Used for integer types. The high bits are undefined. ANY_EXTEND, // TRUNCATE - Completely drop the high bits. TRUNCATE, // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign // depends on the first letter) to floating point. SINT_TO_FP, UINT_TO_FP, // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to // sign extend a small value in a large integer register (e.g. sign // extending the low 8 bits of a 32-bit register to fill the top 24 bits // with the 7th bit). The size of the smaller type is indicated by the 1th // operand, a ValueType node. SIGN_EXTEND_INREG, // FP_TO_[US]INT - Convert a floating point value to a signed or unsigned // integer. FP_TO_SINT, FP_TO_UINT, // FP_ROUND - Perform a rounding operation from the current // precision down to the specified precision (currently always 64->32). FP_ROUND, // FP_ROUND_INREG - This operator takes a floating point register, and // rounds it to a floating point value. It then promotes it and returns it // in a register of the same size. This operation effectively just discards // excess precision. The type to round down to is specified by the 1th // operation, a VTSDNode (currently always 64->32->64). FP_ROUND_INREG, // FP_EXTEND - Extend a smaller FP type into a larger FP type. FP_EXTEND, // BIT_CONVERT - Theis operator converts between integer and FP values, as // if one was stored to memory as integer and the other was loaded from the // same address (or equivalently for vector format conversions, etc). The // source and result are required to have the same bit size (e.g. // f32 <-> i32). This can also be used for int-to-int or fp-to-fp // conversions, but that is a noop, deleted by getNode(). BIT_CONVERT, // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI - Perform unary floating point // negation, absolute value, square root, sine and cosine, and powi // operations. FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, // LOAD and STORE have token chains as their first operand, then the same // operands as an LLVM load/store instruction, then an offset node that // is added / subtracted from the base pointer to form the address (for // indexed memory ops). LOAD, STORE, // TRUNCSTORE - This operators truncates (for integer) or rounds (for FP) a // value and stores it to memory in one operation. This can be used for // either integer or floating point operands. The first four operands of // this are the same as a standard store. The fifth is the ValueType to // store it as (which will be smaller than the source value). TRUNCSTORE, // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned // to a specified boundary. This node always has two return values: a new // stack pointer value and a chain. The first operand is the token chain, // the second is the number of bytes to allocate, and the third is the // alignment boundary. The size is guaranteed to be a multiple of the stack // alignment, and the alignment is guaranteed to be bigger than the stack // alignment (if required) or 0 to get standard stack alignment. DYNAMIC_STACKALLOC, // Control flow instructions. These all have token chains. // BR - Unconditional branch. The first operand is the chain // operand, the second is the MBB to branch to. BR, // BRIND - Indirect branch. The first operand is the chain, the second // is the value to branch to, which must be of the same type as the target's // pointer type. BRIND, // BR_JT - Jumptable branch. The first operand is the chain, the second // is the jumptable index, the last one is the jumptable entry index. BR_JT, // BRCOND - Conditional branch. The first operand is the chain, // the second is the condition, the third is the block to branch // to if the condition is true. BRCOND, // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in // that the condition is represented as condition code, and two nodes to // compare, rather than as a combined SetCC node. The operands in order are // chain, cc, lhs, rhs, block to branch to if condition is true. BR_CC, // RET - Return from function. The first operand is the chain, // and any subsequent operands are pairs of return value and return value // signness for the function. This operation can have variable number of // operands. RET, // INLINEASM - Represents an inline asm block. This node always has two // return values: a chain and a flag result. The inputs are as follows: // Operand #0 : Input chain. // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string. // Operand #2n+2: A RegisterNode. // Operand #2n+3: A TargetConstant, indicating if the reg is a use/def // Operand #last: Optional, an incoming flag. INLINEASM, // LABEL - Represents a label in mid basic block used to track // locations needed for debug and exception handling tables. This node // returns a chain. // Operand #0 : input chain. // Operand #1 : module unique number use to identify the label. LABEL, // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a // value, the same type as the pointer type for the system, and an output // chain. STACKSAVE, // STACKRESTORE has two operands, an input chain and a pointer to restore to // it returns an output chain. STACKRESTORE, // MEMSET/MEMCPY/MEMMOVE - The first operand is the chain, and the rest // correspond to the operands of the LLVM intrinsic functions. The only // result is a token chain. The alignment argument is guaranteed to be a // Constant node. MEMSET, MEMMOVE, MEMCPY, // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of // a call sequence, and carry arbitrary information that target might want // to know. The first operand is a chain, the rest are specified by the // target and not touched by the DAG optimizers. CALLSEQ_START, // Beginning of a call sequence CALLSEQ_END, // End of a call sequence // VAARG - VAARG has three operands: an input chain, a pointer, and a // SRCVALUE. It returns a pair of values: the vaarg value and a new chain. VAARG, // VACOPY - VACOPY has five operands: an input chain, a destination pointer, // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the // source. VACOPY, // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a // pointer, and a SRCVALUE. VAEND, VASTART, // SRCVALUE - This corresponds to a Value*, and is used to associate memory // locations with their value. This allows one use alias analysis // information in the backend. SRCVALUE, // PCMARKER - This corresponds to the pcmarker intrinsic. PCMARKER, // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic. // The only operand is a chain and a value and a chain are produced. The // value is the contents of the architecture specific cycle counter like // register (or other high accuracy low latency clock source) READCYCLECOUNTER, // HANDLENODE node - Used as a handle for various purposes. HANDLENODE, // LOCATION - This node is used to represent a source location for debug // info. It takes token chain as input, then a line number, then a column // number, then a filename, then a working dir. It produces a token chain // as output. LOCATION, // DEBUG_LOC - This node is used to represent source line information // embedded in the code. It takes a token chain as input, then a line // number, then a column then a file id (provided by MachineModuleInfo.) It // produces a token chain as output. DEBUG_LOC, // TRAMPOLINE - This corresponds to the init_trampoline intrinsic. // It takes as input a token chain, the pointer to the trampoline, // the pointer to the nested function, the pointer to pass for the // 'nest' parameter, a SRCVALUE for the trampoline and another for // the nested function (allowing targets to access the original // Function*). It produces the result of the intrinsic and a token // chain as output. TRAMPOLINE, // BUILTIN_OP_END - This must be the last enum value in this list. BUILTIN_OP_END }; /// Node predicates /// isBuildVectorAllOnes - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are ~0 or undef. bool isBuildVectorAllOnes(const SDNode *N); /// isBuildVectorAllZeros - Return true if the specified node is a /// BUILD_VECTOR where all of the elements are 0 or undef. bool isBuildVectorAllZeros(const SDNode *N); //===--------------------------------------------------------------------===// /// MemIndexedMode enum - This enum defines the load / store indexed /// addressing modes. /// /// UNINDEXED "Normal" load / store. The effective address is already /// computed and is available in the base pointer. The offset /// operand is always undefined. In addition to producing a /// chain, an unindexed load produces one value (result of the /// load); an unindexed store does not produces a value. /// /// PRE_INC Similar to the unindexed mode where the effective address is /// PRE_DEC the value of the base pointer add / subtract the offset. /// It considers the computation as being folded into the load / /// store operation (i.e. the load / store does the address /// computation as well as performing the memory transaction). /// The base operand is always undefined. In addition to /// producing a chain, pre-indexed load produces two values /// (result of the load and the result of the address /// computation); a pre-indexed store produces one value (result /// of the address computation). /// /// POST_INC The effective address is the value of the base pointer. The /// POST_DEC value of the offset operand is then added to / subtracted /// from the base after memory transaction. In addition to /// producing a chain, post-indexed load produces two values /// (the result of the load and the result of the base +/- offset /// computation); a post-indexed store produces one value (the /// the result of the base +/- offset computation). /// enum MemIndexedMode { UNINDEXED = 0, PRE_INC, PRE_DEC, POST_INC, POST_DEC, LAST_INDEXED_MODE }; //===--------------------------------------------------------------------===// /// LoadExtType enum - This enum defines the three variants of LOADEXT /// (load with extension). /// /// SEXTLOAD loads the integer operand and sign extends it to a larger /// integer result type. /// ZEXTLOAD loads the integer operand and zero extends it to a larger /// integer result type. /// EXTLOAD is used for three things: floating point extending loads, /// integer extending loads [the top bits are undefined], and vector /// extending loads [load into low elt]. /// enum LoadExtType { NON_EXTLOAD = 0, EXTLOAD, SEXTLOAD, ZEXTLOAD, LAST_LOADX_TYPE }; //===--------------------------------------------------------------------===// /// ISD::CondCode enum - These are ordered carefully to make the bitfields /// below work out, when considering SETFALSE (something that never exists /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal /// to. If the "N" column is 1, the result of the comparison is undefined if /// the input is a NAN. /// /// All of these (except for the 'always folded ops') should be handled for /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT, /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used. /// /// Note that these are laid out in a specific order to allow bit-twiddling /// to transform conditions. enum CondCode { // Opcode N U L G E Intuitive operation SETFALSE, // 0 0 0 0 Always false (always folded) SETOEQ, // 0 0 0 1 True if ordered and equal SETOGT, // 0 0 1 0 True if ordered and greater than SETOGE, // 0 0 1 1 True if ordered and greater than or equal SETOLT, // 0 1 0 0 True if ordered and less than SETOLE, // 0 1 0 1 True if ordered and less than or equal SETONE, // 0 1 1 0 True if ordered and operands are unequal SETO, // 0 1 1 1 True if ordered (no nans) SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y) SETUEQ, // 1 0 0 1 True if unordered or equal SETUGT, // 1 0 1 0 True if unordered or greater than SETUGE, // 1 0 1 1 True if unordered, greater than, or equal SETULT, // 1 1 0 0 True if unordered or less than SETULE, // 1 1 0 1 True if unordered, less than, or equal SETUNE, // 1 1 1 0 True if unordered or not equal SETTRUE, // 1 1 1 1 Always true (always folded) // Don't care operations: undefined if the input is a nan. SETFALSE2, // 1 X 0 0 0 Always false (always folded) SETEQ, // 1 X 0 0 1 True if equal SETGT, // 1 X 0 1 0 True if greater than SETGE, // 1 X 0 1 1 True if greater than or equal SETLT, // 1 X 1 0 0 True if less than SETLE, // 1 X 1 0 1 True if less than or equal SETNE, // 1 X 1 1 0 True if not equal SETTRUE2, // 1 X 1 1 1 Always true (always folded) SETCC_INVALID // Marker value. }; /// isSignedIntSetCC - Return true if this is a setcc instruction that /// performs a signed comparison when used with integer operands. inline bool isSignedIntSetCC(CondCode Code) { return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE; } /// isUnsignedIntSetCC - Return true if this is a setcc instruction that /// performs an unsigned comparison when used with integer operands. inline bool isUnsignedIntSetCC(CondCode Code) { return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE; } /// isTrueWhenEqual - Return true if the specified condition returns true if /// the two operands to the condition are equal. Note that if one of the two /// operands is a NaN, this value is meaningless. inline bool isTrueWhenEqual(CondCode Cond) { return ((int)Cond & 1) != 0; } /// getUnorderedFlavor - This function returns 0 if the condition is always /// false if an operand is a NaN, 1 if the condition is always true if the /// operand is a NaN, and 2 if the condition is undefined if the operand is a /// NaN. inline unsigned getUnorderedFlavor(CondCode Cond) { return ((int)Cond >> 3) & 3; } /// getSetCCInverse - Return the operation corresponding to !(X op Y), where /// 'op' is a valid SetCC operation. CondCode getSetCCInverse(CondCode Operation, bool isInteger); /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) /// when given the operation for (X op Y). CondCode getSetCCSwappedOperands(CondCode Operation); /// getSetCCOrOperation - Return the result of a logical OR between different /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger); /// getSetCCAndOperation - Return the result of a logical AND between /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This /// function returns SETCC_INVALID if it is not possible to represent the /// resultant comparison. CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger); } // end llvm::ISD namespace //===----------------------------------------------------------------------===// /// SDOperand - Unlike LLVM values, Selection DAG nodes may return multiple /// values as the result of a computation. Many nodes return multiple values, /// from loads (which define a token and a return value) to ADDC (which returns /// a result and a carry value), to calls (which may return an arbitrary number /// of values). /// /// As such, each use of a SelectionDAG computation must indicate the node that /// computes it as well as which return value to use from that node. This pair /// of information is represented with the SDOperand value type. /// class SDOperand { public: SDNode *Val; // The node defining the value we are using. unsigned ResNo; // Which return value of the node we are using. SDOperand() : Val(0), ResNo(0) {} SDOperand(SDNode *val, unsigned resno) : Val(val), ResNo(resno) {} bool operator==(const SDOperand &O) const { return Val == O.Val && ResNo == O.ResNo; } bool operator!=(const SDOperand &O) const { return !operator==(O); } bool operator<(const SDOperand &O) const { return Val < O.Val || (Val == O.Val && ResNo < O.ResNo); } SDOperand getValue(unsigned R) const { return SDOperand(Val, R); } // isOperand - Return true if this node is an operand of N. bool isOperand(SDNode *N) const; /// getValueType - Return the ValueType of the referenced return value. /// inline MVT::ValueType getValueType() const; // Forwarding methods - These forward to the corresponding methods in SDNode. inline unsigned getOpcode() const; inline unsigned getNumOperands() const; inline const SDOperand &getOperand(unsigned i) const; inline uint64_t getConstantOperandVal(unsigned i) const; inline bool isTargetOpcode() const; inline unsigned getTargetOpcode() const; /// hasOneUse - Return true if there is exactly one operation using this /// result value of the defining operator. inline bool hasOneUse() const; }; template<> struct DenseMapKeyInfo { static inline SDOperand getEmptyKey() { return SDOperand((SDNode*)-1, -1U); } static inline SDOperand getTombstoneKey() { return SDOperand((SDNode*)-1, 0);} static unsigned getHashValue(const SDOperand &Val) { return (unsigned)((uintptr_t)Val.Val >> 4) ^ (unsigned)((uintptr_t)Val.Val >> 9) + Val.ResNo; } static bool isPod() { return true; } }; /// simplify_type specializations - Allow casting operators to work directly on /// SDOperands as if they were SDNode*'s. template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDOperand &Val) { return static_cast(Val.Val); } }; template<> struct simplify_type { typedef SDNode* SimpleType; static SimpleType getSimplifiedValue(const SDOperand &Val) { return static_cast(Val.Val); } }; /// SDNode - Represents one node in the SelectionDAG. /// class SDNode : public FoldingSetNode { /// NodeType - The operation that this node performs. /// unsigned short NodeType; /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true, /// then they will be delete[]'d when the node is destroyed. bool OperandsNeedDelete : 1; /// NodeId - Unique id per SDNode in the DAG. int NodeId; /// OperandList - The values that are used by this operation. /// SDOperand *OperandList; /// ValueList - The types of the values this node defines. SDNode's may /// define multiple values simultaneously. const MVT::ValueType *ValueList; /// NumOperands/NumValues - The number of entries in the Operand/Value list. unsigned short NumOperands, NumValues; /// Prev/Next pointers - These pointers form the linked list of of the /// AllNodes list in the current DAG. SDNode *Prev, *Next; friend struct ilist_traits; /// Uses - These are all of the SDNode's that use a value produced by this /// node. SmallVector Uses; // Out-of-line virtual method to give class a home. virtual void ANCHOR(); public: virtual ~SDNode() { assert(NumOperands == 0 && "Operand list not cleared before deletion"); NodeType = ISD::DELETED_NODE; } //===--------------------------------------------------------------------===// // Accessors // unsigned getOpcode() const { return NodeType; } bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } unsigned getTargetOpcode() const { assert(isTargetOpcode() && "Not a target opcode!"); return NodeType - ISD::BUILTIN_OP_END; } size_t use_size() const { return Uses.size(); } bool use_empty() const { return Uses.empty(); } bool hasOneUse() const { return Uses.size() == 1; } /// getNodeId - Return the unique node id. /// int getNodeId() const { return NodeId; } typedef SmallVector::const_iterator use_iterator; use_iterator use_begin() const { return Uses.begin(); } use_iterator use_end() const { return Uses.end(); } /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the /// indicated value. This method ignores uses of other values defined by this /// operation. bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; /// hasAnyUseOfValue - Return true if there are any use of the indicated /// value. This method ignores uses of other values defined by this operation. bool hasAnyUseOfValue(unsigned Value) const; /// isOnlyUse - Return true if this node is the only use of N. /// bool isOnlyUse(SDNode *N) const; /// isOperand - Return true if this node is an operand of N. /// bool isOperand(SDNode *N) const; /// isPredecessor - Return true if this node is a predecessor of N. This node /// is either an operand of N or it can be reached by recursively traversing /// up the operands. /// NOTE: this is an expensive method. Use it carefully. bool isPredecessor(SDNode *N) const; /// getNumOperands - Return the number of values used by this operation. /// unsigned getNumOperands() const { return NumOperands; } /// getConstantOperandVal - Helper method returns the integer value of a /// ConstantSDNode operand. uint64_t getConstantOperandVal(unsigned Num) const; const SDOperand &getOperand(unsigned Num) const { assert(Num < NumOperands && "Invalid child # of SDNode!"); return OperandList[Num]; } typedef const SDOperand* op_iterator; op_iterator op_begin() const { return OperandList; } op_iterator op_end() const { return OperandList+NumOperands; } SDVTList getVTList() const { SDVTList X = { ValueList, NumValues }; return X; }; /// getNumValues - Return the number of values defined/returned by this /// operator. /// unsigned getNumValues() const { return NumValues; } /// getValueType - Return the type of a specified result. /// MVT::ValueType getValueType(unsigned ResNo) const { assert(ResNo < NumValues && "Illegal result number!"); return ValueList[ResNo]; } typedef const MVT::ValueType* value_iterator; value_iterator value_begin() const { return ValueList; } value_iterator value_end() const { return ValueList+NumValues; } /// getOperationName - Return the opcode of this operation for printing. /// std::string getOperationName(const SelectionDAG *G = 0) const; static const char* getIndexedModeName(ISD::MemIndexedMode AM); void dump() const; void dump(const SelectionDAG *G) const; static bool classof(const SDNode *) { return true; } /// Profile - Gather unique data for the node. /// void Profile(FoldingSetNodeID &ID); protected: friend class SelectionDAG; /// getValueTypeList - Return a pointer to the specified value type. /// static MVT::ValueType *getValueTypeList(MVT::ValueType VT); static SDVTList getSDVTList(MVT::ValueType VT) { SDVTList Ret = { getValueTypeList(VT), 1 }; return Ret; } SDNode(unsigned Opc, SDVTList VTs, const SDOperand *Ops, unsigned NumOps) : NodeType(Opc), NodeId(-1) { OperandsNeedDelete = true; NumOperands = NumOps; OperandList = NumOps ? new SDOperand[NumOperands] : 0; for (unsigned i = 0; i != NumOps; ++i) { OperandList[i] = Ops[i]; Ops[i].Val->Uses.push_back(this); } ValueList = VTs.VTs; NumValues = VTs.NumVTs; Prev = 0; Next = 0; } SDNode(unsigned Opc, SDVTList VTs) : NodeType(Opc), NodeId(-1) { OperandsNeedDelete = false; // Operands set with InitOperands. NumOperands = 0; OperandList = 0; ValueList = VTs.VTs; NumValues = VTs.NumVTs; Prev = 0; Next = 0; } /// InitOperands - Initialize the operands list of this node with the /// specified values, which are part of the node (thus they don't need to be /// copied in or allocated). void InitOperands(SDOperand *Ops, unsigned NumOps) { assert(OperandList == 0 && "Operands already set!"); NumOperands = NumOps; OperandList = Ops; for (unsigned i = 0; i != NumOps; ++i) Ops[i].Val->Uses.push_back(this); } /// MorphNodeTo - This frees the operands of the current node, resets the /// opcode, types, and operands to the specified value. This should only be /// used by the SelectionDAG class. void MorphNodeTo(unsigned Opc, SDVTList L, const SDOperand *Ops, unsigned NumOps); void addUser(SDNode *User) { Uses.push_back(User); } void removeUser(SDNode *User) { // Remove this user from the operand's use list. for (unsigned i = Uses.size(); ; --i) { assert(i != 0 && "Didn't find user!"); if (Uses[i-1] == User) { Uses[i-1] = Uses.back(); Uses.pop_back(); return; } } } void setNodeId(int Id) { NodeId = Id; } }; // Define inline functions from the SDOperand class. inline unsigned SDOperand::getOpcode() const { return Val->getOpcode(); } inline MVT::ValueType SDOperand::getValueType() const { return Val->getValueType(ResNo); } inline unsigned SDOperand::getNumOperands() const { return Val->getNumOperands(); } inline const SDOperand &SDOperand::getOperand(unsigned i) const { return Val->getOperand(i); } inline uint64_t SDOperand::getConstantOperandVal(unsigned i) const { return Val->getConstantOperandVal(i); } inline bool SDOperand::isTargetOpcode() const { return Val->isTargetOpcode(); } inline unsigned SDOperand::getTargetOpcode() const { return Val->getTargetOpcode(); } inline bool SDOperand::hasOneUse() const { return Val->hasNUsesOfValue(1, ResNo); } /// UnarySDNode - This class is used for single-operand SDNodes. This is solely /// to allow co-allocation of node operands with the node itself. class UnarySDNode : public SDNode { virtual void ANCHOR(); // Out-of-line virtual method to give class a home. SDOperand Op; public: UnarySDNode(unsigned Opc, SDVTList VTs, SDOperand X) : SDNode(Opc, VTs), Op(X) { InitOperands(&Op, 1); } }; /// BinarySDNode - This class is used for two-operand SDNodes. This is solely /// to allow co-allocation of node operands with the node itself. class BinarySDNode : public SDNode { virtual void ANCHOR(); // Out-of-line virtual method to give class a home. SDOperand Ops[2]; public: BinarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y) : SDNode(Opc, VTs) { Ops[0] = X; Ops[1] = Y; InitOperands(Ops, 2); } }; /// TernarySDNode - This class is used for three-operand SDNodes. This is solely /// to allow co-allocation of node operands with the node itself. class TernarySDNode : public SDNode { virtual void ANCHOR(); // Out-of-line virtual method to give class a home. SDOperand Ops[3]; public: TernarySDNode(unsigned Opc, SDVTList VTs, SDOperand X, SDOperand Y, SDOperand Z) : SDNode(Opc, VTs) { Ops[0] = X; Ops[1] = Y; Ops[2] = Z; InitOperands(Ops, 3); } }; /// HandleSDNode - This class is used to form a handle around another node that /// is persistant and is updated across invocations of replaceAllUsesWith on its /// operand. This node should be directly created by end-users and not added to /// the AllNodes list. class HandleSDNode : public SDNode { virtual void ANCHOR(); // Out-of-line virtual method to give class a home. SDOperand Op; public: explicit HandleSDNode(SDOperand X) : SDNode(ISD::HANDLENODE, getSDVTList(MVT::Other)), Op(X) { InitOperands(&Op, 1); } ~HandleSDNode(); SDOperand getValue() const { return Op; } }; class StringSDNode : public SDNode { std::string Value; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; explicit StringSDNode(const std::string &val) : SDNode(ISD::STRING, getSDVTList(MVT::Other)), Value(val) { } public: const std::string &getValue() const { return Value; } static bool classof(const StringSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::STRING; } }; class ConstantSDNode : public SDNode { uint64_t Value; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; ConstantSDNode(bool isTarget, uint64_t val, MVT::ValueType VT) : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, getSDVTList(VT)), Value(val) { } public: uint64_t getValue() const { return Value; } int64_t getSignExtended() const { unsigned Bits = MVT::getSizeInBits(getValueType(0)); return ((int64_t)Value << (64-Bits)) >> (64-Bits); } bool isNullValue() const { return Value == 0; } bool isAllOnesValue() const { return Value == MVT::getIntVTBitMask(getValueType(0)); } static bool classof(const ConstantSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Constant || N->getOpcode() == ISD::TargetConstant; } }; class ConstantFPSDNode : public SDNode { APFloat Value; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. // Longterm plan: replace all uses of getValue with getValueAPF, remove // getValue, rename getValueAPF to getValue. protected: friend class SelectionDAG; ConstantFPSDNode(bool isTarget, const APFloat& val, MVT::ValueType VT) : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, getSDVTList(VT)), Value(val) { } public: const APFloat& getValueAPF() const { return Value; } /// isExactlyValue - We don't rely on operator== working on double values, as /// it returns true for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. /// We leave the version with the double argument here because it's just so /// convenient to write "2.0" and the like. Without this function we'd /// have to duplicate its logic everywhere it's called. bool isExactlyValue(double V) const { if (getValueType(0)==MVT::f64) return isExactlyValue(APFloat(V)); else return isExactlyValue(APFloat((float)V)); } bool isExactlyValue(const APFloat& V) const; bool isValueValidForType(MVT::ValueType VT, const APFloat& Val); static bool classof(const ConstantFPSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantFP || N->getOpcode() == ISD::TargetConstantFP; } }; class GlobalAddressSDNode : public SDNode { GlobalValue *TheGlobal; int Offset; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, MVT::ValueType VT, int o = 0); public: GlobalValue *getGlobal() const { return TheGlobal; } int getOffset() const { return Offset; } static bool classof(const GlobalAddressSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::GlobalAddress || N->getOpcode() == ISD::TargetGlobalAddress || N->getOpcode() == ISD::GlobalTLSAddress || N->getOpcode() == ISD::TargetGlobalTLSAddress; } }; class FrameIndexSDNode : public SDNode { int FI; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; FrameIndexSDNode(int fi, MVT::ValueType VT, bool isTarg) : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, getSDVTList(VT)), FI(fi) { } public: int getIndex() const { return FI; } static bool classof(const FrameIndexSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::FrameIndex || N->getOpcode() == ISD::TargetFrameIndex; } }; class JumpTableSDNode : public SDNode { int JTI; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; JumpTableSDNode(int jti, MVT::ValueType VT, bool isTarg) : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, getSDVTList(VT)), JTI(jti) { } public: int getIndex() const { return JTI; } static bool classof(const JumpTableSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::JumpTable || N->getOpcode() == ISD::TargetJumpTable; } }; class ConstantPoolSDNode : public SDNode { union { Constant *ConstVal; MachineConstantPoolValue *MachineCPVal; } Val; int Offset; // It's a MachineConstantPoolValue if top bit is set. unsigned Alignment; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o=0) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, getSDVTList(VT)), Offset(o), Alignment(0) { assert((int)Offset >= 0 && "Offset is too large"); Val.ConstVal = c; } ConstantPoolSDNode(bool isTarget, Constant *c, MVT::ValueType VT, int o, unsigned Align) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, getSDVTList(VT)), Offset(o), Alignment(Align) { assert((int)Offset >= 0 && "Offset is too large"); Val.ConstVal = c; } ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, MVT::ValueType VT, int o=0) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, getSDVTList(VT)), Offset(o), Alignment(0) { assert((int)Offset >= 0 && "Offset is too large"); Val.MachineCPVal = v; Offset |= 1 << (sizeof(unsigned)*8-1); } ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, MVT::ValueType VT, int o, unsigned Align) : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, getSDVTList(VT)), Offset(o), Alignment(Align) { assert((int)Offset >= 0 && "Offset is too large"); Val.MachineCPVal = v; Offset |= 1 << (sizeof(unsigned)*8-1); } public: bool isMachineConstantPoolEntry() const { return (int)Offset < 0; } Constant *getConstVal() const { assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.ConstVal; } MachineConstantPoolValue *getMachineCPVal() const { assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); return Val.MachineCPVal; } int getOffset() const { return Offset & ~(1 << (sizeof(unsigned)*8-1)); } // Return the alignment of this constant pool object, which is either 0 (for // default alignment) or log2 of the desired value. unsigned getAlignment() const { return Alignment; } const Type *getType() const; static bool classof(const ConstantPoolSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ConstantPool || N->getOpcode() == ISD::TargetConstantPool; } }; class BasicBlockSDNode : public SDNode { MachineBasicBlock *MBB; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; explicit BasicBlockSDNode(MachineBasicBlock *mbb) : SDNode(ISD::BasicBlock, getSDVTList(MVT::Other)), MBB(mbb) { } public: MachineBasicBlock *getBasicBlock() const { return MBB; } static bool classof(const BasicBlockSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::BasicBlock; } }; class SrcValueSDNode : public SDNode { const Value *V; int offset; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; SrcValueSDNode(const Value* v, int o) : SDNode(ISD::SRCVALUE, getSDVTList(MVT::Other)), V(v), offset(o) { } public: const Value *getValue() const { return V; } int getOffset() const { return offset; } static bool classof(const SrcValueSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::SRCVALUE; } }; class RegisterSDNode : public SDNode { unsigned Reg; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; RegisterSDNode(unsigned reg, MVT::ValueType VT) : SDNode(ISD::Register, getSDVTList(VT)), Reg(reg) { } public: unsigned getReg() const { return Reg; } static bool classof(const RegisterSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::Register; } }; class ExternalSymbolSDNode : public SDNode { const char *Symbol; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; ExternalSymbolSDNode(bool isTarget, const char *Sym, MVT::ValueType VT) : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, getSDVTList(VT)), Symbol(Sym) { } public: const char *getSymbol() const { return Symbol; } static bool classof(const ExternalSymbolSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::ExternalSymbol || N->getOpcode() == ISD::TargetExternalSymbol; } }; class CondCodeSDNode : public SDNode { ISD::CondCode Condition; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; explicit CondCodeSDNode(ISD::CondCode Cond) : SDNode(ISD::CONDCODE, getSDVTList(MVT::Other)), Condition(Cond) { } public: ISD::CondCode get() const { return Condition; } static bool classof(const CondCodeSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::CONDCODE; } }; /// VTSDNode - This class is used to represent MVT::ValueType's, which are used /// to parameterize some operations. class VTSDNode : public SDNode { MVT::ValueType ValueType; virtual void ANCHOR(); // Out-of-line virtual method to give class a home. protected: friend class SelectionDAG; explicit VTSDNode(MVT::ValueType VT) : SDNode(ISD::VALUETYPE, getSDVTList(MVT::Other)), ValueType(VT) { } public: MVT::ValueType getVT() const { return ValueType; } static bool classof(const VTSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::VALUETYPE; } }; /// LoadSDNode - This class is used to represent ISD::LOAD nodes. /// class LoadSDNode : public SDNode { virtual void ANCHOR(); // Out-of-line virtual method to give class a home. SDOperand Ops[3]; // AddrMode - unindexed, pre-indexed, post-indexed. ISD::MemIndexedMode AddrMode; // ExtType - non-ext, anyext, sext, zext. ISD::LoadExtType ExtType; // LoadedVT - VT of loaded value before extension. MVT::ValueType LoadedVT; // SrcValue - Memory location for alias analysis. const Value *SrcValue; // SVOffset - Memory location offset. int SVOffset; // Alignment - Alignment of memory location in bytes. unsigned Alignment; // IsVolatile - True if the load is volatile. bool IsVolatile; protected: friend class SelectionDAG; LoadSDNode(SDOperand *ChainPtrOff, SDVTList VTs, ISD::MemIndexedMode AM, ISD::LoadExtType ETy, MVT::ValueType LVT, const Value *SV, int O=0, unsigned Align=0, bool Vol=false) : SDNode(ISD::LOAD, VTs), AddrMode(AM), ExtType(ETy), LoadedVT(LVT), SrcValue(SV), SVOffset(O), Alignment(Align), IsVolatile(Vol) { Ops[0] = ChainPtrOff[0]; // Chain Ops[1] = ChainPtrOff[1]; // Ptr Ops[2] = ChainPtrOff[2]; // Off InitOperands(Ops, 3); assert(Align != 0 && "Loads should have non-zero aligment"); assert((getOffset().getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) && "Only indexed load has a non-undef offset operand"); } public: const SDOperand getChain() const { return getOperand(0); } const SDOperand getBasePtr() const { return getOperand(1); } const SDOperand getOffset() const { return getOperand(2); } ISD::MemIndexedMode getAddressingMode() const { return AddrMode; } ISD::LoadExtType getExtensionType() const { return ExtType; } MVT::ValueType getLoadedVT() const { return LoadedVT; } const Value *getSrcValue() const { return SrcValue; } int getSrcValueOffset() const { return SVOffset; } unsigned getAlignment() const { return Alignment; } bool isVolatile() const { return IsVolatile; } static bool classof(const LoadSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::LOAD; } }; /// StoreSDNode - This class is used to represent ISD::STORE nodes. /// class StoreSDNode : public SDNode { virtual void ANCHOR(); // Out-of-line virtual method to give class a home. SDOperand Ops[4]; // AddrMode - unindexed, pre-indexed, post-indexed. ISD::MemIndexedMode AddrMode; // IsTruncStore - True is the op does a truncation before store. bool IsTruncStore; // StoredVT - VT of the value after truncation. MVT::ValueType StoredVT; // SrcValue - Memory location for alias analysis. const Value *SrcValue; // SVOffset - Memory location offset. int SVOffset; // Alignment - Alignment of memory location in bytes. unsigned Alignment; // IsVolatile - True if the store is volatile. bool IsVolatile; protected: friend class SelectionDAG; StoreSDNode(SDOperand *ChainValuePtrOff, SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, MVT::ValueType SVT, const Value *SV, int O=0, unsigned Align=0, bool Vol=false) : SDNode(ISD::STORE, VTs), AddrMode(AM), IsTruncStore(isTrunc), StoredVT(SVT), SrcValue(SV), SVOffset(O), Alignment(Align), IsVolatile(Vol) { Ops[0] = ChainValuePtrOff[0]; // Chain Ops[1] = ChainValuePtrOff[1]; // Value Ops[2] = ChainValuePtrOff[2]; // Ptr Ops[3] = ChainValuePtrOff[3]; // Off InitOperands(Ops, 4); assert(Align != 0 && "Stores should have non-zero aligment"); assert((getOffset().getOpcode() == ISD::UNDEF || AddrMode != ISD::UNINDEXED) && "Only indexed store has a non-undef offset operand"); } public: const SDOperand getChain() const { return getOperand(0); } const SDOperand getValue() const { return getOperand(1); } const SDOperand getBasePtr() const { return getOperand(2); } const SDOperand getOffset() const { return getOperand(3); } ISD::MemIndexedMode getAddressingMode() const { return AddrMode; } bool isTruncatingStore() const { return IsTruncStore; } MVT::ValueType getStoredVT() const { return StoredVT; } const Value *getSrcValue() const { return SrcValue; } int getSrcValueOffset() const { return SVOffset; } unsigned getAlignment() const { return Alignment; } bool isVolatile() const { return IsVolatile; } static bool classof(const StoreSDNode *) { return true; } static bool classof(const SDNode *N) { return N->getOpcode() == ISD::STORE; } }; class SDNodeIterator : public forward_iterator { SDNode *Node; unsigned Operand; SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {} public: bool operator==(const SDNodeIterator& x) const { return Operand == x.Operand; } bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } const SDNodeIterator &operator=(const SDNodeIterator &I) { assert(I.Node == Node && "Cannot assign iterators to two different nodes!"); Operand = I.Operand; return *this; } pointer operator*() const { return Node->getOperand(Operand).Val; } pointer operator->() const { return operator*(); } SDNodeIterator& operator++() { // Preincrement ++Operand; return *this; } SDNodeIterator operator++(int) { // Postincrement SDNodeIterator tmp = *this; ++*this; return tmp; } static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); } static SDNodeIterator end (SDNode *N) { return SDNodeIterator(N, N->getNumOperands()); } unsigned getOperand() const { return Operand; } const SDNode *getNode() const { return Node; } }; template <> struct GraphTraits { typedef SDNode NodeType; typedef SDNodeIterator ChildIteratorType; static inline NodeType *getEntryNode(SDNode *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return SDNodeIterator::begin(N); } static inline ChildIteratorType child_end(NodeType *N) { return SDNodeIterator::end(N); } }; template<> struct ilist_traits { static SDNode *getPrev(const SDNode *N) { return N->Prev; } static SDNode *getNext(const SDNode *N) { return N->Next; } static void setPrev(SDNode *N, SDNode *Prev) { N->Prev = Prev; } static void setNext(SDNode *N, SDNode *Next) { N->Next = Next; } static SDNode *createSentinel() { return new SDNode(ISD::EntryToken, SDNode::getSDVTList(MVT::Other)); } static void destroySentinel(SDNode *N) { delete N; } //static SDNode *createNode(const SDNode &V) { return new SDNode(V); } void addNodeToList(SDNode *NTy) {} void removeNodeFromList(SDNode *NTy) {} void transferNodesFromList(iplist &L2, const ilist_iterator &X, const ilist_iterator &Y) {} }; namespace ISD { /// isNON_EXTLoad - Returns true if the specified node is a non-extending /// load. inline bool isNON_EXTLoad(const SDNode *N) { return N->getOpcode() == ISD::LOAD && cast(N)->getExtensionType() == ISD::NON_EXTLOAD; } /// isEXTLoad - Returns true if the specified node is a EXTLOAD. /// inline bool isEXTLoad(const SDNode *N) { return N->getOpcode() == ISD::LOAD && cast(N)->getExtensionType() == ISD::EXTLOAD; } /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD. /// inline bool isSEXTLoad(const SDNode *N) { return N->getOpcode() == ISD::LOAD && cast(N)->getExtensionType() == ISD::SEXTLOAD; } /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD. /// inline bool isZEXTLoad(const SDNode *N) { return N->getOpcode() == ISD::LOAD && cast(N)->getExtensionType() == ISD::ZEXTLOAD; } /// isUNINDEXEDLoad - Returns true if the specified node is a unindexed load. /// inline bool isUNINDEXEDLoad(const SDNode *N) { return N->getOpcode() == ISD::LOAD && cast(N)->getAddressingMode() == ISD::UNINDEXED; } /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating /// store. inline bool isNON_TRUNCStore(const SDNode *N) { return N->getOpcode() == ISD::STORE && !cast(N)->isTruncatingStore(); } /// isTRUNCStore - Returns true if the specified node is a truncating /// store. inline bool isTRUNCStore(const SDNode *N) { return N->getOpcode() == ISD::STORE && cast(N)->isTruncatingStore(); } } } // end llvm namespace #endif