//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // //===----------------------------------------------------------------------===// #include "ARM.h" #include "ARMTargetMachine.h" #include "ARMFrameLowering.h" #include "ARMTargetObjectFile.h" #include "llvm/CodeGen/Passes.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; static cl::opt DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden, cl::desc("Inhibit optimization of S->D register accesses on A15"), cl::init(false)); static cl::opt EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden, cl::desc("Run SimplifyCFG after expanding atomic operations" " to make use of cmpxchg flow-based information"), cl::init(true)); extern "C" void LLVMInitializeARMTarget() { // Register the target. RegisterTargetMachine X(TheARMLETarget); RegisterTargetMachine Y(TheARMBETarget); RegisterTargetMachine A(TheThumbLETarget); RegisterTargetMachine B(TheThumbBETarget); } static std::unique_ptr createTLOF(const Triple &TT) { if (TT.isOSBinFormatMachO()) return make_unique(); if (TT.isOSWindows()) return make_unique(); return make_unique(); } static ARMBaseTargetMachine::ARMABI computeTargetABI(const Triple &TT, StringRef CPU, const TargetOptions &Options) { if (Options.getABIName().startswith("aapcs")) return ARMBaseTargetMachine::ARM_ABI_AAPCS; else if (Options.getABIName().startswith("apcs")) return ARMBaseTargetMachine::ARM_ABI_APCS; assert(Options.getABIName().empty() && "Unknown target-abi option!"); ARMBaseTargetMachine::ARMABI TargetABI = ARMBaseTargetMachine::ARM_ABI_UNKNOWN; // FIXME: This is duplicated code from the front end and should be unified. if (TT.isOSBinFormatMachO()) { if (TT.getEnvironment() == llvm::Triple::EABI || (TT.getOS() == llvm::Triple::UnknownOS && TT.getObjectFormat() == llvm::Triple::MachO) || CPU.startswith("cortex-m")) { TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; } else { TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; } } else if (TT.isOSWindows()) { // FIXME: this is invalid for WindowsCE TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; } else { // Select the default based on the platform. switch (TT.getEnvironment()) { case llvm::Triple::Android: case llvm::Triple::GNUEABI: case llvm::Triple::GNUEABIHF: case llvm::Triple::EABIHF: case llvm::Triple::EABI: TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; break; case llvm::Triple::GNU: TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; break; default: if (TT.getOS() == llvm::Triple::NetBSD) TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS; else TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS; break; } } return TargetABI; } /// TargetMachine ctor - Create an ARM architecture model. /// ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL), TargetABI(computeTargetABI(Triple(TT), CPU, Options)), TLOF(createTLOF(Triple(getTargetTriple()))), Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) { // Default to triple-appropriate float ABI if (Options.FloatABIType == FloatABI::Default) this->Options.FloatABIType = Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft; } ARMBaseTargetMachine::~ARMBaseTargetMachine() {} const ARMSubtarget * ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const { AttributeSet FnAttrs = F.getAttributes(); Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu"); Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString().str() : TargetCPU; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString().str() : TargetFS; // FIXME: This is related to the code below to reset the target options, // we need to know whether or not the soft float flag is set on the // function before we can generate a subtarget. We also need to use // it as a key for the subtarget since that can be the only difference // between two functions. Attribute SFAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "use-soft-float"); bool SoftFloat = !SFAttr.hasAttribute(Attribute::None) ? SFAttr.getValueAsString() == "true" : Options.UseSoftFloat; auto &I = SubtargetMap[CPU + FS + (SoftFloat ? "use-soft-float=true" : "use-soft-float=false")]; if (!I) { // This needs to be done before we create a new subtarget since any // creation will depend on the TM and the code generation flags on the // function that reside in TargetOptions. resetTargetOptions(F); I = llvm::make_unique(TargetTriple, CPU, FS, *this, isLittle); } return I.get(); } void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) { // Add first the target-independent BasicTTI pass, then our ARM pass. This // allows the ARM pass to delegate to the target independent layer when // appropriate. PM.add(createBasicTargetTransformInfoPass(this)); PM.add(createARMTargetTransformInfoPass(this)); } void ARMTargetMachine::anchor() { } ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) { initAsmInfo(); if (!Subtarget.hasARMOps()) report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not " "support ARM mode execution!"); } void ARMLETargetMachine::anchor() { } ARMLETargetMachine::ARMLETargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} void ARMBETargetMachine::anchor() { } ARMBETargetMachine::ARMBETargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} void ThumbTargetMachine::anchor() { } ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL, bool isLittle) : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) { initAsmInfo(); } void ThumbLETargetMachine::anchor() { } ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {} void ThumbBETargetMachine::anchor() { } ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, StringRef TT, StringRef CPU, StringRef FS, const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM, CodeGenOpt::Level OL) : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {} namespace { /// ARM Code Generator Pass Configuration Options. class ARMPassConfig : public TargetPassConfig { public: ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM) : TargetPassConfig(TM, PM) {} ARMBaseTargetMachine &getARMTargetMachine() const { return getTM(); } const ARMSubtarget &getARMSubtarget() const { return *getARMTargetMachine().getSubtargetImpl(); } void addIRPasses() override; bool addPreISel() override; bool addInstSelector() override; void addPreRegAlloc() override; void addPreSched2() override; void addPreEmitPass() override; }; } // namespace TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) { return new ARMPassConfig(this, PM); } void ARMPassConfig::addIRPasses() { if (TM->Options.ThreadModel == ThreadModel::Single) addPass(createLowerAtomicPass()); else addPass(createAtomicExpandPass(TM)); // Cmpxchg instructions are often used with a subsequent comparison to // determine whether it succeeded. We can exploit existing control-flow in // ldrex/strex loops to simplify this, but it needs tidying up. const ARMSubtarget *Subtarget = &getARMSubtarget(); if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) addPass(createCFGSimplificationPass()); TargetPassConfig::addIRPasses(); } bool ARMPassConfig::addPreISel() { if (TM->getOptLevel() != CodeGenOpt::None) addPass(createGlobalMergePass(TM)); return false; } bool ARMPassConfig::addInstSelector() { addPass(createARMISelDag(getARMTargetMachine(), getOptLevel())); const ARMSubtarget *Subtarget = &getARMSubtarget(); if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() && TM->Options.EnableFastISel) addPass(createARMGlobalBaseRegPass()); return false; } void ARMPassConfig::addPreRegAlloc() { if (getOptLevel() != CodeGenOpt::None) addPass(createARMLoadStoreOptimizationPass(true)); if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9()) addPass(createMLxExpansionPass()); // Since the A15SDOptimizer pass can insert VDUP instructions, it can only be // enabled when NEON is available. if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() && getARMSubtarget().hasNEON() && !DisableA15SDOptimization) { addPass(createA15SDOptimizerPass()); } } void ARMPassConfig::addPreSched2() { if (getOptLevel() != CodeGenOpt::None) { addPass(createARMLoadStoreOptimizationPass()); if (getARMSubtarget().hasNEON()) addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass)); } // Expand some pseudo instructions into multiple instructions to allow // proper scheduling. addPass(createARMExpandPseudoPass()); if (getOptLevel() != CodeGenOpt::None) { if (!getARMSubtarget().isThumb1Only()) { // in v8, IfConversion depends on Thumb instruction widths if (getARMSubtarget().restrictIT() && !getARMSubtarget().prefers32BitThumb()) addPass(createThumb2SizeReductionPass()); addPass(&IfConverterID); } } if (getARMSubtarget().isThumb2()) addPass(createThumb2ITBlockPass()); } void ARMPassConfig::addPreEmitPass() { if (getARMSubtarget().isThumb2()) { if (!getARMSubtarget().prefers32BitThumb()) addPass(createThumb2SizeReductionPass()); // Constant island pass work on unbundled instructions. addPass(&UnpackMachineBundlesID); } addPass(createARMOptimizeBarriersPass()); addPass(createARMConstantIslandPass()); }