//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "LoopVectorize.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AliasSetTracker.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/Verifier.h" #include "llvm/Constants.h" #include "llvm/DataLayout.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/IntrinsicInst.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetTransformInfo.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Vectorize.h" #include "llvm/Type.h" #include "llvm/Value.h" static cl::opt VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, cl::desc("Sets the SIMD width. Zero is autoselect.")); static cl::opt EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, cl::desc("Enable if-conversion during vectorization.")); namespace { /// The LoopVectorize Pass. struct LoopVectorize : public LoopPass { /// Pass identification, replacement for typeid static char ID; explicit LoopVectorize() : LoopPass(ID) { initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); } ScalarEvolution *SE; DataLayout *DL; LoopInfo *LI; TargetTransformInfo *TTI; DominatorTree *DT; virtual bool runOnLoop(Loop *L, LPPassManager &LPM) { // We only vectorize innermost loops. if (!L->empty()) return false; SE = &getAnalysis(); DL = getAnalysisIfAvailable(); LI = &getAnalysis(); TTI = getAnalysisIfAvailable(); DT = &getAnalysis(); DEBUG(dbgs() << "LV: Checking a loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"); // Check if it is legal to vectorize the loop. LoopVectorizationLegality LVL(L, SE, DL, DT); if (!LVL.canVectorize()) { DEBUG(dbgs() << "LV: Not vectorizing.\n"); return false; } // Select the preffered vectorization factor. const VectorTargetTransformInfo *VTTI = 0; if (TTI) VTTI = TTI->getVectorTargetTransformInfo(); // Use the cost model. LoopVectorizationCostModel CM(L, SE, &LVL, VTTI); // Check the function attribues to find out if this function should be // optimized for size. Function *F = L->getHeader()->getParent(); Attribute::AttrKind SzAttr= Attribute::OptimizeForSize; bool OptForSize = F->getFnAttributes().hasAttribute(SzAttr); unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor); if (VF == 1) { DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); return false; } DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<< F->getParent()->getModuleIdentifier()<<"\n"); // If we decided that it is *legal* to vectorizer the loop then do it. InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF); LB.vectorize(&LVL); DEBUG(verifyFunction(*L->getHeader()->getParent())); return true; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { LoopPass::getAnalysisUsage(AU); AU.addRequiredID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } }; }// namespace //===----------------------------------------------------------------------===// // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and // LoopVectorizationCostModel. //===----------------------------------------------------------------------===// void LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr) { const SCEV *Sc = SE->getSCEV(Ptr); const SCEVAddRecExpr *AR = dyn_cast(Sc); assert(AR && "Invalid addrec expression"); const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch()); const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); Pointers.push_back(Ptr); Starts.push_back(AR->getStart()); Ends.push_back(ScEnd); } Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { // Create the types. LLVMContext &C = V->getContext(); Type *VTy = VectorType::get(V->getType(), VF); Type *I32 = IntegerType::getInt32Ty(C); // Save the current insertion location. Instruction *Loc = Builder.GetInsertPoint(); // We need to place the broadcast of invariant variables outside the loop. Instruction *Instr = dyn_cast(V); bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; // Place the code for broadcasting invariant variables in the new preheader. if (Invariant) Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); Constant *Zero = ConstantInt::get(I32, 0); Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF)); Value *UndefVal = UndefValue::get(VTy); // Insert the value into a new vector. Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero); // Broadcast the scalar into all locations in the vector. Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros, "broadcast"); // Restore the builder insertion point. if (Invariant) Builder.SetInsertPoint(Loc); return Shuf; } Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, bool Negate) { assert(Val->getType()->isVectorTy() && "Must be a vector"); assert(Val->getType()->getScalarType()->isIntegerTy() && "Elem must be an integer"); // Create the types. Type *ITy = Val->getType()->getScalarType(); VectorType *Ty = cast(Val->getType()); int VLen = Ty->getNumElements(); SmallVector Indices; // Create a vector of consecutive numbers from zero to VF. for (int i = 0; i < VLen; ++i) Indices.push_back(ConstantInt::get(ITy, Negate ? (-i): i )); // Add the consecutive indices to the vector value. Constant *Cv = ConstantVector::get(Indices); assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); return Builder.CreateAdd(Val, Cv, "induction"); } bool LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr"); // If this value is a pointer induction variable we know it is consecutive. PHINode *Phi = dyn_cast_or_null(Ptr); if (Phi && Inductions.count(Phi)) { InductionInfo II = Inductions[Phi]; if (PtrInduction == II.IK) return true; } GetElementPtrInst *Gep = dyn_cast_or_null(Ptr); if (!Gep) return false; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = Gep->getOperand(NumOperands - 1); // Check that all of the gep indices are uniform except for the last. for (unsigned i = 0; i < NumOperands - 1; ++i) if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) return false; // We can emit wide load/stores only if the last index is the induction // variable. const SCEV *Last = SE->getSCEV(LastIndex); if (const SCEVAddRecExpr *AR = dyn_cast(Last)) { const SCEV *Step = AR->getStepRecurrence(*SE); // The memory is consecutive because the last index is consecutive // and all other indices are loop invariant. if (Step->isOne()) return true; } return false; } bool LoopVectorizationLegality::isUniform(Value *V) { return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); } Value *InnerLoopVectorizer::getVectorValue(Value *V) { assert(V != Induction && "The new induction variable should not be used."); assert(!V->getType()->isVectorTy() && "Can't widen a vector"); // If we saved a vectorized copy of V, use it. Value *&MapEntry = WidenMap[V]; if (MapEntry) return MapEntry; // Broadcast V and save the value for future uses. Value *B = getBroadcastInstrs(V); MapEntry = B; return B; } Constant* InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) { return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true)); } void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) { assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); // Holds vector parameters or scalars, in case of uniform vals. SmallVector Params; // Find all of the vectorized parameters. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *SrcOp = Instr->getOperand(op); // If we are accessing the old induction variable, use the new one. if (SrcOp == OldInduction) { Params.push_back(getVectorValue(SrcOp)); continue; } // Try using previously calculated values. Instruction *SrcInst = dyn_cast(SrcOp); // If the src is an instruction that appeared earlier in the basic block // then it should already be vectorized. if (SrcInst && OrigLoop->contains(SrcInst)) { assert(WidenMap.count(SrcInst) && "Source operand is unavailable"); // The parameter is a vector value from earlier. Params.push_back(WidenMap[SrcInst]); } else { // The parameter is a scalar from outside the loop. Maybe even a constant. Params.push_back(SrcOp); } } assert(Params.size() == Instr->getNumOperands() && "Invalid number of operands"); // Does this instruction return a value ? bool IsVoidRetTy = Instr->getType()->isVoidTy(); Value *VecResults = 0; // If we have a return value, create an empty vector. We place the scalarized // instructions in this vector. if (!IsVoidRetTy) VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF)); // For each scalar that we create: for (unsigned i = 0; i < VF; ++i) { Instruction *Cloned = Instr->clone(); if (!IsVoidRetTy) Cloned->setName(Instr->getName() + ".cloned"); // Replace the operands of the cloned instrucions with extracted scalars. for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { Value *Op = Params[op]; // Param is a vector. Need to extract the right lane. if (Op->getType()->isVectorTy()) Op = Builder.CreateExtractElement(Op, Builder.getInt32(i)); Cloned->setOperand(op, Op); } // Place the cloned scalar in the new loop. Builder.Insert(Cloned); // If the original scalar returns a value we need to place it in a vector // so that future users will be able to use it. if (!IsVoidRetTy) VecResults = Builder.CreateInsertElement(VecResults, Cloned, Builder.getInt32(i)); } if (!IsVoidRetTy) WidenMap[Instr] = VecResults; } Value* InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal, Instruction *Loc) { LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = Legal->getRuntimePointerCheck(); if (!PtrRtCheck->Need) return NULL; Value *MemoryRuntimeCheck = 0; unsigned NumPointers = PtrRtCheck->Pointers.size(); SmallVector Starts; SmallVector Ends; SCEVExpander Exp(*SE, "induction"); // Use this type for pointer arithmetic. Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0); for (unsigned i = 0; i < NumPointers; ++i) { Value *Ptr = PtrRtCheck->Pointers[i]; const SCEV *Sc = SE->getSCEV(Ptr); if (SE->isLoopInvariant(Sc, OrigLoop)) { DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << *Ptr <<"\n"); Starts.push_back(Ptr); Ends.push_back(Ptr); } else { DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n"); Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); Starts.push_back(Start); Ends.push_back(End); } } for (unsigned i = 0; i < NumPointers; ++i) { for (unsigned j = i+1; j < NumPointers; ++j) { Instruction::CastOps Op = Instruction::BitCast; Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc); Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc); Value *End0 = CastInst::Create(Op, Ends[i], PtrArithTy, "bc", Loc); Value *End1 = CastInst::Create(Op, Ends[j], PtrArithTy, "bc", Loc); Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE, Start0, End1, "bound0", Loc); Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE, Start1, End0, "bound1", Loc); Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1, "found.conflict", Loc); if (MemoryRuntimeCheck) MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or, MemoryRuntimeCheck, IsConflict, "conflict.rdx", Loc); else MemoryRuntimeCheck = IsConflict; } } return MemoryRuntimeCheck; } void InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) { /* In this function we generate a new loop. The new loop will contain the vectorized instructions while the old loop will continue to run the scalar remainder. [ ] <-- vector loop bypass. / | / v | [ ] <-- vector pre header. | | | v | [ ] \ | [ ]_| <-- vector loop. | | \ v >[ ] <--- middle-block. / | / v | [ ] <--- new preheader. | | | v | [ ] \ | [ ]_| <-- old scalar loop to handle remainder. \ | \ v >[ ] <-- exit block. ... */ BasicBlock *OldBasicBlock = OrigLoop->getHeader(); BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); BasicBlock *ExitBlock = OrigLoop->getExitBlock(); assert(ExitBlock && "Must have an exit block"); // Some loops have a single integer induction variable, while other loops // don't. One example is c++ iterators that often have multiple pointer // induction variables. In the code below we also support a case where we // don't have a single induction variable. OldInduction = Legal->getInduction(); Type *IdxTy = OldInduction ? OldInduction->getType() : DL->getIntPtrType(SE->getContext()); // Find the loop boundaries. const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch()); assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); // Get the total trip count from the count by adding 1. ExitCount = SE->getAddExpr(ExitCount, SE->getConstant(ExitCount->getType(), 1)); // Expand the trip count and place the new instructions in the preheader. // Notice that the pre-header does not change, only the loop body. SCEVExpander Exp(*SE, "induction"); // Count holds the overall loop count (N). Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), BypassBlock->getTerminator()); // The loop index does not have to start at Zero. Find the original start // value from the induction PHI node. If we don't have an induction variable // then we know that it starts at zero. Value *StartIdx = OldInduction ? OldInduction->getIncomingValueForBlock(BypassBlock): ConstantInt::get(IdxTy, 0); assert(BypassBlock && "Invalid loop structure"); // Generate the code that checks in runtime if arrays overlap. Value *MemoryRuntimeCheck = addRuntimeCheck(Legal, BypassBlock->getTerminator()); // Split the single block loop into the two loop structure described above. BasicBlock *VectorPH = BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); BasicBlock *ScalarPH = MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); // This is the location in which we add all of the logic for bypassing // the new vector loop. Instruction *Loc = BypassBlock->getTerminator(); // Use this IR builder to create the loop instructions (Phi, Br, Cmp) // inside the loop. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Generate the induction variable. Induction = Builder.CreatePHI(IdxTy, 2, "index"); Constant *Step = ConstantInt::get(IdxTy, VF); // We may need to extend the index in case there is a type mismatch. // We know that the count starts at zero and does not overflow. if (Count->getType() != IdxTy) { // The exit count can be of pointer type. Convert it to the correct // integer type. if (ExitCount->getType()->isPointerTy()) Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc); else Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc); } // Add the start index to the loop count to get the new end index. Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc); // Now we need to generate the expression for N - (N % VF), which is // the part that the vectorized body will execute. Constant *CIVF = ConstantInt::get(IdxTy, VF); Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc); Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc); Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx, "end.idx.rnd.down", Loc); // Now, compare the new count to zero. If it is zero skip the vector loop and // jump to the scalar loop. Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEndRoundDown, StartIdx, "cmp.zero", Loc); // If we are using memory runtime checks, include them in. if (MemoryRuntimeCheck) Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck, "CntOrMem", Loc); BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc); // Remove the old terminator. Loc->eraseFromParent(); // We are going to resume the execution of the scalar loop. // Go over all of the induction variables that we found and fix the // PHIs that are left in the scalar version of the loop. // The starting values of PHI nodes depend on the counter of the last // iteration in the vectorized loop. // If we come from a bypass edge then we need to start from the original // start value. // This variable saves the new starting index for the scalar loop. PHINode *ResumeIndex = 0; LoopVectorizationLegality::InductionList::iterator I, E; LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); for (I = List->begin(), E = List->end(); I != E; ++I) { PHINode *OrigPhi = I->first; LoopVectorizationLegality::InductionInfo II = I->second; PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val", MiddleBlock->getTerminator()); Value *EndValue = 0; switch (II.IK) { case LoopVectorizationLegality::NoInduction: llvm_unreachable("Unknown induction"); case LoopVectorizationLegality::IntInduction: { // Handle the integer induction counter: assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); assert(OrigPhi == OldInduction && "Unknown integer PHI"); // We know what the end value is. EndValue = IdxEndRoundDown; // We also know which PHI node holds it. ResumeIndex = ResumeVal; break; } case LoopVectorizationLegality::ReverseIntInduction: { // Convert the CountRoundDown variable to the PHI size. unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits(); unsigned IISize = II.StartValue->getType()->getScalarSizeInBits(); Value *CRD = CountRoundDown; if (CRDSize > IISize) CRD = CastInst::Create(Instruction::Trunc, CountRoundDown, II.StartValue->getType(), "tr.crd", BypassBlock->getTerminator()); else if (CRDSize < IISize) CRD = CastInst::Create(Instruction::SExt, CountRoundDown, II.StartValue->getType(), "sext.crd", BypassBlock->getTerminator()); // Handle reverse integer induction counter: EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end", BypassBlock->getTerminator()); break; } case LoopVectorizationLegality::PtrInduction: { // For pointer induction variables, calculate the offset using // the end index. EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end", BypassBlock->getTerminator()); break; } }// end of case // The new PHI merges the original incoming value, in case of a bypass, // or the value at the end of the vectorized loop. ResumeVal->addIncoming(II.StartValue, BypassBlock); ResumeVal->addIncoming(EndValue, VecBody); // Fix the scalar body counter (PHI node). unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); OrigPhi->setIncomingValue(BlockIdx, ResumeVal); } // If we are generating a new induction variable then we also need to // generate the code that calculates the exit value. This value is not // simply the end of the counter because we may skip the vectorized body // in case of a runtime check. if (!OldInduction){ assert(!ResumeIndex && "Unexpected resume value found"); ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", MiddleBlock->getTerminator()); ResumeIndex->addIncoming(StartIdx, BypassBlock); ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); } // Make sure that we found the index where scalar loop needs to continue. assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && "Invalid resume Index"); // Add a check in the middle block to see if we have completed // all of the iterations in the first vector loop. // If (N - N%VF) == N, then we *don't* need to run the remainder. Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, ResumeIndex, "cmp.n", MiddleBlock->getTerminator()); BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); // Remove the old terminator. MiddleBlock->getTerminator()->eraseFromParent(); // Create i+1 and fill the PHINode. Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); Induction->addIncoming(StartIdx, VectorPH); Induction->addIncoming(NextIdx, VecBody); // Create the compare. Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); // Now we have two terminators. Remove the old one from the block. VecBody->getTerminator()->eraseFromParent(); // Get ready to start creating new instructions into the vectorized body. Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); // Create and register the new vector loop. Loop* Lp = new Loop(); Loop *ParentLoop = OrigLoop->getParentLoop(); // Insert the new loop into the loop nest and register the new basic blocks. if (ParentLoop) { ParentLoop->addChildLoop(Lp); ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); } else { LI->addTopLevelLoop(Lp); } Lp->addBasicBlockToLoop(VecBody, LI->getBase()); // Save the state. LoopVectorPreHeader = VectorPH; LoopScalarPreHeader = ScalarPH; LoopMiddleBlock = MiddleBlock; LoopExitBlock = ExitBlock; LoopVectorBody = VecBody; LoopScalarBody = OldBasicBlock; LoopBypassBlock = BypassBlock; } /// This function returns the identity element (or neutral element) for /// the operation K. static unsigned getReductionIdentity(LoopVectorizationLegality::ReductionKind K) { switch (K) { case LoopVectorizationLegality::IntegerXor: case LoopVectorizationLegality::IntegerAdd: case LoopVectorizationLegality::IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return 0; case LoopVectorizationLegality::IntegerMult: // Multiplying a number by 1 does not change it. return 1; case LoopVectorizationLegality::IntegerAnd: // AND-ing a number with an all-1 value does not change it. return -1; default: llvm_unreachable("Unknown reduction kind"); } } static bool isTriviallyVectorizableIntrinsic(Instruction *Inst) { IntrinsicInst *II = dyn_cast(Inst); if (!II) return false; switch (II->getIntrinsicID()) { case Intrinsic::sqrt: case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::log: case Intrinsic::log10: case Intrinsic::log2: case Intrinsic::fabs: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::pow: case Intrinsic::fma: return true; default: return false; } return false; } void InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) { //===------------------------------------------------===// // // Notice: any optimization or new instruction that go // into the code below should be also be implemented in // the cost-model. // //===------------------------------------------------===// BasicBlock &BB = *OrigLoop->getHeader(); Constant *Zero = ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0); // In order to support reduction variables we need to be able to vectorize // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two // stages. First, we create a new vector PHI node with no incoming edges. // We use this value when we vectorize all of the instructions that use the // PHI. Next, after all of the instructions in the block are complete we // add the new incoming edges to the PHI. At this point all of the // instructions in the basic block are vectorized, so we can use them to // construct the PHI. PhiVector RdxPHIsToFix; // Scan the loop in a topological order to ensure that defs are vectorized // before users. LoopBlocksDFS DFS(OrigLoop); DFS.perform(LI); // Vectorize all of the blocks in the original loop. for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); bb != be; ++bb) vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix); // At this point every instruction in the original loop is widened to // a vector form. We are almost done. Now, we need to fix the PHI nodes // that we vectorized. The PHI nodes are currently empty because we did // not want to introduce cycles. Notice that the remaining PHI nodes // that we need to fix are reduction variables. // Create the 'reduced' values for each of the induction vars. // The reduced values are the vector values that we scalarize and combine // after the loop is finished. for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); it != e; ++it) { PHINode *RdxPhi = *it; PHINode *VecRdxPhi = dyn_cast(WidenMap[RdxPhi]); assert(RdxPhi && "Unable to recover vectorized PHI"); // Find the reduction variable descriptor. assert(Legal->getReductionVars()->count(RdxPhi) && "Unable to find the reduction variable"); LoopVectorizationLegality::ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi]; // We need to generate a reduction vector from the incoming scalar. // To do so, we need to generate the 'identity' vector and overide // one of the elements with the incoming scalar reduction. We need // to do it in the vector-loop preheader. Builder.SetInsertPoint(LoopBypassBlock->getTerminator()); // This is the vector-clone of the value that leaves the loop. Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr); Type *VecTy = VectorExit->getType(); // Find the reduction identity variable. Zero for addition, or, xor, // one for multiplication, -1 for And. Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind), VecTy->getScalarType()); // This vector is the Identity vector where the first element is the // incoming scalar reduction. Value *VectorStart = Builder.CreateInsertElement(Identity, RdxDesc.StartValue, Zero); // Fix the vector-loop phi. // We created the induction variable so we know that the // preheader is the first entry. BasicBlock *VecPreheader = Induction->getIncomingBlock(0); // Reductions do not have to start at zero. They can start with // any loop invariant values. VecRdxPhi->addIncoming(VectorStart, VecPreheader); Value *Val = getVectorValue(RdxPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch())); VecRdxPhi->addIncoming(Val, LoopVectorBody); // Before each round, move the insertion point right between // the PHIs and the values we are going to write. // This allows us to write both PHINodes and the extractelement // instructions. Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); // This PHINode contains the vectorized reduction variable, or // the initial value vector, if we bypass the vector loop. PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); NewPhi->addIncoming(VectorStart, LoopBypassBlock); NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody); // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles // and vector ops, reducing the set of values being computed by half each // round. assert(isPowerOf2_32(VF) && "Reduction emission only supported for pow2 vectors!"); Value *TmpVec = NewPhi; SmallVector ShuffleMask(VF, 0); for (unsigned i = VF; i != 1; i >>= 1) { // Move the upper half of the vector to the lower half. for (unsigned j = 0; j != i/2; ++j) ShuffleMask[j] = Builder.getInt32(i/2 + j); // Fill the rest of the mask with undef. std::fill(&ShuffleMask[i/2], ShuffleMask.end(), UndefValue::get(Builder.getInt32Ty())); Value *Shuf = Builder.CreateShuffleVector(TmpVec, UndefValue::get(TmpVec->getType()), ConstantVector::get(ShuffleMask), "rdx.shuf"); // Emit the operation on the shuffled value. switch (RdxDesc.Kind) { case LoopVectorizationLegality::IntegerAdd: TmpVec = Builder.CreateAdd(TmpVec, Shuf, "add.rdx"); break; case LoopVectorizationLegality::IntegerMult: TmpVec = Builder.CreateMul(TmpVec, Shuf, "mul.rdx"); break; case LoopVectorizationLegality::IntegerOr: TmpVec = Builder.CreateOr(TmpVec, Shuf, "or.rdx"); break; case LoopVectorizationLegality::IntegerAnd: TmpVec = Builder.CreateAnd(TmpVec, Shuf, "and.rdx"); break; case LoopVectorizationLegality::IntegerXor: TmpVec = Builder.CreateXor(TmpVec, Shuf, "xor.rdx"); break; default: llvm_unreachable("Unknown reduction operation"); } } // The result is in the first element of the vector. Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); // Now, we need to fix the users of the reduction variable // inside and outside of the scalar remainder loop. // We know that the loop is in LCSSA form. We need to update the // PHI nodes in the exit blocks. for (BasicBlock::iterator LEI = LoopExitBlock->begin(), LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { PHINode *LCSSAPhi = dyn_cast(LEI); if (!LCSSAPhi) continue; // All PHINodes need to have a single entry edge, or two if // we already fixed them. assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); // We found our reduction value exit-PHI. Update it with the // incoming bypass edge. if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { // Add an edge coming from the bypass. LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock); break; } }// end of the LCSSA phi scan. // Fix the scalar loop reduction variable with the incoming reduction sum // from the vector body and from the backedge value. int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); // Pick the other block. int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0); (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); }// end of for each redux variable. } Value *InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && "Invalid edge"); Value *SrcMask = createBlockInMask(Src); // The terminator has to be a branch inst! BranchInst *BI = dyn_cast(Src->getTerminator()); assert(BI && "Unexpected terminator found"); Value *EdgeMask = SrcMask; if (BI->isConditional()) { EdgeMask = getVectorValue(BI->getCondition()); if (BI->getSuccessor(0) != Dst) EdgeMask = Builder.CreateNot(EdgeMask); } return Builder.CreateAnd(EdgeMask, SrcMask); } Value *InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); // Loop incoming mask is all-one. if (OrigLoop->getHeader() == BB) { Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); return getVectorValue(C); } // This is the block mask. We OR all incoming edges, and with zero. Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); Value *BlockMask = getVectorValue(Zero); // For each pred: for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) BlockMask = Builder.CreateOr(BlockMask, createEdgeMask(*it, BB)); return BlockMask; } void InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB, PhiVector *PV) { Constant *Zero = ConstantInt::get(IntegerType::getInt32Ty(BB->getContext()), 0); // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { switch (it->getOpcode()) { case Instruction::Br: // Nothing to do for PHIs and BR, since we already took care of the // loop control flow instructions. continue; case Instruction::PHI:{ PHINode* P = cast(it); // Handle reduction variables: if (Legal->getReductionVars()->count(P)) { // This is phase one of vectorizing PHIs. Type *VecTy = VectorType::get(it->getType(), VF); WidenMap[it] = PHINode::Create(VecTy, 2, "vec.phi", LoopVectorBody->getFirstInsertionPt()); PV->push_back(P); continue; } // Check for PHI nodes that are lowered to vector selects. if (P->getParent() != OrigLoop->getHeader()) { // We know that all PHIs in non header blocks are converted into // selects, so we don't have to worry about the insertion order and we // can just use the builder. // At this point we generate the predication tree. There may be // duplications since this is a simple recursive scan, but future // optimizations will clean it up. Value *Cond = createEdgeMask(P->getIncomingBlock(0), P->getParent()); WidenMap[P] = Builder.CreateSelect(Cond, getVectorValue(P->getIncomingValue(0)), getVectorValue(P->getIncomingValue(1)), "predphi"); continue; } // This PHINode must be an induction variable. // Make sure that we know about it. assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); LoopVectorizationLegality::InductionInfo II = Legal->getInductionVars()->lookup(P); switch (II.IK) { case LoopVectorizationLegality::NoInduction: llvm_unreachable("Unknown induction"); case LoopVectorizationLegality::IntInduction: { assert(P == OldInduction && "Unexpected PHI"); Value *Broadcasted = getBroadcastInstrs(Induction); // After broadcasting the induction variable we need to make the // vector consecutive by adding 0, 1, 2 ... Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted); WidenMap[OldInduction] = ConsecutiveInduction; continue; } case LoopVectorizationLegality::ReverseIntInduction: case LoopVectorizationLegality::PtrInduction: // Handle reverse integer and pointer inductions. Value *StartIdx = 0; // If we have a single integer induction variable then use it. // Otherwise, start counting at zero. if (OldInduction) { LoopVectorizationLegality::InductionInfo OldII = Legal->getInductionVars()->lookup(OldInduction); StartIdx = OldII.StartValue; } else { StartIdx = ConstantInt::get(Induction->getType(), 0); } // This is the normalized GEP that starts counting at zero. Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, "normalized.idx"); // Handle the reverse integer induction variable case. if (LoopVectorizationLegality::ReverseIntInduction == II.IK) { IntegerType *DstTy = cast(II.StartValue->getType()); Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, "resize.norm.idx"); Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, "reverse.idx"); // This is a new value so do not hoist it out. Value *Broadcasted = getBroadcastInstrs(ReverseInd); // After broadcasting the induction variable we need to make the // vector consecutive by adding ... -3, -2, -1, 0. Value *ConsecutiveInduction = getConsecutiveVector(Broadcasted, true); WidenMap[it] = ConsecutiveInduction; continue; } // Handle the pointer induction variable case. assert(P->getType()->isPointerTy() && "Unexpected type."); // This is the vector of results. Notice that we don't generate // vector geps because scalar geps result in better code. Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); for (unsigned int i = 0; i < VF; ++i) { Constant *Idx = ConstantInt::get(Induction->getType(), i); Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, "next.gep"); VecVal = Builder.CreateInsertElement(VecVal, SclrGep, Builder.getInt32(i), "insert.gep"); } WidenMap[it] = VecVal; continue; } }// End of PHI. case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Just widen binops. BinaryOperator *BinOp = dyn_cast(it); Value *A = getVectorValue(it->getOperand(0)); Value *B = getVectorValue(it->getOperand(1)); // Use this vector value for all users of the original instruction. Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); WidenMap[it] = V; // Update the NSW, NUW and Exact flags. BinaryOperator *VecOp = cast(V); if (isa(BinOp)) { VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap()); VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap()); } if (isa(VecOp)) VecOp->setIsExact(BinOp->isExact()); break; } case Instruction::Select: { // Widen selects. // If the selector is loop invariant we can create a select // instruction with a scalar condition. Otherwise, use vector-select. Value *Cond = it->getOperand(0); bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop); // The condition can be loop invariant but still defined inside the // loop. This means that we can't just use the original 'cond' value. // We have to take the 'vectorized' value and pick the first lane. // Instcombine will make this a no-op. Cond = getVectorValue(Cond); if (InvariantCond) Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0)); Value *Op0 = getVectorValue(it->getOperand(1)); Value *Op1 = getVectorValue(it->getOperand(2)); WidenMap[it] = Builder.CreateSelect(Cond, Op0, Op1); break; } case Instruction::ICmp: case Instruction::FCmp: { // Widen compares. Generate vector compares. bool FCmp = (it->getOpcode() == Instruction::FCmp); CmpInst *Cmp = dyn_cast(it); Value *A = getVectorValue(it->getOperand(0)); Value *B = getVectorValue(it->getOperand(1)); if (FCmp) WidenMap[it] = Builder.CreateFCmp(Cmp->getPredicate(), A, B); else WidenMap[it] = Builder.CreateICmp(Cmp->getPredicate(), A, B); break; } case Instruction::Store: { // Attempt to issue a wide store. StoreInst *SI = dyn_cast(it); Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF); Value *Ptr = SI->getPointerOperand(); unsigned Alignment = SI->getAlignment(); assert(!Legal->isUniform(Ptr) && "We do not allow storing to uniform addresses"); GetElementPtrInst *Gep = dyn_cast(Ptr); // This store does not use GEPs. if (!Legal->isConsecutivePtr(Ptr)) { scalarizeInstruction(it); break; } if (Gep) { // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands - 1)); LastIndex = Builder.CreateExtractElement(LastIndex, Zero); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(NumOperands - 1, LastIndex); Ptr = Builder.Insert(Gep2); } else { // Use the induction element ptr. assert(isa(Ptr) && "Invalid induction ptr"); Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero); } Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo()); Value *Val = getVectorValue(SI->getValueOperand()); Builder.CreateStore(Val, Ptr)->setAlignment(Alignment); break; } case Instruction::Load: { // Attempt to issue a wide load. LoadInst *LI = dyn_cast(it); Type *RetTy = VectorType::get(LI->getType(), VF); Value *Ptr = LI->getPointerOperand(); unsigned Alignment = LI->getAlignment(); GetElementPtrInst *Gep = dyn_cast(Ptr); // If the pointer is loop invariant or if it is non consecutive, // scalarize the load. bool Con = Legal->isConsecutivePtr(Ptr); if (Legal->isUniform(Ptr) || !Con) { scalarizeInstruction(it); break; } if (Gep) { // The last index does not have to be the induction. It can be // consecutive and be a function of the index. For example A[I+1]; unsigned NumOperands = Gep->getNumOperands(); Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1)); LastIndex = Builder.CreateExtractElement(LastIndex, Zero); // Create the new GEP with the new induction variable. GetElementPtrInst *Gep2 = cast(Gep->clone()); Gep2->setOperand(NumOperands - 1, LastIndex); Ptr = Builder.Insert(Gep2); } else { // Use the induction element ptr. assert(isa(Ptr) && "Invalid induction ptr"); Ptr = Builder.CreateExtractElement(getVectorValue(Ptr), Zero); } Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo()); LI = Builder.CreateLoad(Ptr); LI->setAlignment(Alignment); // Use this vector value for all users of the load. WidenMap[it] = LI; break; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { CastInst *CI = dyn_cast(it); /// Optimize the special case where the source is the induction /// variable. Notice that we can only optimize the 'trunc' case /// because: a. FP conversions lose precision, b. sext/zext may wrap, /// c. other casts depend on pointer size. if (CI->getOperand(0) == OldInduction && it->getOpcode() == Instruction::Trunc) { Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); Value *Broadcasted = getBroadcastInstrs(ScalarCast); WidenMap[it] = getConsecutiveVector(Broadcasted); break; } /// Vectorize casts. Value *A = getVectorValue(it->getOperand(0)); Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF); WidenMap[it] = Builder.CreateCast(CI->getOpcode(), A, DestTy); break; } case Instruction::Call: { assert(isTriviallyVectorizableIntrinsic(it)); Module *M = BB->getParent()->getParent(); IntrinsicInst *II = cast(it); Intrinsic::ID ID = II->getIntrinsicID(); SmallVector Args; for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) Args.push_back(getVectorValue(II->getArgOperand(i))); Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) }; Function *F = Intrinsic::getDeclaration(M, ID, Tys); WidenMap[it] = Builder.CreateCall(F, Args); break; } default: // All other instructions are unsupported. Scalarize them. scalarizeInstruction(it); break; }// end of switch. }// end of for_each instr. } void InnerLoopVectorizer::updateAnalysis() { // Forget the original basic block. SE->forgetLoop(OrigLoop); // Update the dominator tree information. assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) && "Entry does not dominate exit."); DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock); DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock); DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock); DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); DEBUG(DT->verifyAnalysis()); } bool LoopVectorizationLegality::canVectorizeWithIfConvert() { if (!EnableIfConversion) return false; assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); std::vector &LoopBlocks = TheLoop->getBlocksVector(); // Collect the blocks that need predication. for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) { BasicBlock *BB = LoopBlocks[i]; // We don't support switch statements inside loops. if (!isa(BB->getTerminator())) return false; // We must have at most two predecessors because we need to convert // all PHIs to selects. unsigned Preds = std::distance(pred_begin(BB), pred_end(BB)); if (Preds > 2) return false; // We must be able to predicate all blocks that need to be predicated. if (blockNeedsPredication(BB) && !blockCanBePredicated(BB)) return false; } // We can if-convert this loop. return true; } bool LoopVectorizationLegality::canVectorize() { assert(TheLoop->getLoopPreheader() && "No preheader!!"); // We can only vectorize innermost loops. if (TheLoop->getSubLoopsVector().size()) return false; // We must have a single backedge. if (TheLoop->getNumBackEdges() != 1) return false; // We must have a single exiting block. if (!TheLoop->getExitingBlock()) return false; unsigned NumBlocks = TheLoop->getNumBlocks(); // Check if we can if-convert non single-bb loops. if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); return false; } // We need to have a loop header. BasicBlock *Latch = TheLoop->getLoopLatch(); DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() << "\n"); // ScalarEvolution needs to be able to find the exit count. const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch); if (ExitCount == SE->getCouldNotCompute()) { DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); return false; } // Do not loop-vectorize loops with a tiny trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch); if (TC > 0u && TC < TinyTripCountThreshold) { DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is not worth vectorizing.\n"); return false; } // Check if we can vectorize the instructions and CFG in this loop. if (!canVectorizeInstrs()) { DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); return false; } // Go over each instruction and look at memory deps. if (!canVectorizeMemory()) { DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); return false; } // Collect all of the variables that remain uniform after vectorization. collectLoopUniforms(); DEBUG(dbgs() << "LV: We can vectorize this loop" << (PtrRtCheck.Need ? " (with a runtime bound check)" : "") <<"!\n"); // Okay! We can vectorize. At this point we don't have any other mem analysis // which may limit our maximum vectorization factor, so just return true with // no restrictions. return true; } bool LoopVectorizationLegality::canVectorizeInstrs() { BasicBlock *PreHeader = TheLoop->getLoopPreheader(); BasicBlock *Header = TheLoop->getHeader(); // For each block in the loop. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { // Scan the instructions in the block and look for hazards. for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { if (PHINode *Phi = dyn_cast(it)) { // This should not happen because the loop should be normalized. if (Phi->getNumIncomingValues() != 2) { DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); return false; } // Check that this PHI type is allowed. if (!Phi->getType()->isIntegerTy() && !Phi->getType()->isPointerTy()) { DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); return false; } // If this PHINode is not in the header block, then we know that we // can convert it to select during if-conversion. No need to check if // the PHIs in this block are induction or reduction variables. if (*bb != Header) continue; // This is the value coming from the preheader. Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); // Check if this is an induction variable. InductionKind IK = isInductionVariable(Phi); if (NoInduction != IK) { // Int inductions are special because we only allow one IV. if (IK == IntInduction) { if (Induction) { DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n"); return false; } Induction = Phi; } DEBUG(dbgs() << "LV: Found an induction variable.\n"); Inductions[Phi] = InductionInfo(StartValue, IK); continue; } if (AddReductionVar(Phi, IntegerAdd)) { DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerMult)) { DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerOr)) { DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerAnd)) { DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); continue; } if (AddReductionVar(Phi, IntegerXor)) { DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); continue; } DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); return false; }// end of PHI handling // We still don't handle functions. CallInst *CI = dyn_cast(it); if (CI && !isTriviallyVectorizableIntrinsic(it)) { DEBUG(dbgs() << "LV: Found a call site.\n"); return false; } // We do not re-vectorize vectors. if (!VectorType::isValidElementType(it->getType()) && !it->getType()->isVoidTy()) { DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n"); return false; } // Reduction instructions are allowed to have exit users. // All other instructions must not have external users. if (!AllowedExit.count(it)) //Check that all of the users of the loop are inside the BB. for (Value::use_iterator I = it->use_begin(), E = it->use_end(); I != E; ++I) { Instruction *U = cast(*I); // This user may be a reduction exit value. if (!TheLoop->contains(U)) { DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n"); return false; } } } // next instr. } if (!Induction) { DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); assert(getInductionVars()->size() && "No induction variables"); } return true; } void LoopVectorizationLegality::collectLoopUniforms() { // We now know that the loop is vectorizable! // Collect variables that will remain uniform after vectorization. std::vector Worklist; BasicBlock *Latch = TheLoop->getLoopLatch(); // Start with the conditional branch and walk up the block. Worklist.push_back(Latch->getTerminator()->getOperand(0)); while (Worklist.size()) { Instruction *I = dyn_cast(Worklist.back()); Worklist.pop_back(); // Look at instructions inside this loop. // Stop when reaching PHI nodes. // TODO: we need to follow values all over the loop, not only in this block. if (!I || !TheLoop->contains(I) || isa(I)) continue; // This is a known uniform. Uniforms.insert(I); // Insert all operands. for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) { Worklist.push_back(I->getOperand(i)); } } } bool LoopVectorizationLegality::canVectorizeMemory() { typedef SmallVector ValueVector; typedef SmallPtrSet ValueSet; // Holds the Load and Store *instructions*. ValueVector Loads; ValueVector Stores; PtrRtCheck.Pointers.clear(); PtrRtCheck.Need = false; // For each block. for (Loop::block_iterator bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { // Scan the BB and collect legal loads and stores. for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; ++it) { // If this is a load, save it. If this instruction can read from memory // but is not a load, then we quit. Notice that we don't handle function // calls that read or write. if (it->mayReadFromMemory()) { LoadInst *Ld = dyn_cast(it); if (!Ld) return false; if (!Ld->isSimple()) { DEBUG(dbgs() << "LV: Found a non-simple load.\n"); return false; } Loads.push_back(Ld); continue; } // Save 'store' instructions. Abort if other instructions write to memory. if (it->mayWriteToMemory()) { StoreInst *St = dyn_cast(it); if (!St) return false; if (!St->isSimple()) { DEBUG(dbgs() << "LV: Found a non-simple store.\n"); return false; } Stores.push_back(St); } } // next instr. } // next block. // Now we have two lists that hold the loads and the stores. // Next, we find the pointers that they use. // Check if we see any stores. If there are no stores, then we don't // care if the pointers are *restrict*. if (!Stores.size()) { DEBUG(dbgs() << "LV: Found a read-only loop!\n"); return true; } // Holds the read and read-write *pointers* that we find. ValueVector Reads; ValueVector ReadWrites; // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects // multiple times on the same object. If the ptr is accessed twice, once // for read and once for write, it will only appear once (on the write // list). This is okay, since we are going to check for conflicts between // writes and between reads and writes, but not between reads and reads. ValueSet Seen; ValueVector::iterator I, IE; for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { StoreInst *ST = cast(*I); Value* Ptr = ST->getPointerOperand(); if (isUniform(Ptr)) { DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); return false; } // If we did *not* see this pointer before, insert it to // the read-write list. At this phase it is only a 'write' list. if (Seen.insert(Ptr)) ReadWrites.push_back(Ptr); } for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { LoadInst *LD = cast(*I); Value* Ptr = LD->getPointerOperand(); // If we did *not* see this pointer before, insert it to the // read list. If we *did* see it before, then it is already in // the read-write list. This allows us to vectorize expressions // such as A[i] += x; Because the address of A[i] is a read-write // pointer. This only works if the index of A[i] is consecutive. // If the address of i is unknown (for example A[B[i]]) then we may // read a few words, modify, and write a few words, and some of the // words may be written to the same address. if (Seen.insert(Ptr) || !isConsecutivePtr(Ptr)) Reads.push_back(Ptr); } // If we write (or read-write) to a single destination and there are no // other reads in this loop then is it safe to vectorize. if (ReadWrites.size() == 1 && Reads.size() == 0) { DEBUG(dbgs() << "LV: Found a write-only loop!\n"); return true; } // Find pointers with computable bounds. We are going to use this information // to place a runtime bound check. bool CanDoRT = true; for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) if (hasComputableBounds(*I)) { PtrRtCheck.insert(SE, TheLoop, *I); DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n"); } else { CanDoRT = false; break; } for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) if (hasComputableBounds(*I)) { PtrRtCheck.insert(SE, TheLoop, *I); DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n"); } else { CanDoRT = false; break; } // Check that we did not collect too many pointers or found a // unsizeable pointer. if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) { PtrRtCheck.reset(); CanDoRT = false; } if (CanDoRT) { DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); } bool NeedRTCheck = false; // Now that the pointers are in two lists (Reads and ReadWrites), we // can check that there are no conflicts between each of the writes and // between the writes to the reads. ValueSet WriteObjects; ValueVector TempObjects; // Check that the read-writes do not conflict with other read-write // pointers. for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) { GetUnderlyingObjects(*I, TempObjects, DL); for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); it != e; ++it) { if (!isIdentifiedObject(*it)) { DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n"); NeedRTCheck = true; } if (!WriteObjects.insert(*it)) { DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **it <<"\n"); return false; } } TempObjects.clear(); } /// Check that the reads don't conflict with the read-writes. for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) { GetUnderlyingObjects(*I, TempObjects, DL); for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end(); it != e; ++it) { if (!isIdentifiedObject(*it)) { DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n"); NeedRTCheck = true; } if (WriteObjects.count(*it)) { DEBUG(dbgs() << "LV: Found a possible read/write reorder:" << **it <<"\n"); return false; } } TempObjects.clear(); } PtrRtCheck.Need = NeedRTCheck; if (NeedRTCheck && !CanDoRT) { DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << "the array bounds.\n"); PtrRtCheck.reset(); return false; } DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") << " need a runtime memory check.\n"); return true; } bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, ReductionKind Kind) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = 0; // Iter is our iterator. We start with the PHI node and scan for all of the // users of this instruction. All users must be instructions which can be // used as reduction variables (such as ADD). We may have a single // out-of-block user. They cycle must end with the original PHI. // Also, we can't have multiple block-local users. Instruction *Iter = Phi; while (true) { // If the instruction has no users then this is a broken // chain and can't be a reduction variable. if (Iter->use_empty()) return false; // Any reduction instr must be of one of the allowed kinds. if (!isReductionInstr(Iter, Kind)) return false; // Did we find a user inside this block ? bool FoundInBlockUser = false; // Did we reach the initial PHI node ? bool FoundStartPHI = false; // For each of the *users* of iter. for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end(); it != e; ++it) { Instruction *U = cast(*it); // We already know that the PHI is a user. if (U == Phi) { FoundStartPHI = true; continue; } // Check if we found the exit user. BasicBlock *Parent = U->getParent(); if (!TheLoop->contains(Parent)) { // Exit if you find multiple outside users. if (ExitInstruction != 0) return false; ExitInstruction = Iter; } // We allow in-loop PHINodes which are not the original reduction PHI // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE // structure) then don't skip this PHI. if (isa(U) && U->getParent() != TheLoop->getHeader() && TheLoop->contains(U) && Iter->getNumUses() > 1) continue; // We can't have multiple inside users. if (FoundInBlockUser) return false; FoundInBlockUser = true; Iter = U; } // We found a reduction var if we have reached the original // phi node and we only have a single instruction with out-of-loop // users. if (FoundStartPHI && ExitInstruction) { // This instruction is allowed to have out-of-loop users. AllowedExit.insert(ExitInstruction); // Save the description of this reduction variable. ReductionDescriptor RD(RdxStart, ExitInstruction, Kind); Reductions[Phi] = RD; return true; } // If we've reached the start PHI but did not find an outside user then // this is dead code. Abort. if (FoundStartPHI) return false; } } bool LoopVectorizationLegality::isReductionInstr(Instruction *I, ReductionKind Kind) { switch (I->getOpcode()) { default: return false; case Instruction::PHI: // possibly. return true; case Instruction::Add: case Instruction::Sub: return Kind == IntegerAdd; case Instruction::Mul: return Kind == IntegerMult; case Instruction::And: return Kind == IntegerAnd; case Instruction::Or: return Kind == IntegerOr; case Instruction::Xor: return Kind == IntegerXor; } } LoopVectorizationLegality::InductionKind LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return NoInduction; // Check that the PHI is consecutive and starts at zero. const SCEV *PhiScev = SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return NoInduction; } const SCEV *Step = AR->getStepRecurrence(*SE); // Integer inductions need to have a stride of one. if (PhiTy->isIntegerTy()) { if (Step->isOne()) return IntInduction; if (Step->isAllOnesValue()) return ReverseIntInduction; return NoInduction; } // Calculate the pointer stride and check if it is consecutive. const SCEVConstant *C = dyn_cast(Step); if (!C) return NoInduction; assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType()); if (C->getValue()->equalsInt(Size)) return PtrInduction; return NoInduction; } bool LoopVectorizationLegality::isInductionVariable(const Value *V) { Value *In0 = const_cast(V); PHINode *PN = dyn_cast_or_null(In0); if (!PN) return false; return Inductions.count(PN); } bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { assert(TheLoop->contains(BB) && "Unknown block used"); // Blocks that do not dominate the latch need predication. BasicBlock* Latch = TheLoop->getLoopLatch(); return !DT->dominates(BB, Latch); } bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) { for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { // We don't predicate loads/stores at the moment. if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow()) return false; // The instructions below can trap. switch (it->getOpcode()) { default: continue; case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: return false; } } return true; } bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) { const SCEV *PhiScev = SE->getSCEV(Ptr); const SCEVAddRecExpr *AR = dyn_cast(PhiScev); if (!AR) return false; return AR->isAffine(); } unsigned LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize, unsigned UserVF) { if (OptForSize && Legal->getRuntimePointerCheck()->Need) { DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); return 1; } // Find the trip count. unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch()); DEBUG(dbgs() << "LV: Found trip count:"<block_begin(), be = TheLoop->block_end(); bb != be; ++bb) { unsigned BlockCost = 0; BasicBlock *BB = *bb; // For each instruction in the old loop. for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { unsigned C = getInstructionCost(it, VF); Cost += C; DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " << VF << " For instruction: "<< *it << "\n"); } // We assume that if-converted blocks have a 50% chance of being executed. // When the code is scalar then some of the blocks are avoided due to CF. // When the code is vectorized we execute all code paths. if (Legal->blockNeedsPredication(*bb) && VF == 1) BlockCost /= 2; Cost += BlockCost; } return Cost; } unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { assert(VTTI && "Invalid vector target transformation info"); // If we know that this instruction will remain uniform, check the cost of // the scalar version. if (Legal->isUniformAfterVectorization(I)) VF = 1; Type *RetTy = I->getType(); Type *VectorTy = ToVectorTy(RetTy, VF); // TODO: We need to estimate the cost of intrinsic calls. switch (I->getOpcode()) { case Instruction::GetElementPtr: // We mark this instruction as zero-cost because scalar GEPs are usually // lowered to the intruction addressing mode. At the moment we don't // generate vector geps. return 0; case Instruction::Br: { return VTTI->getCFInstrCost(I->getOpcode()); } case Instruction::PHI: //TODO: IF-converted IFs become selects. return 0; case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: return VTTI->getArithmeticInstrCost(I->getOpcode(), VectorTy); case Instruction::Select: { SelectInst *SI = cast(I); const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); Type *CondTy = SI->getCondition()->getType(); if (ScalarCond) CondTy = VectorType::get(CondTy, VF); return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); } case Instruction::ICmp: case Instruction::FCmp: { Type *ValTy = I->getOperand(0)->getType(); VectorTy = ToVectorTy(ValTy, VF); return VTTI->getCmpSelInstrCost(I->getOpcode(), VectorTy); } case Instruction::Store: { StoreInst *SI = cast(I); Type *ValTy = SI->getValueOperand()->getType(); VectorTy = ToVectorTy(ValTy, VF); if (VF == 1) return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(), SI->getPointerAddressSpace()); // Scalarized stores. if (!Legal->isConsecutivePtr(SI->getPointerOperand())) { unsigned Cost = 0; // The cost of extracting from the value vector and pointer vector. Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF); for (unsigned i = 0; i < VF; ++i) { Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement, VectorTy, i); Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); } // The cost of the scalar stores. Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), SI->getAlignment(), SI->getPointerAddressSpace()); return Cost; } // Wide stores. return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, SI->getAlignment(), SI->getPointerAddressSpace()); } case Instruction::Load: { LoadInst *LI = cast(I); if (VF == 1) return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(), LI->getPointerAddressSpace()); // Scalarized loads. if (!Legal->isConsecutivePtr(LI->getPointerOperand())) { unsigned Cost = 0; Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF); // The cost of extracting from the pointer vector. for (unsigned i = 0; i < VF; ++i) Cost += VTTI->getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); // The cost of inserting data to the result vector. for (unsigned i = 0; i < VF; ++i) Cost += VTTI->getVectorInstrCost(Instruction::InsertElement, VectorTy, i); // The cost of the scalar stores. Cost += VF * VTTI->getMemoryOpCost(I->getOpcode(), RetTy->getScalarType(), LI->getAlignment(), LI->getPointerAddressSpace()); return Cost; } // Wide loads. return VTTI->getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(), LI->getPointerAddressSpace()); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { // We optimize the truncation of induction variable. // The cost of these is the same as the scalar operation. if (I->getOpcode() == Instruction::Trunc && Legal->isInductionVariable(I->getOperand(0))) return VTTI->getCastInstrCost(I->getOpcode(), I->getType(), I->getOperand(0)->getType()); Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); return VTTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); } case Instruction::Call: { assert(isTriviallyVectorizableIntrinsic(I)); IntrinsicInst *II = cast(I); Type *RetTy = ToVectorTy(II->getType(), VF); SmallVector Tys; for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF)); return VTTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys); } default: { // We are scalarizing the instruction. Return the cost of the scalar // instruction, plus the cost of insert and extract into vector // elements, times the vector width. unsigned Cost = 0; if (RetTy->isVoidTy() || VF != 1) { unsigned InsCost = VTTI->getVectorInstrCost(Instruction::InsertElement, VectorTy); unsigned ExtCost = VTTI->getVectorInstrCost(Instruction::ExtractElement, VectorTy); // The cost of inserting the results plus extracting each one of the // operands. Cost += VF * (InsCost + ExtCost * I->getNumOperands()); } // The cost of executing VF copies of the scalar instruction. This opcode // is unknown. Assume that it is the same as 'mul'. Cost += VF * VTTI->getArithmeticInstrCost(Instruction::Mul, VectorTy); return Cost; } }// end of switch. } Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { if (Scalar->isVoidTy() || VF == 1) return Scalar; return VectorType::get(Scalar, VF); } char LoopVectorize::ID = 0; static const char lv_name[] = "Loop Vectorization"; INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) namespace llvm { Pass *createLoopVectorizePass() { return new LoopVectorize(); } }