//===-- ProfilePaths.cpp - interface to insert instrumentation ---*- C++ -*--=// // // This inserts intrumentation for counting // execution of paths though a given function // Its implemented as a "Function" Pass, and called using opt // // This pass is implemented by using algorithms similar to // 1."Efficient Path Profiling": Ball, T. and Larus, J. R., // Proceedings of Micro-29, Dec 1996, Paris, France. // 2."Efficiently Counting Program events with support for on-line // "queries": Ball T., ACM Transactions on Programming Languages // and systems, Sep 1994. // // The algorithms work on a Graph constructed over the nodes // made from Basic Blocks: The transformations then take place on // the constucted graph (implementation in Graph.cpp and GraphAuxillary.cpp) // and finally, appropriate instrumentation is placed over suitable edges. // (code inserted through EdgeCode.cpp). // // The algorithm inserts code such that every acyclic path in the CFG // of a function is identified through a unique number. the code insertion // is optimal in the sense that its inserted over a minimal set of edges. Also, // the algorithm makes sure than initialization, path increment and counter // update can be collapsed into minimum number of edges. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Support/CFG.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/iMemory.h" #include "llvm/Module.h" #include "Graph.h" #include using std::vector; struct ProfilePaths : public FunctionPass { bool runOnFunction(Function &F); // Before this pass, make sure that there is only one // entry and only one exit node for the function in the CFG of the function // void ProfilePaths::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); } }; static RegisterOpt X("paths", "Profile Paths"); static Node *findBB(std::vector &st, BasicBlock *BB){ for(std::vector::iterator si=st.begin(); si!=st.end(); ++si){ if(((*si)->getElement())==BB){ return *si; } } return NULL; } //Per function pass for inserting counters and trigger code bool ProfilePaths::runOnFunction(Function &F){ static int mn = -1; if(F.isExternal()) { return false; } //increment counter for instrumented functions. mn is now function# mn++; // Transform the cfg s.t. we have just one exit node BasicBlock *ExitNode = getAnalysis().getExitNode(); //iterating over BBs and making graph std::vector nodes; std::vector edges; Node *tmp; Node *exitNode = 0, *startNode = 0; // The nodes must be uniquesly identified: // That is, no two nodes must hav same BB* for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) { Node *nd=new Node(BB); nodes.push_back(nd); if(&*BB == ExitNode) exitNode=nd; if(BB==F.begin()) startNode=nd; } // now do it againto insert edges for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){ Node *nd=findBB(nodes, BB); assert(nd && "No node for this edge!"); for(BasicBlock::succ_iterator s=succ_begin(BB), se=succ_end(BB); s!=se; ++s){ Node *nd2=findBB(nodes,*s); assert(nd2 && "No node for this edge!"); Edge ed(nd,nd2,0); edges.push_back(ed); } } Graph g(nodes,edges, startNode, exitNode); #ifdef DEBUG_PATH_PROFILES std::cerr<<"Original graph\n"; printGraph(g); #endif BasicBlock *fr = &F.front(); // The graph is made acyclic: this is done // by removing back edges for now, and adding them later on vector be; std::map nodePriority; //it ranks nodes in depth first order traversal g.getBackEdges(be, nodePriority); #ifdef DEBUG_PATH_PROFILES std::cerr<<"BackEdges-------------\n"; for(vector::iterator VI=be.begin(); VI!=be.end(); ++VI){ printEdge(*VI); cerr<<"\n"; } std::cerr<<"------\n"; #endif #ifdef DEBUG_PATH_PROFILES cerr<<"Backedges:"<b is a back edge //Then we add 2 back edges for it: //1. from root->b (in vector stDummy) //and 2. from a->exit (in vector exDummy) vector stDummy; vector exDummy; addDummyEdges(stDummy, exDummy, g, be); #ifdef DEBUG_PATH_PROFILES std::cerr<<"After adding dummy edges\n"; printGraph(g); #endif // Now, every edge in the graph is assigned a weight // This weight later adds on to assign path // numbers to different paths in the graph // All paths for now are acyclic, // since no back edges in the graph now // numPaths is the number of acyclic paths in the graph int numPaths=valueAssignmentToEdges(g, nodePriority, be); //if(numPaths<=1) return false; if(numPaths<=1 || numPaths >5000) return false; #ifdef DEBUG_PATH_PROFILES printGraph(g); #endif //create instruction allocation r and count //r is the variable that'll act like an accumulator //all along the path, we just add edge values to r //and at the end, r reflects the path number //count is an array: count[x] would store //the number of executions of path numbered x Instruction *rVar=new AllocaInst(Type::IntTy, ConstantUInt::get(Type::UIntTy,1),"R"); //Instruction *countVar=new //AllocaInst(Type::IntTy, // ConstantUInt::get(Type::UIntTy, numPaths), "Count"); //initialize counter array! std::vector arrayInitialize; for(int xi=0; xigetGlobalList().push_back(threshold); insertedThreshold = true; } assert(threshold && "GlobalVariable threshold not defined!"); // insert initialization code in first (entry) BB // this includes initializing r and count insertInTopBB(&F.getEntryNode(),numPaths, rVar, threshold); //now process the graph: get path numbers, //get increments along different paths, //and assign "increments" and "updates" (to r and count) //"optimally". Finally, insert llvm code along various edges processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths, mn, threshold); return true; // Always modifies function }