//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines various meta classes of instructions that exist in the VM // representation. Specific concrete subclasses of these may be found in the // i*.h files... // //===----------------------------------------------------------------------===// #ifndef LLVM_INSTRUCTION_TYPES_H #define LLVM_INSTRUCTION_TYPES_H #include "llvm/Instruction.h" #include "llvm/OperandTraits.h" #include "llvm/Operator.h" #include "llvm/DerivedTypes.h" #include "llvm/ADT/Twine.h" namespace llvm { class LLVMContext; //===----------------------------------------------------------------------===// // TerminatorInst Class //===----------------------------------------------------------------------===// /// TerminatorInst - Subclasses of this class are all able to terminate a basic /// block. Thus, these are all the flow control type of operations. /// class TerminatorInst : public Instruction { protected: TerminatorInst(const Type *Ty, Instruction::TermOps iType, Use *Ops, unsigned NumOps, Instruction *InsertBefore = 0) : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {} TerminatorInst(const Type *Ty, Instruction::TermOps iType, Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd) : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {} // Out of line virtual method, so the vtable, etc has a home. ~TerminatorInst(); /// Virtual methods - Terminators should overload these and provide inline /// overrides of non-V methods. virtual BasicBlock *getSuccessorV(unsigned idx) const = 0; virtual unsigned getNumSuccessorsV() const = 0; virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0; virtual TerminatorInst *clone_impl() const = 0; public: /// getNumSuccessors - Return the number of successors that this terminator /// has. unsigned getNumSuccessors() const { return getNumSuccessorsV(); } /// getSuccessor - Return the specified successor. /// BasicBlock *getSuccessor(unsigned idx) const { return getSuccessorV(idx); } /// setSuccessor - Update the specified successor to point at the provided /// block. void setSuccessor(unsigned idx, BasicBlock *B) { setSuccessorV(idx, B); } // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const TerminatorInst *) { return true; } static inline bool classof(const Instruction *I) { return I->isTerminator(); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } }; //===----------------------------------------------------------------------===// // UnaryInstruction Class //===----------------------------------------------------------------------===// class UnaryInstruction : public Instruction { void *operator new(size_t, unsigned); // Do not implement protected: UnaryInstruction(const Type *Ty, unsigned iType, Value *V, Instruction *IB = 0) : Instruction(Ty, iType, &Op<0>(), 1, IB) { Op<0>() = V; } UnaryInstruction(const Type *Ty, unsigned iType, Value *V, BasicBlock *IAE) : Instruction(Ty, iType, &Op<0>(), 1, IAE) { Op<0>() = V; } public: // allocate space for exactly one operand void *operator new(size_t s) { return User::operator new(s, 1); } // Out of line virtual method, so the vtable, etc has a home. ~UnaryInstruction(); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const UnaryInstruction *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::Alloca || I->getOpcode() == Instruction::Load || I->getOpcode() == Instruction::VAArg || I->getOpcode() == Instruction::ExtractValue || (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } }; template <> struct OperandTraits<UnaryInstruction> : public FixedNumOperandTraits<UnaryInstruction, 1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value) //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// class BinaryOperator : public Instruction { void *operator new(size_t, unsigned); // Do not implement protected: void init(BinaryOps iType); BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty, const Twine &Name, Instruction *InsertBefore); BinaryOperator(BinaryOps iType, Value *S1, Value *S2, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd); virtual BinaryOperator *clone_impl() const; public: // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// Create() - Construct a binary instruction, given the opcode and the two /// operands. Optionally (if InstBefore is specified) insert the instruction /// into a BasicBlock right before the specified instruction. The specified /// Instruction is allowed to be a dereferenced end iterator. /// static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name = Twine(), Instruction *InsertBefore = 0); /// Create() - Construct a binary instruction, given the opcode and the two /// operands. Also automatically insert this instruction to the end of the /// BasicBlock specified. /// static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock *InsertAtEnd); /// Create* - These methods just forward to Create, and are useful when you /// statically know what type of instruction you're going to create. These /// helpers just save some typing. #define HANDLE_BINARY_INST(N, OPC, CLASS) \ static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ const Twine &Name = "") {\ return Create(Instruction::OPC, V1, V2, Name);\ } #include "llvm/Instruction.def" #define HANDLE_BINARY_INST(N, OPC, CLASS) \ static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ const Twine &Name, BasicBlock *BB) {\ return Create(Instruction::OPC, V1, V2, Name, BB);\ } #include "llvm/Instruction.def" #define HANDLE_BINARY_INST(N, OPC, CLASS) \ static BinaryOperator *Create##OPC(Value *V1, Value *V2, \ const Twine &Name, Instruction *I) {\ return Create(Instruction::OPC, V1, V2, Name, I);\ } #include "llvm/Instruction.def" static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name = "") { BinaryOperator *BO = Create(Opc, V1, V2, Name); BO->setHasNoSignedWrap(true); return BO; } static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); BO->setHasNoSignedWrap(true); return BO; } static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name, Instruction *I) { BinaryOperator *BO = Create(Opc, V1, V2, Name, I); BO->setHasNoSignedWrap(true); return BO; } static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name = "") { BinaryOperator *BO = Create(Opc, V1, V2, Name); BO->setHasNoUnsignedWrap(true); return BO; } static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); BO->setHasNoUnsignedWrap(true); return BO; } static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name, Instruction *I) { BinaryOperator *BO = Create(Opc, V1, V2, Name, I); BO->setHasNoUnsignedWrap(true); return BO; } static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name = "") { BinaryOperator *BO = Create(Opc, V1, V2, Name); BO->setIsExact(true); return BO; } static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { BinaryOperator *BO = Create(Opc, V1, V2, Name, BB); BO->setIsExact(true); return BO; } static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2, const Twine &Name, Instruction *I) { BinaryOperator *BO = Create(Opc, V1, V2, Name, I); BO->setIsExact(true); return BO; } #define DEFINE_HELPERS(OPC, NUWNSWEXACT) \ static BinaryOperator *Create ## NUWNSWEXACT ## OPC \ (Value *V1, Value *V2, const Twine &Name = "") { \ return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \ } \ static BinaryOperator *Create ## NUWNSWEXACT ## OPC \ (Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \ return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \ } \ static BinaryOperator *Create ## NUWNSWEXACT ## OPC \ (Value *V1, Value *V2, const Twine &Name, Instruction *I) { \ return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \ } DEFINE_HELPERS(Add, NSW) // CreateNSWAdd DEFINE_HELPERS(Add, NUW) // CreateNUWAdd DEFINE_HELPERS(Sub, NSW) // CreateNSWSub DEFINE_HELPERS(Sub, NUW) // CreateNUWSub DEFINE_HELPERS(Mul, NSW) // CreateNSWMul DEFINE_HELPERS(Mul, NUW) // CreateNUWMul DEFINE_HELPERS(Shl, NSW) // CreateNSWShl DEFINE_HELPERS(Shl, NUW) // CreateNUWShl DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv DEFINE_HELPERS(AShr, Exact) // CreateExactAShr DEFINE_HELPERS(LShr, Exact) // CreateExactLShr #undef DEFINE_HELPERS /// Helper functions to construct and inspect unary operations (NEG and NOT) /// via binary operators SUB and XOR: /// /// CreateNeg, CreateNot - Create the NEG and NOT /// instructions out of SUB and XOR instructions. /// static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "", Instruction *InsertBefore = 0); static BinaryOperator *CreateNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd); static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "", Instruction *InsertBefore = 0); static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd); static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "", Instruction *InsertBefore = 0); static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd); static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "", Instruction *InsertBefore = 0); static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd); static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "", Instruction *InsertBefore = 0); static BinaryOperator *CreateNot(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd); /// isNeg, isFNeg, isNot - Check if the given Value is a /// NEG, FNeg, or NOT instruction. /// static bool isNeg(const Value *V); static bool isFNeg(const Value *V); static bool isNot(const Value *V); /// getNegArgument, getNotArgument - Helper functions to extract the /// unary argument of a NEG, FNEG or NOT operation implemented via /// Sub, FSub, or Xor. /// static const Value *getNegArgument(const Value *BinOp); static Value *getNegArgument( Value *BinOp); static const Value *getFNegArgument(const Value *BinOp); static Value *getFNegArgument( Value *BinOp); static const Value *getNotArgument(const Value *BinOp); static Value *getNotArgument( Value *BinOp); BinaryOps getOpcode() const { return static_cast<BinaryOps>(Instruction::getOpcode()); } /// swapOperands - Exchange the two operands to this instruction. /// This instruction is safe to use on any binary instruction and /// does not modify the semantics of the instruction. If the instruction /// cannot be reversed (ie, it's a Div), then return true. /// bool swapOperands(); /// setHasNoUnsignedWrap - Set or clear the nsw flag on this instruction, /// which must be an operator which supports this flag. See LangRef.html /// for the meaning of this flag. void setHasNoUnsignedWrap(bool b = true); /// setHasNoSignedWrap - Set or clear the nsw flag on this instruction, /// which must be an operator which supports this flag. See LangRef.html /// for the meaning of this flag. void setHasNoSignedWrap(bool b = true); /// setIsExact - Set or clear the exact flag on this instruction, /// which must be an operator which supports this flag. See LangRef.html /// for the meaning of this flag. void setIsExact(bool b = true); /// hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set. bool hasNoUnsignedWrap() const; /// hasNoSignedWrap - Determine whether the no signed wrap flag is set. bool hasNoSignedWrap() const; /// isExact - Determine whether the exact flag is set. bool isExact() const; // Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const BinaryOperator *) { return true; } static inline bool classof(const Instruction *I) { return I->isBinaryOp(); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } }; template <> struct OperandTraits<BinaryOperator> : public FixedNumOperandTraits<BinaryOperator, 2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value) //===----------------------------------------------------------------------===// // CastInst Class //===----------------------------------------------------------------------===// /// CastInst - This is the base class for all instructions that perform data /// casts. It is simply provided so that instruction category testing /// can be performed with code like: /// /// if (isa<CastInst>(Instr)) { ... } /// @brief Base class of casting instructions. class CastInst : public UnaryInstruction { protected: /// @brief Constructor with insert-before-instruction semantics for subclasses CastInst(const Type *Ty, unsigned iType, Value *S, const Twine &NameStr = "", Instruction *InsertBefore = 0) : UnaryInstruction(Ty, iType, S, InsertBefore) { setName(NameStr); } /// @brief Constructor with insert-at-end-of-block semantics for subclasses CastInst(const Type *Ty, unsigned iType, Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd) : UnaryInstruction(Ty, iType, S, InsertAtEnd) { setName(NameStr); } public: /// Provides a way to construct any of the CastInst subclasses using an /// opcode instead of the subclass's constructor. The opcode must be in the /// CastOps category (Instruction::isCast(opcode) returns true). This /// constructor has insert-before-instruction semantics to automatically /// insert the new CastInst before InsertBefore (if it is non-null). /// @brief Construct any of the CastInst subclasses static CastInst *Create( Instruction::CastOps, ///< The opcode of the cast instruction Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which cast should be made const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// Provides a way to construct any of the CastInst subclasses using an /// opcode instead of the subclass's constructor. The opcode must be in the /// CastOps category. This constructor has insert-at-end-of-block semantics /// to automatically insert the new CastInst at the end of InsertAtEnd (if /// its non-null). /// @brief Construct any of the CastInst subclasses static CastInst *Create( Instruction::CastOps, ///< The opcode for the cast instruction Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which operand is casted const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Create a ZExt or BitCast cast instruction static CastInst *CreateZExtOrBitCast( Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which cast should be made const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// @brief Create a ZExt or BitCast cast instruction static CastInst *CreateZExtOrBitCast( Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which operand is casted const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Create a SExt or BitCast cast instruction static CastInst *CreateSExtOrBitCast( Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which cast should be made const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// @brief Create a SExt or BitCast cast instruction static CastInst *CreateSExtOrBitCast( Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which operand is casted const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Create a BitCast or a PtrToInt cast instruction static CastInst *CreatePointerCast( Value *S, ///< The pointer value to be casted (operand 0) const Type *Ty, ///< The type to which operand is casted const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Create a BitCast or a PtrToInt cast instruction static CastInst *CreatePointerCast( Value *S, ///< The pointer value to be casted (operand 0) const Type *Ty, ///< The type to which cast should be made const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts. static CastInst *CreateIntegerCast( Value *S, ///< The pointer value to be casted (operand 0) const Type *Ty, ///< The type to which cast should be made bool isSigned, ///< Whether to regard S as signed or not const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts. static CastInst *CreateIntegerCast( Value *S, ///< The integer value to be casted (operand 0) const Type *Ty, ///< The integer type to which operand is casted bool isSigned, ///< Whether to regard S as signed or not const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts static CastInst *CreateFPCast( Value *S, ///< The floating point value to be casted const Type *Ty, ///< The floating point type to cast to const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts static CastInst *CreateFPCast( Value *S, ///< The floating point value to be casted const Type *Ty, ///< The floating point type to cast to const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Create a Trunc or BitCast cast instruction static CastInst *CreateTruncOrBitCast( Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which cast should be made const Twine &Name = "", ///< Name for the instruction Instruction *InsertBefore = 0 ///< Place to insert the instruction ); /// @brief Create a Trunc or BitCast cast instruction static CastInst *CreateTruncOrBitCast( Value *S, ///< The value to be casted (operand 0) const Type *Ty, ///< The type to which operand is casted const Twine &Name, ///< The name for the instruction BasicBlock *InsertAtEnd ///< The block to insert the instruction into ); /// @brief Check whether it is valid to call getCastOpcode for these types. static bool isCastable( const Type *SrcTy, ///< The Type from which the value should be cast. const Type *DestTy ///< The Type to which the value should be cast. ); /// Returns the opcode necessary to cast Val into Ty using usual casting /// rules. /// @brief Infer the opcode for cast operand and type static Instruction::CastOps getCastOpcode( const Value *Val, ///< The value to cast bool SrcIsSigned, ///< Whether to treat the source as signed const Type *Ty, ///< The Type to which the value should be casted bool DstIsSigned ///< Whether to treate the dest. as signed ); /// There are several places where we need to know if a cast instruction /// only deals with integer source and destination types. To simplify that /// logic, this method is provided. /// @returns true iff the cast has only integral typed operand and dest type. /// @brief Determine if this is an integer-only cast. bool isIntegerCast() const; /// A lossless cast is one that does not alter the basic value. It implies /// a no-op cast but is more stringent, preventing things like int->float, /// long->double, or int->ptr. /// @returns true iff the cast is lossless. /// @brief Determine if this is a lossless cast. bool isLosslessCast() const; /// A no-op cast is one that can be effected without changing any bits. /// It implies that the source and destination types are the same size. The /// IntPtrTy argument is used to make accurate determinations for casts /// involving Integer and Pointer types. They are no-op casts if the integer /// is the same size as the pointer. However, pointer size varies with /// platform. Generally, the result of TargetData::getIntPtrType() should be /// passed in. If that's not available, use Type::Int64Ty, which will make /// the isNoopCast call conservative. /// @brief Determine if the described cast is a no-op cast. static bool isNoopCast( Instruction::CastOps Opcode, ///< Opcode of cast const Type *SrcTy, ///< SrcTy of cast const Type *DstTy, ///< DstTy of cast const Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null ); /// @brief Determine if this cast is a no-op cast. bool isNoopCast( const Type *IntPtrTy ///< Integer type corresponding to pointer ) const; /// Determine how a pair of casts can be eliminated, if they can be at all. /// This is a helper function for both CastInst and ConstantExpr. /// @returns 0 if the CastInst pair can't be eliminated /// @returns Instruction::CastOps value for a cast that can replace /// the pair, casting SrcTy to DstTy. /// @brief Determine if a cast pair is eliminable static unsigned isEliminableCastPair( Instruction::CastOps firstOpcode, ///< Opcode of first cast Instruction::CastOps secondOpcode, ///< Opcode of second cast const Type *SrcTy, ///< SrcTy of 1st cast const Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast const Type *DstTy, ///< DstTy of 2nd cast const Type *IntPtrTy ///< Integer type corresponding to Ptr types, or null ); /// @brief Return the opcode of this CastInst Instruction::CastOps getOpcode() const { return Instruction::CastOps(Instruction::getOpcode()); } /// @brief Return the source type, as a convenience const Type* getSrcTy() const { return getOperand(0)->getType(); } /// @brief Return the destination type, as a convenience const Type* getDestTy() const { return getType(); } /// This method can be used to determine if a cast from S to DstTy using /// Opcode op is valid or not. /// @returns true iff the proposed cast is valid. /// @brief Determine if a cast is valid without creating one. static bool castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy); /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const CastInst *) { return true; } static inline bool classof(const Instruction *I) { return I->isCast(); } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } }; //===----------------------------------------------------------------------===// // CmpInst Class //===----------------------------------------------------------------------===// /// This class is the base class for the comparison instructions. /// @brief Abstract base class of comparison instructions. class CmpInst : public Instruction { void *operator new(size_t, unsigned); // DO NOT IMPLEMENT CmpInst(); // do not implement protected: CmpInst(const Type *ty, Instruction::OtherOps op, unsigned short pred, Value *LHS, Value *RHS, const Twine &Name = "", Instruction *InsertBefore = 0); CmpInst(const Type *ty, Instruction::OtherOps op, unsigned short pred, Value *LHS, Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd); virtual void Anchor() const; // Out of line virtual method. public: /// This enumeration lists the possible predicates for CmpInst subclasses. /// Values in the range 0-31 are reserved for FCmpInst, while values in the /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the /// predicate values are not overlapping between the classes. enum Predicate { // Opcode U L G E Intuitive operation FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded) FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans) FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y) FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded) FIRST_FCMP_PREDICATE = FCMP_FALSE, LAST_FCMP_PREDICATE = FCMP_TRUE, BAD_FCMP_PREDICATE = FCMP_TRUE + 1, ICMP_EQ = 32, ///< equal ICMP_NE = 33, ///< not equal ICMP_UGT = 34, ///< unsigned greater than ICMP_UGE = 35, ///< unsigned greater or equal ICMP_ULT = 36, ///< unsigned less than ICMP_ULE = 37, ///< unsigned less or equal ICMP_SGT = 38, ///< signed greater than ICMP_SGE = 39, ///< signed greater or equal ICMP_SLT = 40, ///< signed less than ICMP_SLE = 41, ///< signed less or equal FIRST_ICMP_PREDICATE = ICMP_EQ, LAST_ICMP_PREDICATE = ICMP_SLE, BAD_ICMP_PREDICATE = ICMP_SLE + 1 }; // allocate space for exactly two operands void *operator new(size_t s) { return User::operator new(s, 2); } /// Construct a compare instruction, given the opcode, the predicate and /// the two operands. Optionally (if InstBefore is specified) insert the /// instruction into a BasicBlock right before the specified instruction. /// The specified Instruction is allowed to be a dereferenced end iterator. /// @brief Create a CmpInst static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name = "", Instruction *InsertBefore = 0); /// Construct a compare instruction, given the opcode, the predicate and the /// two operands. Also automatically insert this instruction to the end of /// the BasicBlock specified. /// @brief Create a CmpInst static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name, BasicBlock *InsertAtEnd); /// @brief Get the opcode casted to the right type OtherOps getOpcode() const { return static_cast<OtherOps>(Instruction::getOpcode()); } /// @brief Return the predicate for this instruction. Predicate getPredicate() const { return Predicate(getSubclassDataFromInstruction()); } /// @brief Set the predicate for this instruction to the specified value. void setPredicate(Predicate P) { setInstructionSubclassData(P); } static bool isFPPredicate(Predicate P) { return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE; } static bool isIntPredicate(Predicate P) { return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE; } bool isFPPredicate() const { return isFPPredicate(getPredicate()); } bool isIntPredicate() const { return isIntPredicate(getPredicate()); } /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. /// @returns the inverse predicate for the instruction's current predicate. /// @brief Return the inverse of the instruction's predicate. Predicate getInversePredicate() const { return getInversePredicate(getPredicate()); } /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE, /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc. /// @returns the inverse predicate for predicate provided in \p pred. /// @brief Return the inverse of a given predicate static Predicate getInversePredicate(Predicate pred); /// For example, EQ->EQ, SLE->SGE, ULT->UGT, /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc. /// @returns the predicate that would be the result of exchanging the two /// operands of the CmpInst instruction without changing the result /// produced. /// @brief Return the predicate as if the operands were swapped Predicate getSwappedPredicate() const { return getSwappedPredicate(getPredicate()); } /// This is a static version that you can use without an instruction /// available. /// @brief Return the predicate as if the operands were swapped. static Predicate getSwappedPredicate(Predicate pred); /// @brief Provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); /// This is just a convenience that dispatches to the subclasses. /// @brief Swap the operands and adjust predicate accordingly to retain /// the same comparison. void swapOperands(); /// This is just a convenience that dispatches to the subclasses. /// @brief Determine if this CmpInst is commutative. bool isCommutative() const; /// This is just a convenience that dispatches to the subclasses. /// @brief Determine if this is an equals/not equals predicate. bool isEquality() const; /// @returns true if the comparison is signed, false otherwise. /// @brief Determine if this instruction is using a signed comparison. bool isSigned() const { return isSigned(getPredicate()); } /// @returns true if the comparison is unsigned, false otherwise. /// @brief Determine if this instruction is using an unsigned comparison. bool isUnsigned() const { return isUnsigned(getPredicate()); } /// This is just a convenience. /// @brief Determine if this is true when both operands are the same. bool isTrueWhenEqual() const { return isTrueWhenEqual(getPredicate()); } /// This is just a convenience. /// @brief Determine if this is false when both operands are the same. bool isFalseWhenEqual() const { return isFalseWhenEqual(getPredicate()); } /// @returns true if the predicate is unsigned, false otherwise. /// @brief Determine if the predicate is an unsigned operation. static bool isUnsigned(unsigned short predicate); /// @returns true if the predicate is signed, false otherwise. /// @brief Determine if the predicate is an signed operation. static bool isSigned(unsigned short predicate); /// @brief Determine if the predicate is an ordered operation. static bool isOrdered(unsigned short predicate); /// @brief Determine if the predicate is an unordered operation. static bool isUnordered(unsigned short predicate); /// Determine if the predicate is true when comparing a value with itself. static bool isTrueWhenEqual(unsigned short predicate); /// Determine if the predicate is false when comparing a value with itself. static bool isFalseWhenEqual(unsigned short predicate); /// @brief Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const CmpInst *) { return true; } static inline bool classof(const Instruction *I) { return I->getOpcode() == Instruction::ICmp || I->getOpcode() == Instruction::FCmp; } static inline bool classof(const Value *V) { return isa<Instruction>(V) && classof(cast<Instruction>(V)); } /// @brief Create a result type for fcmp/icmp static const Type* makeCmpResultType(const Type* opnd_type) { if (const VectorType* vt = dyn_cast<const VectorType>(opnd_type)) { return VectorType::get(Type::getInt1Ty(opnd_type->getContext()), vt->getNumElements()); } return Type::getInt1Ty(opnd_type->getContext()); } private: // Shadow Value::setValueSubclassData with a private forwarding method so that // subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } }; // FIXME: these are redundant if CmpInst < BinaryOperator template <> struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value) } // End llvm namespace #endif