//===- MC-X86Specific.cpp - X86-Specific code for MC ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements X86-specific parsing, encoding and decoding stuff for // MC. // //===----------------------------------------------------------------------===// #include "AsmParser.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/SourceMgr.h" using namespace llvm; /// X86Operand - Instances of this class represent one X86 machine instruction. struct AsmParser::X86Operand { enum { Register, Immediate, Memory } Kind; union { struct { unsigned RegNo; } Reg; struct { MCValue Val; } Imm; struct { unsigned SegReg; MCValue Disp; unsigned BaseReg; unsigned IndexReg; unsigned Scale; } Mem; }; unsigned getReg() const { assert(Kind == Register && "Invalid access!"); return Reg.RegNo; } static X86Operand CreateReg(unsigned RegNo) { X86Operand Res; Res.Kind = Register; Res.Reg.RegNo = RegNo; return Res; } static X86Operand CreateImm(MCValue Val) { X86Operand Res; Res.Kind = Immediate; Res.Imm.Val = Val; return Res; } static X86Operand CreateMem(unsigned SegReg, MCValue Disp, unsigned BaseReg, unsigned IndexReg, unsigned Scale) { // If there is no index register, we should never have a scale, and we // should always have a scale (in {1,2,4,8}) if we do. assert(((Scale == 0 && !IndexReg) || (IndexReg && (Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8))) && "Invalid scale!"); X86Operand Res; Res.Kind = Memory; Res.Mem.SegReg = SegReg; Res.Mem.Disp = Disp; Res.Mem.BaseReg = BaseReg; Res.Mem.IndexReg = IndexReg; Res.Mem.Scale = Scale; return Res; } }; bool AsmParser::ParseX86Register(X86Operand &Op) { assert(Lexer.getKind() == AsmToken::Register && "Invalid token kind!"); // FIXME: Decode register number. Op = X86Operand::CreateReg(123); Lexer.Lex(); // Eat register token. return false; } bool AsmParser::ParseX86Operand(X86Operand &Op) { switch (Lexer.getKind()) { default: return ParseX86MemOperand(Op); case AsmToken::Register: // FIXME: if a segment register, this could either be just the seg reg, or // the start of a memory operand. return ParseX86Register(Op); case AsmToken::Dollar: { // $42 -> immediate. Lexer.Lex(); MCValue Val; if (ParseRelocatableExpression(Val)) return true; Op = X86Operand::CreateImm(Val); return false; } case AsmToken::Star: { Lexer.Lex(); // Eat the star. if (Lexer.is(AsmToken::Register)) { if (ParseX86Register(Op)) return true; } else if (ParseX86MemOperand(Op)) return true; // FIXME: Note the '*' in the operand for use by the matcher. return false; } } } /// ParseX86MemOperand: segment: disp(basereg, indexreg, scale) bool AsmParser::ParseX86MemOperand(X86Operand &Op) { // FIXME: If SegReg ':' (e.g. %gs:), eat and remember. unsigned SegReg = 0; // We have to disambiguate a parenthesized expression "(4+5)" from the start // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The // only way to do this without lookahead is to eat the ( and see what is after // it. MCValue Disp = MCValue::get(0, 0, 0); if (Lexer.isNot(AsmToken::LParen)) { if (ParseRelocatableExpression(Disp)) return true; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (Lexer.isNot(AsmToken::LParen)) { Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0); return false; } // Eat the '('. Lexer.Lex(); } else { // Okay, we have a '('. We don't know if this is an expression or not, but // so we have to eat the ( to see beyond it. Lexer.Lex(); // Eat the '('. if (Lexer.is(AsmToken::Register) || Lexer.is(AsmToken::Comma)) { // Nothing to do here, fall into the code below with the '(' part of the // memory operand consumed. } else { // It must be an parenthesized expression, parse it now. if (ParseParenRelocatableExpression(Disp)) return true; // After parsing the base expression we could either have a parenthesized // memory address or not. If not, return now. If so, eat the (. if (Lexer.isNot(AsmToken::LParen)) { Op = X86Operand::CreateMem(SegReg, Disp, 0, 0, 0); return false; } // Eat the '('. Lexer.Lex(); } } // If we reached here, then we just ate the ( of the memory operand. Process // the rest of the memory operand. unsigned BaseReg = 0, IndexReg = 0, Scale = 0; if (Lexer.is(AsmToken::Register)) { if (ParseX86Register(Op)) return true; BaseReg = Op.getReg(); } if (Lexer.is(AsmToken::Comma)) { Lexer.Lex(); // Eat the comma. // Following the comma we should have either an index register, or a scale // value. We don't support the later form, but we want to parse it // correctly. // // Not that even though it would be completely consistent to support syntax // like "1(%eax,,1)", the assembler doesn't. if (Lexer.is(AsmToken::Register)) { if (ParseX86Register(Op)) return true; IndexReg = Op.getReg(); Scale = 1; // If not specified, the scale defaults to 1. if (Lexer.isNot(AsmToken::RParen)) { // Parse the scale amount: // ::= ',' [scale-expression] if (Lexer.isNot(AsmToken::Comma)) return true; Lexer.Lex(); // Eat the comma. if (Lexer.isNot(AsmToken::RParen)) { int64_t ScaleVal; if (ParseAbsoluteExpression(ScaleVal)) return true; // Validate the scale amount. if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && ScaleVal != 8) return TokError("scale factor in address must be 1, 2, 4 or 8"); Scale = (unsigned)ScaleVal; } } } else if (Lexer.isNot(AsmToken::RParen)) { // Otherwise we have the unsupported form of a scale amount without an // index. SMLoc Loc = Lexer.getLoc(); int64_t Value; if (ParseAbsoluteExpression(Value)) return true; return Error(Loc, "cannot have scale factor without index register"); } } // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. if (Lexer.isNot(AsmToken::RParen)) return TokError("unexpected token in memory operand"); Lexer.Lex(); // Eat the ')'. Op = X86Operand::CreateMem(SegReg, Disp, BaseReg, IndexReg, Scale); return false; } /// MatchX86Inst - Convert a parsed instruction name and operand list into a /// concrete instruction. static bool MatchX86Inst(const StringRef &Name, llvm::SmallVector &Operands, MCInst &Inst) { return false; } /// ParseX86InstOperands - Parse the operands of an X86 instruction and return /// them as the operands of an MCInst. bool AsmParser::ParseX86InstOperands(const StringRef &InstName, MCInst &Inst) { llvm::SmallVector Operands; if (Lexer.isNot(AsmToken::EndOfStatement)) { // Read the first operand. Operands.push_back(X86Operand()); if (ParseX86Operand(Operands.back())) return true; while (Lexer.is(AsmToken::Comma)) { Lexer.Lex(); // Eat the comma. // Parse and remember the operand. Operands.push_back(X86Operand()); if (ParseX86Operand(Operands.back())) return true; } } return MatchX86Inst(InstName, Operands, Inst); }