//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a module pass that applies a variety of small // optimizations for calls to specific well-known function calls (e.g. runtime // library functions). For example, a call to the function "exit(3)" that // occurs within the main() function can be transformed into a simple "return 3" // instruction. Any optimization that takes this form (replace call to library // function with simpler code that provides the same result) belongs in this // file. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "simplify-libcalls" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Statistic.h" #include "llvm/Config/config.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/IPO.h" #include using namespace llvm; /// This statistic keeps track of the total number of library calls that have /// been simplified regardless of which call it is. STATISTIC(SimplifiedLibCalls, "Number of library calls simplified"); namespace { // Forward declarations class LibCallOptimization; class SimplifyLibCalls; /// This list is populated by the constructor for LibCallOptimization class. /// Therefore all subclasses are registered here at static initialization time /// and this list is what the SimplifyLibCalls pass uses to apply the individual /// optimizations to the call sites. /// @brief The list of optimizations deriving from LibCallOptimization static LibCallOptimization *OptList = 0; /// This class is the abstract base class for the set of optimizations that /// corresponds to one library call. The SimplifyLibCalls pass will call the /// ValidateCalledFunction method to ask the optimization if a given Function /// is the kind that the optimization can handle. If the subclass returns true, /// then SImplifyLibCalls will also call the OptimizeCall method to perform, /// or attempt to perform, the optimization(s) for the library call. Otherwise, /// OptimizeCall won't be called. Subclasses are responsible for providing the /// name of the library call (strlen, strcpy, etc.) to the LibCallOptimization /// constructor. This is used to efficiently select which call instructions to /// optimize. The criteria for a "lib call" is "anything with well known /// semantics", typically a library function that is defined by an international /// standard. Because the semantics are well known, the optimizations can /// generally short-circuit actually calling the function if there's a simpler /// way (e.g. strlen(X) can be reduced to a constant if X is a constant global). /// @brief Base class for library call optimizations class VISIBILITY_HIDDEN LibCallOptimization { LibCallOptimization **Prev, *Next; const char *FunctionName; ///< Name of the library call we optimize #ifndef NDEBUG Statistic occurrences; ///< debug statistic (-debug-only=simplify-libcalls) #endif public: /// The \p fname argument must be the name of the library function being /// optimized by the subclass. /// @brief Constructor that registers the optimization. LibCallOptimization(const char *FName, const char *Description) : FunctionName(FName) { #ifndef NDEBUG occurrences.construct("simplify-libcalls", Description); #endif // Register this optimizer in the list of optimizations. Next = OptList; OptList = this; Prev = &OptList; if (Next) Next->Prev = &Next; } /// getNext - All libcall optimizations are chained together into a list, /// return the next one in the list. LibCallOptimization *getNext() { return Next; } /// @brief Deregister from the optlist virtual ~LibCallOptimization() { *Prev = Next; if (Next) Next->Prev = Prev; } /// The implementation of this function in subclasses should determine if /// \p F is suitable for the optimization. This method is called by /// SimplifyLibCalls::runOnModule to short circuit visiting all the call /// sites of such a function if that function is not suitable in the first /// place. If the called function is suitabe, this method should return true; /// false, otherwise. This function should also perform any lazy /// initialization that the LibCallOptimization needs to do, if its to return /// true. This avoids doing initialization until the optimizer is actually /// going to be called upon to do some optimization. /// @brief Determine if the function is suitable for optimization virtual bool ValidateCalledFunction( const Function* F, ///< The function that is the target of call sites SimplifyLibCalls& SLC ///< The pass object invoking us ) = 0; /// The implementations of this function in subclasses is the heart of the /// SimplifyLibCalls algorithm. Sublcasses of this class implement /// OptimizeCall to determine if (a) the conditions are right for optimizing /// the call and (b) to perform the optimization. If an action is taken /// against ci, the subclass is responsible for returning true and ensuring /// that ci is erased from its parent. /// @brief Optimize a call, if possible. virtual bool OptimizeCall( CallInst* ci, ///< The call instruction that should be optimized. SimplifyLibCalls& SLC ///< The pass object invoking us ) = 0; /// @brief Get the name of the library call being optimized const char *getFunctionName() const { return FunctionName; } bool ReplaceCallWith(CallInst *CI, Value *V) { if (!CI->use_empty()) CI->replaceAllUsesWith(V); CI->eraseFromParent(); return true; } /// @brief Called by SimplifyLibCalls to update the occurrences statistic. void succeeded() { #ifndef NDEBUG DEBUG(++occurrences); #endif } }; /// This class is an LLVM Pass that applies each of the LibCallOptimization /// instances to all the call sites in a module, relatively efficiently. The /// purpose of this pass is to provide optimizations for calls to well-known /// functions with well-known semantics, such as those in the c library. The /// class provides the basic infrastructure for handling runOnModule. Whenever /// this pass finds a function call, it asks the appropriate optimizer to /// validate the call (ValidateLibraryCall). If it is validated, then /// the OptimizeCall method is also called. /// @brief A ModulePass for optimizing well-known function calls. class VISIBILITY_HIDDEN SimplifyLibCalls : public ModulePass { public: static char ID; // Pass identification, replacement for typeid SimplifyLibCalls() : ModulePass((intptr_t)&ID) {} /// We need some target data for accurate signature details that are /// target dependent. So we require target data in our AnalysisUsage. /// @brief Require TargetData from AnalysisUsage. virtual void getAnalysisUsage(AnalysisUsage& Info) const { // Ask that the TargetData analysis be performed before us so we can use // the target data. Info.addRequired(); } /// For this pass, process all of the function calls in the module, calling /// ValidateLibraryCall and OptimizeCall as appropriate. /// @brief Run all the lib call optimizations on a Module. virtual bool runOnModule(Module &M) { reset(M); bool result = false; StringMap OptznMap; for (LibCallOptimization *Optzn = OptList; Optzn; Optzn = Optzn->getNext()) OptznMap[Optzn->getFunctionName()] = Optzn; // The call optimizations can be recursive. That is, the optimization might // generate a call to another function which can also be optimized. This way // we make the LibCallOptimization instances very specific to the case they // handle. It also means we need to keep running over the function calls in // the module until we don't get any more optimizations possible. bool found_optimization = false; do { found_optimization = false; for (Module::iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) { // All the "well-known" functions are external and have external linkage // because they live in a runtime library somewhere and were (probably) // not compiled by LLVM. So, we only act on external functions that // have external or dllimport linkage and non-empty uses. if (!FI->isDeclaration() || !(FI->hasExternalLinkage() || FI->hasDLLImportLinkage()) || FI->use_empty()) continue; // Get the optimization class that pertains to this function StringMap::iterator OMI = OptznMap.find(FI->getName()); if (OMI == OptznMap.end()) continue; LibCallOptimization *CO = OMI->second; // Make sure the called function is suitable for the optimization if (!CO->ValidateCalledFunction(FI, *this)) continue; // Loop over each of the uses of the function for (Value::use_iterator UI = FI->use_begin(), UE = FI->use_end(); UI != UE ; ) { // If the use of the function is a call instruction if (CallInst* CI = dyn_cast(*UI++)) { // Do the optimization on the LibCallOptimization. if (CO->OptimizeCall(CI, *this)) { ++SimplifiedLibCalls; found_optimization = result = true; CO->succeeded(); } } } } } while (found_optimization); return result; } /// @brief Return the *current* module we're working on. Module* getModule() const { return M; } /// @brief Return the *current* target data for the module we're working on. TargetData* getTargetData() const { return TD; } /// @brief Return the size_t type -- syntactic shortcut const Type* getIntPtrType() const { return TD->getIntPtrType(); } /// @brief Return a Function* for the putchar libcall Constant *get_putchar() { if (!putchar_func) putchar_func = M->getOrInsertFunction("putchar", Type::Int32Ty, Type::Int32Ty, NULL); return putchar_func; } /// @brief Return a Function* for the puts libcall Constant *get_puts() { if (!puts_func) puts_func = M->getOrInsertFunction("puts", Type::Int32Ty, PointerType::getUnqual(Type::Int8Ty), NULL); return puts_func; } /// @brief Return a Function* for the fputc libcall Constant *get_fputc(const Type* FILEptr_type) { if (!fputc_func) fputc_func = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty, FILEptr_type, NULL); return fputc_func; } /// @brief Return a Function* for the fputs libcall Constant *get_fputs(const Type* FILEptr_type) { if (!fputs_func) fputs_func = M->getOrInsertFunction("fputs", Type::Int32Ty, PointerType::getUnqual(Type::Int8Ty), FILEptr_type, NULL); return fputs_func; } /// @brief Return a Function* for the fwrite libcall Constant *get_fwrite(const Type* FILEptr_type) { if (!fwrite_func) fwrite_func = M->getOrInsertFunction("fwrite", TD->getIntPtrType(), PointerType::getUnqual(Type::Int8Ty), TD->getIntPtrType(), TD->getIntPtrType(), FILEptr_type, NULL); return fwrite_func; } /// @brief Return a Function* for the sqrt libcall Constant *get_sqrt() { if (!sqrt_func) sqrt_func = M->getOrInsertFunction("sqrt", Type::DoubleTy, Type::DoubleTy, NULL); return sqrt_func; } /// @brief Return a Function* for the strcpy libcall Constant *get_strcpy() { if (!strcpy_func) strcpy_func = M->getOrInsertFunction("strcpy", PointerType::getUnqual(Type::Int8Ty), PointerType::getUnqual(Type::Int8Ty), PointerType::getUnqual(Type::Int8Ty), NULL); return strcpy_func; } /// @brief Return a Function* for the strlen libcall Constant *get_strlen() { if (!strlen_func) strlen_func = M->getOrInsertFunction("strlen", TD->getIntPtrType(), PointerType::getUnqual(Type::Int8Ty), NULL); return strlen_func; } /// @brief Return a Function* for the memchr libcall Constant *get_memchr() { if (!memchr_func) memchr_func = M->getOrInsertFunction("memchr", PointerType::getUnqual(Type::Int8Ty), PointerType::getUnqual(Type::Int8Ty), Type::Int32Ty, TD->getIntPtrType(), NULL); return memchr_func; } /// @brief Return a Function* for the memcpy libcall Constant *get_memcpy() { if (!memcpy_func) { Intrinsic::ID IID = (TD->getIntPtrType() == Type::Int32Ty) ? Intrinsic::memcpy_i32 : Intrinsic::memcpy_i64; memcpy_func = Intrinsic::getDeclaration(M, IID); } return memcpy_func; } Constant *getUnaryFloatFunction(const char *BaseName, const Type *T = 0) { if (T == 0) T = Type::FloatTy; char NameBuffer[20]; const char *Name; if (T == Type::DoubleTy) Name = BaseName; // floor else { Name = NameBuffer; unsigned NameLen = strlen(BaseName); assert(NameLen < sizeof(NameBuffer)-2 && "Buffer too small"); memcpy(NameBuffer, BaseName, NameLen); if (T == Type::FloatTy) NameBuffer[NameLen] = 'f'; // floorf else NameBuffer[NameLen] = 'l'; // floorl NameBuffer[NameLen+1] = 0; } return M->getOrInsertFunction(Name, T, T, NULL); } Constant *get_floorf() { return getUnaryFloatFunction("floor"); } Constant *get_ceilf() { return getUnaryFloatFunction( "ceil"); } Constant *get_roundf() { return getUnaryFloatFunction("round"); } Constant *get_rintf() { return getUnaryFloatFunction( "rint"); } Constant *get_nearbyintf() { return getUnaryFloatFunction("nearbyint"); } private: /// @brief Reset our cached data for a new Module void reset(Module& mod) { M = &mod; TD = &getAnalysis(); putchar_func = 0; puts_func = 0; fputc_func = 0; fputs_func = 0; fwrite_func = 0; memcpy_func = 0; memchr_func = 0; sqrt_func = 0; strcpy_func = 0; strlen_func = 0; } private: /// Caches for function pointers. Constant *putchar_func, *puts_func; Constant *fputc_func, *fputs_func, *fwrite_func; Constant *memcpy_func, *memchr_func; Constant *sqrt_func; Constant *strcpy_func, *strlen_func; Module *M; ///< Cached Module TargetData *TD; ///< Cached TargetData }; char SimplifyLibCalls::ID = 0; // Register the pass RegisterPass X("simplify-libcalls", "Simplify well-known library calls"); } // anonymous namespace // The only public symbol in this file which just instantiates the pass object ModulePass *llvm::createSimplifyLibCallsPass() { return new SimplifyLibCalls(); } // Classes below here, in the anonymous namespace, are all subclasses of the // LibCallOptimization class, each implementing all optimizations possible for a // single well-known library call. Each has a static singleton instance that // auto registers it into the "optlist" global above. namespace { // Forward declare utility functions. static bool GetConstantStringInfo(Value *V, std::string &Str); static Value *CastToCStr(Value *V, Instruction *IP); /// This LibCallOptimization will find instances of a call to "exit" that occurs /// within the "main" function and change it to a simple "ret" instruction with /// the same value passed to the exit function. When this is done, it splits the /// basic block at the exit(3) call and deletes the call instruction. /// @brief Replace calls to exit in main with a simple return struct VISIBILITY_HIDDEN ExitInMainOptimization : public LibCallOptimization { ExitInMainOptimization() : LibCallOptimization("exit", "Number of 'exit' calls simplified") {} // Make sure the called function looks like exit (int argument, int return // type, external linkage, not varargs). virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ return F->arg_size() >= 1 && F->arg_begin()->getType()->isInteger(); } virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& SLC) { // To be careful, we check that the call to exit is coming from "main", that // main has external linkage, and the return type of main and the argument // to exit have the same type. Function *from = ci->getParent()->getParent(); if (from->hasExternalLinkage()) if (from->getReturnType() == ci->getOperand(1)->getType() && !isa(from->getReturnType())) if (from->getName() == "main") { // Okay, time to actually do the optimization. First, get the basic // block of the call instruction BasicBlock* bb = ci->getParent(); // Create a return instruction that we'll replace the call with. // Note that the argument of the return is the argument of the call // instruction. ReturnInst::Create(ci->getOperand(1), ci); // Split the block at the call instruction which places it in a new // basic block. bb->splitBasicBlock(ci); // The block split caused a branch instruction to be inserted into // the end of the original block, right after the return instruction // that we put there. That's not a valid block, so delete the branch // instruction. bb->getInstList().pop_back(); // Now we can finally get rid of the call instruction which now lives // in the new basic block. ci->eraseFromParent(); // Optimization succeeded, return true. return true; } // We didn't pass the criteria for this optimization so return false return false; } } ExitInMainOptimizer; /// This LibCallOptimization will simplify a call to the strcat library /// function. The simplification is possible only if the string being /// concatenated is a constant array or a constant expression that results in /// a constant string. In this case we can replace it with strlen + llvm.memcpy /// of the constant string. Both of these calls are further reduced, if possible /// on subsequent passes. /// @brief Simplify the strcat library function. struct VISIBILITY_HIDDEN StrCatOptimization : public LibCallOptimization { public: /// @brief Default constructor StrCatOptimization() : LibCallOptimization("strcat", "Number of 'strcat' calls simplified") {} public: /// @brief Make sure that the "strcat" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 2 && FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) && FT->getParamType(0) == FT->getReturnType() && FT->getParamType(1) == FT->getReturnType(); } /// @brief Optimize the strcat library function virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // Extract some information from the instruction Value *Dst = CI->getOperand(1); Value *Src = CI->getOperand(2); // Extract the initializer (while making numerous checks) from the // source operand of the call to strcat. std::string SrcStr; if (!GetConstantStringInfo(Src, SrcStr)) return false; // Handle the simple, do-nothing case if (SrcStr.empty()) return ReplaceCallWith(CI, Dst); // We need to find the end of the destination string. That's where the // memory is to be moved to. We just generate a call to strlen. CallInst *DstLen = CallInst::Create(SLC.get_strlen(), Dst, Dst->getName()+".len", CI); // Now that we have the destination's length, we must index into the // destination's pointer to get the actual memcpy destination (end of // the string .. we're concatenating). Dst = GetElementPtrInst::Create(Dst, DstLen, Dst->getName()+".indexed", CI); // We have enough information to now generate the memcpy call to // do the concatenation for us. Value *Vals[] = { Dst, Src, ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), // copy nul byte. ConstantInt::get(Type::Int32Ty, 1) // alignment }; CallInst::Create(SLC.get_memcpy(), Vals, Vals + 4, "", CI); return ReplaceCallWith(CI, Dst); } } StrCatOptimizer; /// This LibCallOptimization will simplify a call to the strchr library /// function. It optimizes out cases where the arguments are both constant /// and the result can be determined statically. /// @brief Simplify the strcmp library function. struct VISIBILITY_HIDDEN StrChrOptimization : public LibCallOptimization { public: StrChrOptimization() : LibCallOptimization("strchr", "Number of 'strchr' calls simplified") {} /// @brief Make sure that the "strchr" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 2 && FT->getReturnType() == PointerType::getUnqual(Type::Int8Ty) && FT->getParamType(0) == FT->getReturnType() && isa(FT->getParamType(1)); } /// @brief Perform the strchr optimizations virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // Check that the first argument to strchr is a constant array of sbyte. std::string Str; if (!GetConstantStringInfo(CI->getOperand(1), Str)) return false; // If the second operand is not constant, just lower this to memchr since we // know the length of the input string. ConstantInt *CSI = dyn_cast(CI->getOperand(2)); if (!CSI) { Value *Args[3] = { CI->getOperand(1), CI->getOperand(2), ConstantInt::get(SLC.getIntPtrType(), Str.size()+1) }; return ReplaceCallWith(CI, CallInst::Create(SLC.get_memchr(), Args, Args + 3, CI->getName(), CI)); } // strchr can find the nul character. Str += '\0'; // Get the character we're looking for char CharValue = CSI->getSExtValue(); // Compute the offset uint64_t i = 0; while (1) { if (i == Str.size()) // Didn't find the char. strchr returns null. return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); // Did we find our match? if (Str[i] == CharValue) break; ++i; } // strchr(s+n,c) -> gep(s+n+i,c) // (if c is a constant integer and s is a constant string) Value *Idx = ConstantInt::get(Type::Int64Ty, i); Value *GEP = GetElementPtrInst::Create(CI->getOperand(1), Idx, CI->getOperand(1)->getName() + ".strchr", CI); return ReplaceCallWith(CI, GEP); } } StrChrOptimizer; /// This LibCallOptimization will simplify a call to the strcmp library /// function. It optimizes out cases where one or both arguments are constant /// and the result can be determined statically. /// @brief Simplify the strcmp library function. struct VISIBILITY_HIDDEN StrCmpOptimization : public LibCallOptimization { public: StrCmpOptimization() : LibCallOptimization("strcmp", "Number of 'strcmp' calls simplified") {} /// @brief Make sure that the "strcmp" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 2 && FT->getParamType(0) == FT->getParamType(1) && FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty); } /// @brief Perform the strcmp optimization virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with a constant 0 // because the call is a no-op. Value *Str1P = CI->getOperand(1); Value *Str2P = CI->getOperand(2); if (Str1P == Str2P) // strcmp(x,x) -> 0 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); std::string Str1; if (!GetConstantStringInfo(Str1P, Str1)) return false; if (Str1.empty()) { // strcmp("", x) -> *x Value *V = new LoadInst(Str2P, CI->getName()+".load", CI); V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); return ReplaceCallWith(CI, V); } std::string Str2; if (!GetConstantStringInfo(Str2P, Str2)) return false; if (Str2.empty()) { // strcmp(x,"") -> *x Value *V = new LoadInst(Str1P, CI->getName()+".load", CI); V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); return ReplaceCallWith(CI, V); } // strcmp(x, y) -> cnst (if both x and y are constant strings) int R = strcmp(Str1.c_str(), Str2.c_str()); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R)); } } StrCmpOptimizer; /// This LibCallOptimization will simplify a call to the strncmp library /// function. It optimizes out cases where one or both arguments are constant /// and the result can be determined statically. /// @brief Simplify the strncmp library function. struct VISIBILITY_HIDDEN StrNCmpOptimization : public LibCallOptimization { public: StrNCmpOptimization() : LibCallOptimization("strncmp", "Number of 'strncmp' calls simplified") {} /// @brief Make sure that the "strncmp" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getReturnType() == Type::Int32Ty && FT->getNumParams() == 3 && FT->getParamType(0) == FT->getParamType(1) && FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) && isa(FT->getParamType(2)); return false; } /// @brief Perform the strncmp optimization virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with a constant 0 // because the call is a no-op. Value *Str1P = CI->getOperand(1); Value *Str2P = CI->getOperand(2); if (Str1P == Str2P) // strncmp(x,x, n) -> 0 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); // Check the length argument, if it is Constant zero then the strings are // considered equal. uint64_t Length; if (ConstantInt *LengthArg = dyn_cast(CI->getOperand(3))) Length = LengthArg->getZExtValue(); else return false; if (Length == 0) // strncmp(x,y,0) -> 0 return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); std::string Str1; if (!GetConstantStringInfo(Str1P, Str1)) return false; if (Str1.empty()) { // strncmp("", x, n) -> *x Value *V = new LoadInst(Str2P, CI->getName()+".load", CI); V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); return ReplaceCallWith(CI, V); } std::string Str2; if (!GetConstantStringInfo(Str2P, Str2)) return false; if (Str2.empty()) { // strncmp(x, "", n) -> *x Value *V = new LoadInst(Str1P, CI->getName()+".load", CI); V = new ZExtInst(V, CI->getType(), CI->getName()+".int", CI); return ReplaceCallWith(CI, V); } // strncmp(x, y, n) -> cnst (if both x and y are constant strings) int R = strncmp(Str1.c_str(), Str2.c_str(), Length); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), R)); } } StrNCmpOptimizer; /// This LibCallOptimization will simplify a call to the strcpy library /// function. Two optimizations are possible: /// (1) If src and dest are the same and not volatile, just return dest /// (2) If the src is a constant then we can convert to llvm.memmove /// @brief Simplify the strcpy library function. struct VISIBILITY_HIDDEN StrCpyOptimization : public LibCallOptimization { public: StrCpyOptimization() : LibCallOptimization("strcpy", "Number of 'strcpy' calls simplified") {} /// @brief Make sure that the "strcpy" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 2 && FT->getParamType(0) == FT->getParamType(1) && FT->getReturnType() == FT->getParamType(0) && FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty); } /// @brief Perform the strcpy optimization virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // First, check to see if src and destination are the same. If they are, // then the optimization is to replace the CallInst with the destination // because the call is a no-op. Note that this corresponds to the // degenerate strcpy(X,X) case which should have "undefined" results // according to the C specification. However, it occurs sometimes and // we optimize it as a no-op. Value *Dst = CI->getOperand(1); Value *Src = CI->getOperand(2); if (Dst == Src) { // strcpy(x, x) -> x return ReplaceCallWith(CI, Dst); } // Get the length of the constant string referenced by the Src operand. std::string SrcStr; if (!GetConstantStringInfo(Src, SrcStr)) return false; // If the constant string's length is zero we can optimize this by just // doing a store of 0 at the first byte of the destination if (SrcStr.empty()) { new StoreInst(ConstantInt::get(Type::Int8Ty, 0), Dst, CI); return ReplaceCallWith(CI, Dst); } // We have enough information to now generate the memcpy call to // do the concatenation for us. Value *MemcpyOps[] = { Dst, Src, // Pass length including nul byte. ConstantInt::get(SLC.getIntPtrType(), SrcStr.size()+1), ConstantInt::get(Type::Int32Ty, 1) // alignment }; CallInst::Create(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI); return ReplaceCallWith(CI, Dst); } } StrCpyOptimizer; /// This LibCallOptimization will simplify a call to the strlen library /// function by replacing it with a constant value if the string provided to /// it is a constant array. /// @brief Simplify the strlen library function. struct VISIBILITY_HIDDEN StrLenOptimization : public LibCallOptimization { StrLenOptimization() : LibCallOptimization("strlen", "Number of 'strlen' calls simplified") {} /// @brief Make sure that the "strlen" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 1 && FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) && isa(FT->getReturnType()); } /// @brief Perform the strlen optimization virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // Make sure we're dealing with an sbyte* here. Value *Src = CI->getOperand(1); // Does the call to strlen have exactly one use? if (CI->hasOneUse()) { // Is that single use a icmp operator? if (ICmpInst *Cmp = dyn_cast(CI->use_back())) // Is it compared against a constant integer? if (ConstantInt *Cst = dyn_cast(Cmp->getOperand(1))) { // If its compared against length 0 with == or != if (Cst->getZExtValue() == 0 && Cmp->isEquality()) { // strlen(x) != 0 -> *x != 0 // strlen(x) == 0 -> *x == 0 Value *V = new LoadInst(Src, Src->getName()+".first", CI); V = new ICmpInst(Cmp->getPredicate(), V, ConstantInt::get(Type::Int8Ty, 0), Cmp->getName()+".strlen", CI); Cmp->replaceAllUsesWith(V); Cmp->eraseFromParent(); return ReplaceCallWith(CI, 0); // no uses. } } } // Get the length of the constant string operand std::string Str; if (!GetConstantStringInfo(Src, Str)) return false; // strlen("xyz") -> 3 (for example) return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), Str.size())); } } StrLenOptimizer; /// IsOnlyUsedInEqualsComparison - Return true if it only matters that the value /// is equal or not-equal to zero. static bool IsOnlyUsedInEqualsZeroComparison(Instruction *I) { for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { if (ICmpInst *IC = dyn_cast(*UI)) if (IC->isEquality()) if (Constant *C = dyn_cast(IC->getOperand(1))) if (C->isNullValue()) continue; // Unknown instruction. return false; } return true; } /// This memcmpOptimization will simplify a call to the memcmp library /// function. struct VISIBILITY_HIDDEN memcmpOptimization : public LibCallOptimization { /// @brief Default Constructor memcmpOptimization() : LibCallOptimization("memcmp", "Number of 'memcmp' calls simplified") {} /// @brief Make sure that the "memcmp" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) { Function::const_arg_iterator AI = F->arg_begin(); if (F->arg_size() != 3 || !isa(AI->getType())) return false; if (!isa((++AI)->getType())) return false; if (!(++AI)->getType()->isInteger()) return false; if (!F->getReturnType()->isInteger()) return false; return true; } /// Because of alignment and instruction information that we don't have, we /// leave the bulk of this to the code generators. /// /// Note that we could do much more if we could force alignment on otherwise /// small aligned allocas, or if we could indicate that loads have a small /// alignment. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &TD) { Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2); // If the two operands are the same, return zero. if (LHS == RHS) { // memcmp(s,s,x) -> 0 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); } // Make sure we have a constant length. ConstantInt *LenC = dyn_cast(CI->getOperand(3)); if (!LenC) return false; uint64_t Len = LenC->getZExtValue(); // If the length is zero, this returns 0. switch (Len) { case 0: // memcmp(s1,s2,0) -> 0 return ReplaceCallWith(CI, Constant::getNullValue(CI->getType())); case 1: { // memcmp(S1,S2,1) -> *(ubyte*)S1 - *(ubyte*)S2 const Type *UCharPtr = PointerType::getUnqual(Type::Int8Ty); CastInst *Op1Cast = CastInst::create( Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI); CastInst *Op2Cast = CastInst::create( Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI); Value *S1V = new LoadInst(Op1Cast, LHS->getName()+".val", CI); Value *S2V = new LoadInst(Op2Cast, RHS->getName()+".val", CI); Value *RV = BinaryOperator::createSub(S1V, S2V, CI->getName()+".diff",CI); if (RV->getType() != CI->getType()) RV = CastInst::createIntegerCast(RV, CI->getType(), false, RV->getName(), CI); return ReplaceCallWith(CI, RV); } case 2: if (IsOnlyUsedInEqualsZeroComparison(CI)) { // TODO: IF both are aligned, use a short load/compare. // memcmp(S1,S2,2) -> S1[0]-S2[0] | S1[1]-S2[1] iff only ==/!= 0 matters const Type *UCharPtr = PointerType::getUnqual(Type::Int8Ty); CastInst *Op1Cast = CastInst::create( Instruction::BitCast, LHS, UCharPtr, LHS->getName(), CI); CastInst *Op2Cast = CastInst::create( Instruction::BitCast, RHS, UCharPtr, RHS->getName(), CI); Value *S1V1 = new LoadInst(Op1Cast, LHS->getName()+".val1", CI); Value *S2V1 = new LoadInst(Op2Cast, RHS->getName()+".val1", CI); Value *D1 = BinaryOperator::createSub(S1V1, S2V1, CI->getName()+".d1", CI); Constant *One = ConstantInt::get(Type::Int32Ty, 1); Value *G1 = GetElementPtrInst::Create(Op1Cast, One, "next1v", CI); Value *G2 = GetElementPtrInst::Create(Op2Cast, One, "next2v", CI); Value *S1V2 = new LoadInst(G1, LHS->getName()+".val2", CI); Value *S2V2 = new LoadInst(G2, RHS->getName()+".val2", CI); Value *D2 = BinaryOperator::createSub(S1V2, S2V2, CI->getName()+".d1", CI); Value *Or = BinaryOperator::createOr(D1, D2, CI->getName()+".res", CI); if (Or->getType() != CI->getType()) Or = CastInst::createIntegerCast(Or, CI->getType(), false /*ZExt*/, Or->getName(), CI); return ReplaceCallWith(CI, Or); } break; default: break; } return false; } } memcmpOptimizer; /// This LibCallOptimization will simplify a call to the memcpy library /// function. It simply converts them into calls to llvm.memcpy.*; /// the resulting call should be optimized later. /// @brief Simplify the memcpy library function. struct VISIBILITY_HIDDEN MemCpyOptimization : public LibCallOptimization { public: MemCpyOptimization() : LibCallOptimization("memcpy", "Number of 'memcpy' calls simplified") {} /// @brief Make sure that the "memcpy" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); const Type* voidPtr = PointerType::getUnqual(Type::Int8Ty); return FT->getReturnType() == voidPtr && FT->getNumParams() == 3 && FT->getParamType(0) == voidPtr && FT->getParamType(1) == voidPtr && FT->getParamType(2) == SLC.getIntPtrType(); } /// @brief Perform the memcpy optimization virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { Value *MemcpyOps[] = { CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), ConstantInt::get(Type::Int32Ty, 1) // align = 1 always. }; CallInst::Create(SLC.get_memcpy(), MemcpyOps, MemcpyOps + 4, "", CI); // memcpy always returns the destination return ReplaceCallWith(CI, CI->getOperand(1)); } } MemCpyOptimizer; /// This LibCallOptimization will simplify a call to the memcpy library /// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 /// bytes depending on the length of the string and the alignment. Additional /// optimizations are possible in code generation (sequence of immediate store) /// @brief Simplify the memcpy library function. struct VISIBILITY_HIDDEN LLVMMemCpyMoveOptzn : public LibCallOptimization { LLVMMemCpyMoveOptzn(const char* fname, const char* desc) : LibCallOptimization(fname, desc) {} /// @brief Make sure that the "memcpy" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& TD) { // Just make sure this has 4 arguments per LLVM spec. return (f->arg_size() == 4); } /// Because of alignment and instruction information that we don't have, we /// leave the bulk of this to the code generators. The optimization here just /// deals with a few degenerate cases where the length of the string and the /// alignment match the sizes of our intrinsic types so we can do a load and /// store instead of the memcpy call. /// @brief Perform the memcpy optimization. virtual bool OptimizeCall(CallInst* ci, SimplifyLibCalls& TD) { // Make sure we have constant int values to work with ConstantInt* LEN = dyn_cast(ci->getOperand(3)); if (!LEN) return false; ConstantInt* ALIGN = dyn_cast(ci->getOperand(4)); if (!ALIGN) return false; // If the length is larger than the alignment, we can't optimize uint64_t len = LEN->getZExtValue(); uint64_t alignment = ALIGN->getZExtValue(); if (alignment == 0) alignment = 1; // Alignment 0 is identity for alignment 1 if (len > alignment) return false; // Get the type we will cast to, based on size of the string Value* dest = ci->getOperand(1); Value* src = ci->getOperand(2); const Type* castType = 0; switch (len) { case 0: // memcpy(d,s,0,a) -> d return ReplaceCallWith(ci, 0); case 1: castType = Type::Int8Ty; break; case 2: castType = Type::Int16Ty; break; case 4: castType = Type::Int32Ty; break; case 8: castType = Type::Int64Ty; break; default: return false; } // Cast source and dest to the right sized primitive and then load/store CastInst* SrcCast = CastInst::create(Instruction::BitCast, src, PointerType::getUnqual(castType), src->getName()+".cast", ci); CastInst* DestCast = CastInst::create(Instruction::BitCast, dest, PointerType::getUnqual(castType),dest->getName()+".cast", ci); LoadInst* LI = new LoadInst(SrcCast,SrcCast->getName()+".val",ci); new StoreInst(LI, DestCast, ci); return ReplaceCallWith(ci, 0); } }; /// This LibCallOptimization will simplify a call to the memcpy/memmove library /// functions. LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer32("llvm.memcpy.i32", "Number of 'llvm.memcpy' calls simplified"); LLVMMemCpyMoveOptzn LLVMMemCpyOptimizer64("llvm.memcpy.i64", "Number of 'llvm.memcpy' calls simplified"); LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer32("llvm.memmove.i32", "Number of 'llvm.memmove' calls simplified"); LLVMMemCpyMoveOptzn LLVMMemMoveOptimizer64("llvm.memmove.i64", "Number of 'llvm.memmove' calls simplified"); /// This LibCallOptimization will simplify a call to the memset library /// function by expanding it out to a single store of size 0, 1, 2, 4, or 8 /// bytes depending on the length argument. struct VISIBILITY_HIDDEN LLVMMemSetOptimization : public LibCallOptimization { /// @brief Default Constructor LLVMMemSetOptimization(const char *Name) : LibCallOptimization(Name, "Number of 'llvm.memset' calls simplified") {} /// @brief Make sure that the "memset" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &TD) { // Just make sure this has 3 arguments per LLVM spec. return F->arg_size() == 4; } /// Because of alignment and instruction information that we don't have, we /// leave the bulk of this to the code generators. The optimization here just /// deals with a few degenerate cases where the length parameter is constant /// and the alignment matches the sizes of our intrinsic types so we can do /// store instead of the memcpy call. Other calls are transformed into the /// llvm.memset intrinsic. /// @brief Perform the memset optimization. virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &TD) { // Make sure we have constant int values to work with ConstantInt* LEN = dyn_cast(ci->getOperand(3)); if (!LEN) return false; ConstantInt* ALIGN = dyn_cast(ci->getOperand(4)); if (!ALIGN) return false; // Extract the length and alignment uint64_t len = LEN->getZExtValue(); uint64_t alignment = ALIGN->getZExtValue(); // Alignment 0 is identity for alignment 1 if (alignment == 0) alignment = 1; // If the length is zero, this is a no-op if (len == 0) { // memset(d,c,0,a) -> noop return ReplaceCallWith(ci, 0); } // If the length is larger than the alignment, we can't optimize if (len > alignment) return false; // Make sure we have a constant ubyte to work with so we can extract // the value to be filled. ConstantInt* FILL = dyn_cast(ci->getOperand(2)); if (!FILL) return false; if (FILL->getType() != Type::Int8Ty) return false; // memset(s,c,n) -> store s, c (for n=1,2,4,8) // Extract the fill character uint64_t fill_char = FILL->getZExtValue(); uint64_t fill_value = fill_char; // Get the type we will cast to, based on size of memory area to fill, and // and the value we will store there. Value* dest = ci->getOperand(1); const Type* castType = 0; switch (len) { case 1: castType = Type::Int8Ty; break; case 2: castType = Type::Int16Ty; fill_value |= fill_char << 8; break; case 4: castType = Type::Int32Ty; fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; break; case 8: castType = Type::Int64Ty; fill_value |= fill_char << 8 | fill_char << 16 | fill_char << 24; fill_value |= fill_char << 32 | fill_char << 40 | fill_char << 48; fill_value |= fill_char << 56; break; default: return false; } // Cast dest to the right sized primitive and then load/store CastInst* DestCast = new BitCastInst(dest, PointerType::getUnqual(castType), dest->getName()+".cast", ci); new StoreInst(ConstantInt::get(castType,fill_value),DestCast, ci); return ReplaceCallWith(ci, 0); } }; LLVMMemSetOptimization MemSet32Optimizer("llvm.memset.i32"); LLVMMemSetOptimization MemSet64Optimizer("llvm.memset.i64"); /// This LibCallOptimization will simplify calls to the "pow" library /// function. It looks for cases where the result of pow is well known and /// substitutes the appropriate value. /// @brief Simplify the pow library function. struct VISIBILITY_HIDDEN PowOptimization : public LibCallOptimization { public: /// @brief Default Constructor PowOptimization(const char *Name) : LibCallOptimization(Name, "Number of 'pow' calls simplified") {} /// @brief Make sure that the "pow" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ // Just make sure this has 2 arguments of the same FP type, which match the // result type. const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 2 && FT->getParamType(0) == FT->getParamType(1) && FT->getParamType(0) == FT->getReturnType() && FT->getParamType(0)->isFloatingPoint(); } /// @brief Perform the pow optimization. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { Value *Op1 = CI->getOperand(1); Value *Op2 = CI->getOperand(2); if (ConstantFP *Op1C = dyn_cast(Op1)) { if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0 return ReplaceCallWith(CI, Op1C); if (Op1C->isExactlyValue(2.0)) {// pow(2.0, x) -> exp2(x) Value *Exp2 = SLC.getUnaryFloatFunction("exp2", CI->getType()); Value *Res = CallInst::Create(Exp2, Op2, CI->getName()+"exp2", CI); return ReplaceCallWith(CI, Res); } } ConstantFP *Op2C = dyn_cast(Op2); if (Op2C == 0) return false; if (Op2C->getValueAPF().isZero()) { // pow(x, 0.0) -> 1.0 return ReplaceCallWith(CI, ConstantFP::get(CI->getType(), 1.0)); } else if (Op2C->isExactlyValue(0.5)) { // FIXME: This is not safe for -0.0 and -inf. This can only be done when // 'unsafe' math optimizations are allowed. // x pow(x, 0.5) sqrt(x) // --------------------------------------------- // -0.0 +0.0 -0.0 // -inf +inf NaN #if 0 // pow(x, 0.5) -> sqrt(x) Value *Sqrt = CallInst::Create(SLC.get_sqrt(), Op1, "sqrt", CI); return ReplaceCallWith(CI, Sqrt); #endif } else if (Op2C->isExactlyValue(1.0)) { // pow(x, 1.0) -> x return ReplaceCallWith(CI, Op1); } else if (Op2C->isExactlyValue(2.0)) { // pow(x, 2.0) -> x*x Value *Sq = BinaryOperator::createMul(Op1, Op1, "pow2", CI); return ReplaceCallWith(CI, Sq); } else if (Op2C->isExactlyValue(-1.0)) { // pow(x, -1.0) -> 1.0/x Value *R = BinaryOperator::createFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, CI->getName()+".pow", CI); return ReplaceCallWith(CI, R); } return false; // opt failed } }; PowOptimization PowFOptimizer("powf"); PowOptimization PowOptimizer("pow"); PowOptimization PowLOptimizer("powl"); /// This LibCallOptimization will simplify calls to the "printf" library /// function. It looks for cases where the result of printf is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the printf library function. struct VISIBILITY_HIDDEN PrintfOptimization : public LibCallOptimization { public: /// @brief Default Constructor PrintfOptimization() : LibCallOptimization("printf", "Number of 'printf' calls simplified") {} /// @brief Make sure that the "printf" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ // Just make sure this has at least 1 argument and returns an integer or // void type. const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() >= 1 && (isa(FT->getReturnType()) || FT->getReturnType() == Type::VoidTy); } /// @brief Perform the printf optimization. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // All the optimizations depend on the length of the first argument and the // fact that it is a constant string array. Check that now std::string FormatStr; if (!GetConstantStringInfo(CI->getOperand(1), FormatStr)) return false; // If this is a simple constant string with no format specifiers that ends // with a \n, turn it into a puts call. if (FormatStr.empty()) { // Tolerate printf's declared void. if (CI->use_empty()) return ReplaceCallWith(CI, 0); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); } if (FormatStr.size() == 1) { // Turn this into a putchar call, even if it is a %. Value *V = ConstantInt::get(Type::Int32Ty, FormatStr[0]); CallInst::Create(SLC.get_putchar(), V, "", CI); if (CI->use_empty()) return ReplaceCallWith(CI, 0); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); } // Check to see if the format str is something like "foo\n", in which case // we convert it to a puts call. We don't allow it to contain any format // characters. if (FormatStr[FormatStr.size()-1] == '\n' && FormatStr.find('%') == std::string::npos) { // Create a string literal with no \n on it. We expect the constant merge // pass to be run after this pass, to merge duplicate strings. FormatStr.erase(FormatStr.end()-1); Constant *Init = ConstantArray::get(FormatStr, true); Constant *GV = new GlobalVariable(Init->getType(), true, GlobalVariable::InternalLinkage, Init, "str", CI->getParent()->getParent()->getParent()); // Cast GV to be a pointer to char. GV = ConstantExpr::getBitCast(GV, PointerType::getUnqual(Type::Int8Ty)); CallInst::Create(SLC.get_puts(), GV, "", CI); if (CI->use_empty()) return ReplaceCallWith(CI, 0); // The return value from printf includes the \n we just removed, so +1. return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), FormatStr.size()+1)); } // Only support %c or "%s\n" for now. if (FormatStr.size() < 2 || FormatStr[0] != '%') return false; // Get the second character and switch on its value switch (FormatStr[1]) { default: return false; case 's': if (FormatStr != "%s\n" || CI->getNumOperands() < 3 || // TODO: could insert strlen call to compute string length. !CI->use_empty()) return false; // printf("%s\n",str) -> puts(str) CallInst::Create(SLC.get_puts(), CastToCStr(CI->getOperand(2), CI), CI->getName(), CI); return ReplaceCallWith(CI, 0); case 'c': { // printf("%c",c) -> putchar(c) if (FormatStr.size() != 2 || CI->getNumOperands() < 3) return false; Value *V = CI->getOperand(2); if (!isa(V->getType()) || cast(V->getType())->getBitWidth() > 32) return false; V = CastInst::createZExtOrBitCast(V, Type::Int32Ty, CI->getName()+".int", CI); CallInst::Create(SLC.get_putchar(), V, "", CI); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); } } } } PrintfOptimizer; /// This LibCallOptimization will simplify calls to the "fprintf" library /// function. It looks for cases where the result of fprintf is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the fprintf library function. struct VISIBILITY_HIDDEN FPrintFOptimization : public LibCallOptimization { public: /// @brief Default Constructor FPrintFOptimization() : LibCallOptimization("fprintf", "Number of 'fprintf' calls simplified") {} /// @brief Make sure that the "fprintf" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 2 && // two fixed arguments. FT->getParamType(1) == PointerType::getUnqual(Type::Int8Ty) && isa(FT->getParamType(0)) && isa(FT->getReturnType()); } /// @brief Perform the fprintf optimization. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // If the call has more than 3 operands, we can't optimize it if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4) return false; // All the optimizations depend on the format string. std::string FormatStr; if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) return false; // If this is just a format string, turn it into fwrite. if (CI->getNumOperands() == 3) { for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return false; // we found a format specifier // fprintf(file,fmt) -> fwrite(fmt,strlen(fmt),file) const Type *FILEty = CI->getOperand(1)->getType(); Value *FWriteArgs[] = { CI->getOperand(2), ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()), ConstantInt::get(SLC.getIntPtrType(), 1), CI->getOperand(1) }; CallInst::Create(SLC.get_fwrite(FILEty), FWriteArgs, FWriteArgs + 4, CI->getName(), CI); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), FormatStr.size())); } // The remaining optimizations require the format string to be length 2: // "%s" or "%c". if (FormatStr.size() != 2 || FormatStr[0] != '%') return false; // Get the second character and switch on its value switch (FormatStr[1]) { case 'c': { // fprintf(file,"%c",c) -> fputc(c,file) const Type *FILETy = CI->getOperand(1)->getType(); Value *C = CastInst::createZExtOrBitCast(CI->getOperand(3), Type::Int32Ty, CI->getName()+".int", CI); SmallVector Args; Args.push_back(C); Args.push_back(CI->getOperand(1)); CallInst::Create(SLC.get_fputc(FILETy), Args.begin(), Args.end(), "", CI); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); } case 's': { const Type *FILETy = CI->getOperand(1)->getType(); // If the result of the fprintf call is used, we can't do this. // TODO: we should insert a strlen call. if (!CI->use_empty() || !isa(CI->getOperand(3)->getType())) return false; // fprintf(file,"%s",str) -> fputs(str,file) SmallVector Args; Args.push_back(CastToCStr(CI->getOperand(3), CI)); Args.push_back(CI->getOperand(1)); CallInst::Create(SLC.get_fputs(FILETy), Args.begin(), Args.end(), CI->getName(), CI); return ReplaceCallWith(CI, 0); } default: return false; } } } FPrintFOptimizer; /// This LibCallOptimization will simplify calls to the "sprintf" library /// function. It looks for cases where the result of sprintf is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the sprintf library function. struct VISIBILITY_HIDDEN SPrintFOptimization : public LibCallOptimization { public: /// @brief Default Constructor SPrintFOptimization() : LibCallOptimization("sprintf", "Number of 'sprintf' calls simplified") {} /// @brief Make sure that the "sprintf" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 2 && // two fixed arguments. FT->getParamType(1) == PointerType::getUnqual(Type::Int8Ty) && FT->getParamType(0) == FT->getParamType(1) && isa(FT->getReturnType()); } /// @brief Perform the sprintf optimization. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // If the call has more than 3 operands, we can't optimize it if (CI->getNumOperands() != 3 && CI->getNumOperands() != 4) return false; std::string FormatStr; if (!GetConstantStringInfo(CI->getOperand(2), FormatStr)) return false; if (CI->getNumOperands() == 3) { // Make sure there's no % in the constant array for (unsigned i = 0, e = FormatStr.size(); i != e; ++i) if (FormatStr[i] == '%') return false; // we found a format specifier // sprintf(str,fmt) -> llvm.memcpy(str,fmt,strlen(fmt),1) Value *MemCpyArgs[] = { CI->getOperand(1), CI->getOperand(2), ConstantInt::get(SLC.getIntPtrType(), FormatStr.size()+1), // Copy the nul byte. ConstantInt::get(Type::Int32Ty, 1) }; CallInst::Create(SLC.get_memcpy(), MemCpyArgs, MemCpyArgs + 4, "", CI); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), FormatStr.size())); } // The remaining optimizations require the format string to be "%s" or "%c". if (FormatStr.size() != 2 || FormatStr[0] != '%') return false; // Get the second character and switch on its value switch (FormatStr[1]) { case 'c': { // sprintf(dest,"%c",chr) -> store chr, dest Value *V = CastInst::createTruncOrBitCast(CI->getOperand(3), Type::Int8Ty, "char", CI); new StoreInst(V, CI->getOperand(1), CI); Value *Ptr = GetElementPtrInst::Create(CI->getOperand(1), ConstantInt::get(Type::Int32Ty, 1), CI->getOperand(1)->getName()+".end", CI); new StoreInst(ConstantInt::get(Type::Int8Ty,0), Ptr, CI); return ReplaceCallWith(CI, ConstantInt::get(Type::Int32Ty, 1)); } case 's': { // sprintf(dest,"%s",str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) Value *Len = CallInst::Create(SLC.get_strlen(), CastToCStr(CI->getOperand(3), CI), CI->getOperand(3)->getName()+".len", CI); Value *UnincLen = Len; Len = BinaryOperator::createAdd(Len, ConstantInt::get(Len->getType(), 1), Len->getName()+"1", CI); Value *MemcpyArgs[4] = { CI->getOperand(1), CastToCStr(CI->getOperand(3), CI), Len, ConstantInt::get(Type::Int32Ty, 1) }; CallInst::Create(SLC.get_memcpy(), MemcpyArgs, MemcpyArgs + 4, "", CI); // The strlen result is the unincremented number of bytes in the string. if (!CI->use_empty()) { if (UnincLen->getType() != CI->getType()) UnincLen = CastInst::createIntegerCast(UnincLen, CI->getType(), false, Len->getName(), CI); CI->replaceAllUsesWith(UnincLen); } return ReplaceCallWith(CI, 0); } } return false; } } SPrintFOptimizer; /// This LibCallOptimization will simplify calls to the "fputs" library /// function. It looks for cases where the result of fputs is not used and the /// operation can be reduced to something simpler. /// @brief Simplify the fputs library function. struct VISIBILITY_HIDDEN FPutsOptimization : public LibCallOptimization { public: /// @brief Default Constructor FPutsOptimization() : LibCallOptimization("fputs", "Number of 'fputs' calls simplified") {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ // Just make sure this has 2 arguments return F->arg_size() == 2; } /// @brief Perform the fputs optimization. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // If the result is used, none of these optimizations work. if (!CI->use_empty()) return false; // All the optimizations depend on the length of the first argument and the // fact that it is a constant string array. Check that now std::string Str; if (!GetConstantStringInfo(CI->getOperand(1), Str)) return false; const Type *FILETy = CI->getOperand(2)->getType(); // fputs(s,F) -> fwrite(s,1,len,F) (if s is constant and strlen(s) > 1) Value *FWriteParms[4] = { CI->getOperand(1), ConstantInt::get(SLC.getIntPtrType(), Str.size()), ConstantInt::get(SLC.getIntPtrType(), 1), CI->getOperand(2) }; CallInst::Create(SLC.get_fwrite(FILETy), FWriteParms, FWriteParms + 4, "", CI); return ReplaceCallWith(CI, 0); // Known to have no uses (see above). } } FPutsOptimizer; /// This LibCallOptimization will simplify calls to the "fwrite" function. struct VISIBILITY_HIDDEN FWriteOptimization : public LibCallOptimization { public: /// @brief Default Constructor FWriteOptimization() : LibCallOptimization("fwrite", "Number of 'fwrite' calls simplified") {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ const FunctionType *FT = F->getFunctionType(); return FT->getNumParams() == 4 && FT->getParamType(0) == PointerType::getUnqual(Type::Int8Ty) && FT->getParamType(1) == FT->getParamType(2) && isa(FT->getParamType(1)) && isa(FT->getParamType(3)) && isa(FT->getReturnType()); } virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // Get the element size and count. uint64_t EltSize, EltCount; if (ConstantInt *C = dyn_cast(CI->getOperand(2))) EltSize = C->getZExtValue(); else return false; if (ConstantInt *C = dyn_cast(CI->getOperand(3))) EltCount = C->getZExtValue(); else return false; // If this is writing zero records, remove the call (it's a noop). if (EltSize * EltCount == 0) return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 0)); // If this is writing one byte, turn it into fputc. if (EltSize == 1 && EltCount == 1) { SmallVector Args; // fwrite(s,1,1,F) -> fputc(s[0],F) Value *Ptr = CI->getOperand(1); Value *Val = new LoadInst(Ptr, Ptr->getName()+".byte", CI); Args.push_back(new ZExtInst(Val, Type::Int32Ty, Val->getName()+".int", CI)); Args.push_back(CI->getOperand(4)); const Type *FILETy = CI->getOperand(4)->getType(); CallInst::Create(SLC.get_fputc(FILETy), Args.begin(), Args.end(), "", CI); return ReplaceCallWith(CI, ConstantInt::get(CI->getType(), 1)); } return false; } } FWriteOptimizer; /// This LibCallOptimization will simplify calls to the "isdigit" library /// function. It simply does range checks the parameter explicitly. /// @brief Simplify the isdigit library function. struct VISIBILITY_HIDDEN isdigitOptimization : public LibCallOptimization { public: isdigitOptimization() : LibCallOptimization("isdigit", "Number of 'isdigit' calls simplified") {} /// @brief Make sure that the "isdigit" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ // Just make sure this has 1 argument return (f->arg_size() == 1); } /// @brief Perform the toascii optimization. virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { if (ConstantInt* CI = dyn_cast(ci->getOperand(1))) { // isdigit(c) -> 0 or 1, if 'c' is constant uint64_t val = CI->getZExtValue(); if (val >= '0' && val <= '9') return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 1)); else return ReplaceCallWith(ci, ConstantInt::get(Type::Int32Ty, 0)); } // isdigit(c) -> (unsigned)c - '0' <= 9 CastInst* cast = CastInst::createIntegerCast(ci->getOperand(1), Type::Int32Ty, false/*ZExt*/, ci->getOperand(1)->getName()+".uint", ci); BinaryOperator* sub_inst = BinaryOperator::createSub(cast, ConstantInt::get(Type::Int32Ty,0x30), ci->getOperand(1)->getName()+".sub",ci); ICmpInst* setcond_inst = new ICmpInst(ICmpInst::ICMP_ULE,sub_inst, ConstantInt::get(Type::Int32Ty,9), ci->getOperand(1)->getName()+".cmp",ci); CastInst* c2 = new ZExtInst(setcond_inst, Type::Int32Ty, ci->getOperand(1)->getName()+".isdigit", ci); return ReplaceCallWith(ci, c2); } } isdigitOptimizer; struct VISIBILITY_HIDDEN isasciiOptimization : public LibCallOptimization { public: isasciiOptimization() : LibCallOptimization("isascii", "Number of 'isascii' calls simplified") {} virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ return F->arg_size() == 1 && F->arg_begin()->getType()->isInteger() && F->getReturnType()->isInteger(); } /// @brief Perform the isascii optimization. virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { // isascii(c) -> (unsigned)c < 128 Value *V = CI->getOperand(1); Value *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, V, ConstantInt::get(V->getType(), 128), V->getName()+".isascii", CI); if (Cmp->getType() != CI->getType()) Cmp = new ZExtInst(Cmp, CI->getType(), Cmp->getName(), CI); return ReplaceCallWith(CI, Cmp); } } isasciiOptimizer; /// This LibCallOptimization will simplify calls to the "toascii" library /// function. It simply does the corresponding and operation to restrict the /// range of values to the ASCII character set (0-127). /// @brief Simplify the toascii library function. struct VISIBILITY_HIDDEN ToAsciiOptimization : public LibCallOptimization { public: /// @brief Default Constructor ToAsciiOptimization() : LibCallOptimization("toascii", "Number of 'toascii' calls simplified") {} /// @brief Make sure that the "fputs" function has the right prototype virtual bool ValidateCalledFunction(const Function* f, SimplifyLibCalls& SLC){ // Just make sure this has 2 arguments return (f->arg_size() == 1); } /// @brief Perform the toascii optimization. virtual bool OptimizeCall(CallInst *ci, SimplifyLibCalls &SLC) { // toascii(c) -> (c & 0x7f) Value *chr = ci->getOperand(1); Value *and_inst = BinaryOperator::createAnd(chr, ConstantInt::get(chr->getType(),0x7F),ci->getName()+".toascii",ci); return ReplaceCallWith(ci, and_inst); } } ToAsciiOptimizer; /// This LibCallOptimization will simplify calls to the "ffs" library /// calls which find the first set bit in an int, long, or long long. The /// optimization is to compute the result at compile time if the argument is /// a constant. /// @brief Simplify the ffs library function. struct VISIBILITY_HIDDEN FFSOptimization : public LibCallOptimization { protected: /// @brief Subclass Constructor FFSOptimization(const char* funcName, const char* description) : LibCallOptimization(funcName, description) {} public: /// @brief Default Constructor FFSOptimization() : LibCallOptimization("ffs", "Number of 'ffs' calls simplified") {} /// @brief Make sure that the "ffs" function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ // Just make sure this has 2 arguments return F->arg_size() == 1 && F->getReturnType() == Type::Int32Ty; } /// @brief Perform the ffs optimization. virtual bool OptimizeCall(CallInst *TheCall, SimplifyLibCalls &SLC) { if (ConstantInt *CI = dyn_cast(TheCall->getOperand(1))) { // ffs(cnst) -> bit# // ffsl(cnst) -> bit# // ffsll(cnst) -> bit# uint64_t val = CI->getZExtValue(); int result = 0; if (val) { ++result; while ((val & 1) == 0) { ++result; val >>= 1; } } return ReplaceCallWith(TheCall, ConstantInt::get(Type::Int32Ty, result)); } // ffs(x) -> x == 0 ? 0 : llvm.cttz(x)+1 // ffsl(x) -> x == 0 ? 0 : llvm.cttz(x)+1 // ffsll(x) -> x == 0 ? 0 : llvm.cttz(x)+1 const Type *ArgType = TheCall->getOperand(1)->getType(); assert(ArgType->getTypeID() == Type::IntegerTyID && "llvm.cttz argument is not an integer?"); Constant *F = Intrinsic::getDeclaration(SLC.getModule(), Intrinsic::cttz, &ArgType, 1); Value *V = CastInst::createIntegerCast(TheCall->getOperand(1), ArgType, false/*ZExt*/, "tmp", TheCall); Value *V2 = CallInst::Create(F, V, "tmp", TheCall); V2 = CastInst::createIntegerCast(V2, Type::Int32Ty, false/*ZExt*/, "tmp", TheCall); V2 = BinaryOperator::createAdd(V2, ConstantInt::get(Type::Int32Ty, 1), "tmp", TheCall); Value *Cond = new ICmpInst(ICmpInst::ICMP_EQ, V, Constant::getNullValue(V->getType()), "tmp", TheCall); V2 = SelectInst::Create(Cond, ConstantInt::get(Type::Int32Ty, 0), V2, TheCall->getName(), TheCall); return ReplaceCallWith(TheCall, V2); } } FFSOptimizer; /// This LibCallOptimization will simplify calls to the "ffsl" library /// calls. It simply uses FFSOptimization for which the transformation is /// identical. /// @brief Simplify the ffsl library function. struct VISIBILITY_HIDDEN FFSLOptimization : public FFSOptimization { public: /// @brief Default Constructor FFSLOptimization() : FFSOptimization("ffsl", "Number of 'ffsl' calls simplified") {} } FFSLOptimizer; /// This LibCallOptimization will simplify calls to the "ffsll" library /// calls. It simply uses FFSOptimization for which the transformation is /// identical. /// @brief Simplify the ffsl library function. struct VISIBILITY_HIDDEN FFSLLOptimization : public FFSOptimization { public: /// @brief Default Constructor FFSLLOptimization() : FFSOptimization("ffsll", "Number of 'ffsll' calls simplified") {} } FFSLLOptimizer; /// This optimizes unary functions that take and return doubles. struct UnaryDoubleFPOptimizer : public LibCallOptimization { UnaryDoubleFPOptimizer(const char *Fn, const char *Desc) : LibCallOptimization(Fn, Desc) {} // Make sure that this function has the right prototype virtual bool ValidateCalledFunction(const Function *F, SimplifyLibCalls &SLC){ return F->arg_size() == 1 && F->arg_begin()->getType() == Type::DoubleTy && F->getReturnType() == Type::DoubleTy; } /// ShrinkFunctionToFloatVersion - If the input to this function is really a /// float, strength reduce this to a float version of the function, /// e.g. floor((double)FLT) -> (double)floorf(FLT). This can only be called /// when the target supports the destination function and where there can be /// no precision loss. static bool ShrinkFunctionToFloatVersion(CallInst *CI, SimplifyLibCalls &SLC, Constant *(SimplifyLibCalls::*FP)()){ if (FPExtInst *Cast = dyn_cast(CI->getOperand(1))) if (Cast->getOperand(0)->getType() == Type::FloatTy) { Value *New = CallInst::Create((SLC.*FP)(), Cast->getOperand(0), CI->getName(), CI); New = new FPExtInst(New, Type::DoubleTy, CI->getName(), CI); CI->replaceAllUsesWith(New); CI->eraseFromParent(); if (Cast->use_empty()) Cast->eraseFromParent(); return true; } return false; } }; struct VISIBILITY_HIDDEN FloorOptimization : public UnaryDoubleFPOptimizer { FloorOptimization() : UnaryDoubleFPOptimizer("floor", "Number of 'floor' calls simplified") {} virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { #ifdef HAVE_FLOORF // If this is a float argument passed in, convert to floorf. if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_floorf)) return true; #endif return false; // opt failed } } FloorOptimizer; struct VISIBILITY_HIDDEN CeilOptimization : public UnaryDoubleFPOptimizer { CeilOptimization() : UnaryDoubleFPOptimizer("ceil", "Number of 'ceil' calls simplified") {} virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { #ifdef HAVE_CEILF // If this is a float argument passed in, convert to ceilf. if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_ceilf)) return true; #endif return false; // opt failed } } CeilOptimizer; struct VISIBILITY_HIDDEN RoundOptimization : public UnaryDoubleFPOptimizer { RoundOptimization() : UnaryDoubleFPOptimizer("round", "Number of 'round' calls simplified") {} virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { #ifdef HAVE_ROUNDF // If this is a float argument passed in, convert to roundf. if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_roundf)) return true; #endif return false; // opt failed } } RoundOptimizer; struct VISIBILITY_HIDDEN RintOptimization : public UnaryDoubleFPOptimizer { RintOptimization() : UnaryDoubleFPOptimizer("rint", "Number of 'rint' calls simplified") {} virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { #ifdef HAVE_RINTF // If this is a float argument passed in, convert to rintf. if (ShrinkFunctionToFloatVersion(CI, SLC, &SimplifyLibCalls::get_rintf)) return true; #endif return false; // opt failed } } RintOptimizer; struct VISIBILITY_HIDDEN NearByIntOptimization : public UnaryDoubleFPOptimizer { NearByIntOptimization() : UnaryDoubleFPOptimizer("nearbyint", "Number of 'nearbyint' calls simplified") {} virtual bool OptimizeCall(CallInst *CI, SimplifyLibCalls &SLC) { #ifdef HAVE_NEARBYINTF // If this is a float argument passed in, convert to nearbyintf. if (ShrinkFunctionToFloatVersion(CI, SLC,&SimplifyLibCalls::get_nearbyintf)) return true; #endif return false; // opt failed } } NearByIntOptimizer; /// GetConstantStringInfo - This function computes the length of a /// null-terminated constant array of integers. This function can't rely on the /// size of the constant array because there could be a null terminator in the /// middle of the array. /// /// We also have to bail out if we find a non-integer constant initializer /// of one of the elements or if there is no null-terminator. The logic /// below checks each of these conditions and will return true only if all /// conditions are met. If the conditions aren't met, this returns false. /// /// If successful, the \p Array param is set to the constant array being /// indexed, the \p Length parameter is set to the length of the null-terminated /// string pointed to by V, the \p StartIdx value is set to the first /// element of the Array that V points to, and true is returned. static bool GetConstantStringInfo(Value *V, std::string &Str) { // Look through noop bitcast instructions. if (BitCastInst *BCI = dyn_cast(V)) { if (BCI->getType() == BCI->getOperand(0)->getType()) return GetConstantStringInfo(BCI->getOperand(0), Str); return false; } // If the value is not a GEP instruction nor a constant expression with a // GEP instruction, then return false because ConstantArray can't occur // any other way User *GEP = 0; if (GetElementPtrInst *GEPI = dyn_cast(V)) { GEP = GEPI; } else if (ConstantExpr *CE = dyn_cast(V)) { if (CE->getOpcode() != Instruction::GetElementPtr) return false; GEP = CE; } else { return false; } // Make sure the GEP has exactly three arguments. if (GEP->getNumOperands() != 3) return false; // Check to make sure that the first operand of the GEP is an integer and // has value 0 so that we are sure we're indexing into the initializer. if (ConstantInt *Idx = dyn_cast(GEP->getOperand(1))) { if (!Idx->isZero()) return false; } else return false; // If the second index isn't a ConstantInt, then this is a variable index // into the array. If this occurs, we can't say anything meaningful about // the string. uint64_t StartIdx = 0; if (ConstantInt *CI = dyn_cast(GEP->getOperand(2))) StartIdx = CI->getZExtValue(); else return false; // The GEP instruction, constant or instruction, must reference a global // variable that is a constant and is initialized. The referenced constant // initializer is the array that we'll use for optimization. GlobalVariable* GV = dyn_cast(GEP->getOperand(0)); if (!GV || !GV->isConstant() || !GV->hasInitializer()) return false; Constant *GlobalInit = GV->getInitializer(); // Handle the ConstantAggregateZero case if (isa(GlobalInit)) { // This is a degenerate case. The initializer is constant zero so the // length of the string must be zero. Str.clear(); return true; } // Must be a Constant Array ConstantArray *Array = dyn_cast(GlobalInit); if (!Array) return false; // Get the number of elements in the array uint64_t NumElts = Array->getType()->getNumElements(); // Traverse the constant array from StartIdx (derived above) which is // the place the GEP refers to in the array. for (unsigned i = StartIdx; i < NumElts; ++i) { Constant *Elt = Array->getOperand(i); ConstantInt *CI = dyn_cast(Elt); if (!CI) // This array isn't suitable, non-int initializer. return false; if (CI->isZero()) return true; // we found end of string, success! Str += (char)CI->getZExtValue(); } return false; // The array isn't null terminated. } /// CastToCStr - Return V if it is an sbyte*, otherwise cast it to sbyte*, /// inserting the cast before IP, and return the cast. /// @brief Cast a value to a "C" string. static Value *CastToCStr(Value *V, Instruction *IP) { assert(isa(V->getType()) && "Can't cast non-pointer type to C string type"); const Type *SBPTy = PointerType::getUnqual(Type::Int8Ty); if (V->getType() != SBPTy) return new BitCastInst(V, SBPTy, V->getName(), IP); return V; } // TODO: // Additional cases that we need to add to this file: // // cbrt: // * cbrt(expN(X)) -> expN(x/3) // * cbrt(sqrt(x)) -> pow(x,1/6) // * cbrt(sqrt(x)) -> pow(x,1/9) // // cos, cosf, cosl: // * cos(-x) -> cos(x) // // exp, expf, expl: // * exp(log(x)) -> x // // log, logf, logl: // * log(exp(x)) -> x // * log(x**y) -> y*log(x) // * log(exp(y)) -> y*log(e) // * log(exp2(y)) -> y*log(2) // * log(exp10(y)) -> y*log(10) // * log(sqrt(x)) -> 0.5*log(x) // * log(pow(x,y)) -> y*log(x) // // lround, lroundf, lroundl: // * lround(cnst) -> cnst' // // memcmp: // * memcmp(x,y,l) -> cnst // (if all arguments are constant and strlen(x) <= l and strlen(y) <= l) // // memmove: // * memmove(d,s,l,a) -> memcpy(d,s,l,a) // (if s is a global constant array) // // pow, powf, powl: // * pow(exp(x),y) -> exp(x*y) // * pow(sqrt(x),y) -> pow(x,y*0.5) // * pow(pow(x,y),z)-> pow(x,y*z) // // puts: // * puts("") -> putchar("\n") // // round, roundf, roundl: // * round(cnst) -> cnst' // // signbit: // * signbit(cnst) -> cnst' // * signbit(nncst) -> 0 (if pstv is a non-negative constant) // // sqrt, sqrtf, sqrtl: // * sqrt(expN(x)) -> expN(x*0.5) // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) // // stpcpy: // * stpcpy(str, "literal") -> // llvm.memcpy(str,"literal",strlen("literal")+1,1) // strrchr: // * strrchr(s,c) -> reverse_offset_of_in(c,s) // (if c is a constant integer and s is a constant string) // * strrchr(s1,0) -> strchr(s1,0) // // strncat: // * strncat(x,y,0) -> x // * strncat(x,y,0) -> x (if strlen(y) = 0) // * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y)) // // strncpy: // * strncpy(d,s,0) -> d // * strncpy(d,s,l) -> memcpy(d,s,l,1) // (if s and l are constants) // // strpbrk: // * strpbrk(s,a) -> offset_in_for(s,a) // (if s and a are both constant strings) // * strpbrk(s,"") -> 0 // * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1) // // strspn, strcspn: // * strspn(s,a) -> const_int (if both args are constant) // * strspn("",a) -> 0 // * strspn(s,"") -> 0 // * strcspn(s,a) -> const_int (if both args are constant) // * strcspn("",a) -> 0 // * strcspn(s,"") -> strlen(a) // // strstr: // * strstr(x,x) -> x // * strstr(s1,s2) -> offset_of_s2_in(s1) // (if s1 and s2 are constant strings) // // tan, tanf, tanl: // * tan(atan(x)) -> x // // trunc, truncf, truncl: // * trunc(cnst) -> cnst' // // }