//===- lib/Support/Compressor.cpp -------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file was developed by Reid Spencer and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the llvm::Compressor class, an abstraction for memory // block compression. // //===----------------------------------------------------------------------===// #include "llvm/Config/config.h" #include "llvm/Support/Compressor.h" #include "llvm/ADT/StringExtras.h" #include #include #ifdef HAVE_BZIP2 #include #endif #ifdef HAVE_ZLIB #include #endif namespace { inline int getdata(char*& buffer, unsigned& size, llvm::Compressor::OutputDataCallback* cb, void* context) { buffer = 0; size = 0; int result = (*cb)(buffer, size, context); assert(buffer != 0 && "Invalid result from Compressor callback"); assert(size != 0 && "Invalid result from Compressor callback"); return result; } //===----------------------------------------------------------------------===// //=== NULLCOMP - a compression like set of routines that just copies data //=== without doing any compression. This is provided so that if the //=== configured environment doesn't have a compression library the //=== program can still work, albeit using more data/memory. //===----------------------------------------------------------------------===// struct NULLCOMP_stream { // User provided fields char* next_in; unsigned avail_in; char* next_out; unsigned avail_out; // Information fields uint64_t output_count; // Total count of output bytes }; void NULLCOMP_init(NULLCOMP_stream* s) { s->output_count = 0; } bool NULLCOMP_compress(NULLCOMP_stream* s) { assert(s && "Invalid NULLCOMP_stream"); assert(s->next_in != 0); assert(s->next_out != 0); assert(s->avail_in >= 1); assert(s->avail_out >= 1); if (s->avail_out >= s->avail_in) { ::memcpy(s->next_out, s->next_in, s->avail_in); s->output_count += s->avail_in; s->avail_out -= s->avail_in; s->next_in += s->avail_in; s->avail_in = 0; return true; } else { ::memcpy(s->next_out, s->next_in, s->avail_out); s->output_count += s->avail_out; s->avail_in -= s->avail_out; s->next_in += s->avail_out; s->avail_out = 0; return false; } } bool NULLCOMP_decompress(NULLCOMP_stream* s) { assert(s && "Invalid NULLCOMP_stream"); assert(s->next_in != 0); assert(s->next_out != 0); assert(s->avail_in >= 1); assert(s->avail_out >= 1); if (s->avail_out >= s->avail_in) { ::memcpy(s->next_out, s->next_in, s->avail_in); s->output_count += s->avail_in; s->avail_out -= s->avail_in; s->next_in += s->avail_in; s->avail_in = 0; return true; } else { ::memcpy(s->next_out, s->next_in, s->avail_out); s->output_count += s->avail_out; s->avail_in -= s->avail_out; s->next_in += s->avail_out; s->avail_out = 0; return false; } } void NULLCOMP_end(NULLCOMP_stream* strm) { } } namespace llvm { // Compress in one of three ways uint64_t Compressor::compress(char* in, unsigned size, OutputDataCallback* cb, Algorithm hint, void* context ) { assert(in && "Can't compress null buffer"); assert(size && "Can't compress empty buffer"); assert(cb && "Can't compress without a callback function"); uint64_t result = 0; switch (hint) { case COMP_TYPE_BZIP2: { #if defined(HAVE_BZIP2) // Set up the bz_stream bz_stream bzdata; bzdata.bzalloc = 0; bzdata.bzfree = 0; bzdata.opaque = 0; bzdata.next_in = in; bzdata.avail_in = size; bzdata.next_out = 0; bzdata.avail_out = 0; switch ( BZ2_bzCompressInit(&bzdata, 9, 0, 100) ) { case BZ_CONFIG_ERROR: throw std::string("bzip2 library mis-compiled"); case BZ_PARAM_ERROR: throw std::string("Compressor internal error"); case BZ_MEM_ERROR: throw std::string("Out of memory"); case BZ_OK: default: break; } // Get a block of memory if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzCompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } // Put compression code in first byte (*bzdata.next_out++) = COMP_TYPE_BZIP2; bzdata.avail_out--; // Compress it int bzerr = BZ_FINISH_OK; while (BZ_FINISH_OK == (bzerr = BZ2_bzCompress(&bzdata, BZ_FINISH))) { if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzCompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } } switch (bzerr) { case BZ_SEQUENCE_ERROR: case BZ_PARAM_ERROR: throw std::string("Param/Sequence error"); case BZ_FINISH_OK: case BZ_STREAM_END: break; default: throw std::string("Oops: ") + utostr(unsigned(bzerr)); } // Finish result = (static_cast(bzdata.total_out_hi32) << 32) | bzdata.total_out_lo32 + 1; BZ2_bzCompressEnd(&bzdata); break; #else // FALL THROUGH #endif } case COMP_TYPE_ZLIB: { #if defined(HAVE_ZLIB) z_stream zdata; zdata.zalloc = Z_NULL; zdata.zfree = Z_NULL; zdata.opaque = Z_NULL; zdata.next_in = reinterpret_cast(in); zdata.avail_in = size; if (Z_OK != deflateInit(&zdata,Z_BEST_COMPRESSION)) throw std::string(zdata.msg ? zdata.msg : "zlib error"); if (0 != getdata((char*&)(zdata.next_out), zdata.avail_out,cb,context)) { deflateEnd(&zdata); throw std::string("Can't allocate output buffer"); } (*zdata.next_out++) = COMP_TYPE_ZLIB; zdata.avail_out--; int flush = 0; while ( Z_OK == deflate(&zdata,0) && zdata.avail_out == 0) { if (0 != getdata((char*&)zdata.next_out, zdata.avail_out, cb,context)) { deflateEnd(&zdata); throw std::string("Can't allocate output buffer"); } } while ( Z_STREAM_END != deflate(&zdata, Z_FINISH)) { if (0 != getdata((char*&)zdata.next_out, zdata.avail_out, cb,context)) { deflateEnd(&zdata); throw std::string("Can't allocate output buffer"); } } result = static_cast(zdata.total_out) + 1; deflateEnd(&zdata); break; #else // FALL THROUGH #endif } case COMP_TYPE_SIMPLE: { NULLCOMP_stream sdata; sdata.next_in = in; sdata.avail_in = size; NULLCOMP_init(&sdata); if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } *(sdata.next_out++) = COMP_TYPE_SIMPLE; sdata.avail_out--; while (!NULLCOMP_compress(&sdata)) { if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } } result = sdata.output_count + 1; NULLCOMP_end(&sdata); break; } default: throw std::string("Invalid compression type hint"); } return result; } // Decompress in one of three ways uint64_t Compressor::decompress(char *in, unsigned size, OutputDataCallback* cb, void* context) { assert(in && "Can't decompress null buffer"); assert(size > 1 && "Can't decompress empty buffer"); assert(cb && "Can't decompress without a callback function"); uint64_t result = 0; switch (*in++) { case COMP_TYPE_BZIP2: { #if !defined(HAVE_BZIP2) throw std::string("Can't decompress BZIP2 data"); #else // Set up the bz_stream bz_stream bzdata; bzdata.bzalloc = 0; bzdata.bzfree = 0; bzdata.opaque = 0; bzdata.next_in = in; bzdata.avail_in = size - 1; bzdata.next_out = 0; bzdata.avail_out = 0; switch ( BZ2_bzDecompressInit(&bzdata, 0, 0) ) { case BZ_CONFIG_ERROR: throw std::string("bzip2 library mis-compiled"); case BZ_PARAM_ERROR: throw std::string("Compressor internal error"); case BZ_MEM_ERROR: throw std::string("Out of memory"); case BZ_OK: default: break; } // Get a block of memory if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzDecompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } // Decompress it int bzerr = BZ_OK; while (BZ_OK == (bzerr = BZ2_bzDecompress(&bzdata))) { if (0 != getdata(bzdata.next_out, bzdata.avail_out,cb,context)) { BZ2_bzDecompressEnd(&bzdata); throw std::string("Can't allocate output buffer"); } } switch (bzerr) { case BZ_PARAM_ERROR: throw std::string("Compressor internal error"); case BZ_MEM_ERROR: throw std::string("Out of memory"); case BZ_DATA_ERROR: throw std::string("Data integrity error"); case BZ_DATA_ERROR_MAGIC:throw std::string("Data is not BZIP2"); default: throw("Ooops"); case BZ_STREAM_END: break; } // Finish result = (static_cast(bzdata.total_out_hi32) << 32) | bzdata.total_out_lo32; BZ2_bzDecompressEnd(&bzdata); break; #endif } case COMP_TYPE_ZLIB: { #if !defined(HAVE_ZLIB) throw std::string("Can't decompress ZLIB data"); #else z_stream zdata; zdata.zalloc = Z_NULL; zdata.zfree = Z_NULL; zdata.opaque = Z_NULL; zdata.next_in = reinterpret_cast(in); zdata.avail_in = size - 1; if ( Z_OK != inflateInit(&zdata)) throw std::string(zdata.msg ? zdata.msg : "zlib error"); if (0 != getdata((char*&)zdata.next_out, zdata.avail_out,cb,context)) { inflateEnd(&zdata); throw std::string("Can't allocate output buffer"); } int zerr = Z_OK; while (Z_OK == (zerr = inflate(&zdata,0))) { if (0 != getdata((char*&)zdata.next_out, zdata.avail_out,cb,context)) { inflateEnd(&zdata); throw std::string("Can't allocate output buffer"); } } if (zerr != Z_STREAM_END) throw std::string(zdata.msg?zdata.msg:"zlib error"); result = static_cast(zdata.total_out); inflateEnd(&zdata); break; #endif } case COMP_TYPE_SIMPLE: { NULLCOMP_stream sdata; sdata.next_in = in; sdata.avail_in = size - 1; NULLCOMP_init(&sdata); if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } while (!NULLCOMP_decompress(&sdata)) { if (0 != getdata(sdata.next_out, sdata.avail_out,cb,context)) { throw std::string("Can't allocate output buffer"); } } result = sdata.output_count; NULLCOMP_end(&sdata); break; } default: throw std::string("Unknown type of compressed data"); } return result; } } // vim: sw=2 ai