//===-- SparcV9InstrInfo.cpp - SparcV9 Instr. Selection Support Methods ---===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains various methods of the class SparcV9InstrInfo, many of // which appear to build canned sequences of MachineInstrs, and are // used in instruction selection. // //===----------------------------------------------------------------------===// #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/iTerminators.h" #include "llvm/CodeGen/InstrSelection.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionInfo.h" #include "llvm/CodeGen/MachineCodeForInstruction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "SparcV9Internals.h" #include "SparcV9InstrSelectionSupport.h" #include "SparcV9InstrInfo.h" namespace llvm { static const uint32_t MAXLO = (1 << 10) - 1; // set bits set by %lo(*) static const uint32_t MAXSIMM = (1 << 12) - 1; // set bits in simm13 field of OR //--------------------------------------------------------------------------- // Function ConvertConstantToIntType // // Function to get the value of an integral constant in the form // that must be put into the machine register. The specified constant is // interpreted as (i.e., converted if necessary to) the specified destination // type. The result is always returned as an uint64_t, since the representation // of int64_t and uint64_t are identical. The argument can be any known const. // // isValidConstant is set to true if a valid constant was found. //--------------------------------------------------------------------------- uint64_t SparcV9InstrInfo::ConvertConstantToIntType(const TargetMachine &target, const Value *V, const Type *destType, bool &isValidConstant) const { isValidConstant = false; uint64_t C = 0; if (! destType->isIntegral() && ! isa(destType)) return C; if (! isa(V)) return C; // ConstantPointerRef: no conversions needed: get value and return it if (const ConstantPointerRef* CPR = dyn_cast(V)) { // A ConstantPointerRef is just a reference to GlobalValue. isValidConstant = true; // may be overwritten by recursive call return (CPR->isNullValue()? 0 : ConvertConstantToIntType(target, CPR->getValue(), destType, isValidConstant)); } // ConstantBool: no conversions needed: get value and return it if (const ConstantBool *CB = dyn_cast(V)) { isValidConstant = true; return (uint64_t) CB->getValue(); } // ConstantPointerNull: it's really just a big, shiny version of zero. if (const ConstantPointerNull *CPN = dyn_cast(V)) { isValidConstant = true; return 0; } // For other types of constants, some conversion may be needed. // First, extract the constant operand according to its own type if (const ConstantExpr *CE = dyn_cast(V)) switch(CE->getOpcode()) { case Instruction::Cast: // recursively get the value as cast C = ConvertConstantToIntType(target, CE->getOperand(0), CE->getType(), isValidConstant); break; default: // not simplifying other ConstantExprs break; } else if (const ConstantInt *CI = dyn_cast(V)) { isValidConstant = true; C = CI->getRawValue(); } else if (const ConstantFP *CFP = dyn_cast(V)) { isValidConstant = true; double fC = CFP->getValue(); C = (destType->isSigned()? (uint64_t) (int64_t) fC : (uint64_t) fC); } // Now if a valid value was found, convert it to destType. if (isValidConstant) { unsigned opSize = target.getTargetData().getTypeSize(V->getType()); unsigned destSize = target.getTargetData().getTypeSize(destType); uint64_t maskHi = (destSize < 8)? (1U << 8*destSize) - 1 : ~0; assert(opSize <= 8 && destSize <= 8 && ">8-byte int type unexpected"); if (destType->isSigned()) { if (opSize > destSize) // operand is larger than dest: C = C & maskHi; // mask high bits if (opSize > destSize || (opSize == destSize && ! V->getType()->isSigned())) if (C & (1U << (8*destSize - 1))) C = C | ~maskHi; // sign-extend from destSize to 64 bits } else { if (opSize > destSize || (V->getType()->isSigned() && destSize < 8)) { // operand is larger than dest, // OR both are equal but smaller than the full register size // AND operand is signed, so it may have extra sign bits: // mask high bits C = C & maskHi; } } } return C; } //---------------------------------------------------------------------------- // Function: CreateSETUWConst // // Set a 32-bit unsigned constant in the register `dest', using // SETHI, OR in the worst case. This function correctly emulates // the SETUW pseudo-op for SPARC v9 (if argument isSigned == false). // // The isSigned=true case is used to implement SETSW without duplicating code. // // Optimize some common cases: // (1) Small value that fits in simm13 field of OR: don't need SETHI. // (2) isSigned = true and C is a small negative signed value, i.e., // high bits are 1, and the remaining bits fit in simm13(OR). //---------------------------------------------------------------------------- static inline void CreateSETUWConst(const TargetMachine& target, uint32_t C, Instruction* dest, std::vector& mvec, bool isSigned = false) { MachineInstr *miSETHI = NULL, *miOR = NULL; // In order to get efficient code, we should not generate the SETHI if // all high bits are 1 (i.e., this is a small signed value that fits in // the simm13 field of OR). So we check for and handle that case specially. // NOTE: The value C = 0x80000000 is bad: sC < 0 *and* -sC < 0. // In fact, sC == -sC, so we have to check for this explicitly. int32_t sC = (int32_t) C; bool smallNegValue =isSigned && sC < 0 && sC != -sC && -sC < (int32_t)MAXSIMM; // Set the high 22 bits in dest if non-zero and simm13 field of OR not enough if (!smallNegValue && (C & ~MAXLO) && C > MAXSIMM) { miSETHI = BuildMI(V9::SETHI, 2).addZImm(C).addRegDef(dest); miSETHI->setOperandHi32(0); mvec.push_back(miSETHI); } // Set the low 10 or 12 bits in dest. This is necessary if no SETHI // was generated, or if the low 10 bits are non-zero. if (miSETHI==NULL || C & MAXLO) { if (miSETHI) { // unsigned value with high-order bits set using SETHI miOR = BuildMI(V9::ORi,3).addReg(dest).addZImm(C).addRegDef(dest); miOR->setOperandLo32(1); } else { // unsigned or small signed value that fits in simm13 field of OR assert(smallNegValue || (C & ~MAXSIMM) == 0); miOR = BuildMI(V9::ORi, 3).addMReg(target.getRegInfo()->getZeroRegNum()) .addSImm(sC).addRegDef(dest); } mvec.push_back(miOR); } assert((miSETHI || miOR) && "Oops, no code was generated!"); } //---------------------------------------------------------------------------- // Function: CreateSETSWConst // // Set a 32-bit signed constant in the register `dest', with sign-extension // to 64 bits. This uses SETHI, OR, SRA in the worst case. // This function correctly emulates the SETSW pseudo-op for SPARC v9. // // Optimize the same cases as SETUWConst, plus: // (1) SRA is not needed for positive or small negative values. //---------------------------------------------------------------------------- static inline void CreateSETSWConst(const TargetMachine& target, int32_t C, Instruction* dest, std::vector& mvec) { // Set the low 32 bits of dest CreateSETUWConst(target, (uint32_t) C, dest, mvec, /*isSigned*/true); // Sign-extend to the high 32 bits if needed. // NOTE: The value C = 0x80000000 is bad: -C == C and so -C is < MAXSIMM if (C < 0 && (C == -C || -C > (int32_t) MAXSIMM)) mvec.push_back(BuildMI(V9::SRAi5,3).addReg(dest).addZImm(0).addRegDef(dest)); } //---------------------------------------------------------------------------- // Function: CreateSETXConst // // Set a 64-bit signed or unsigned constant in the register `dest'. // Use SETUWConst for each 32 bit word, plus a left-shift-by-32 in between. // This function correctly emulates the SETX pseudo-op for SPARC v9. // // Optimize the same cases as SETUWConst for each 32 bit word. //---------------------------------------------------------------------------- static inline void CreateSETXConst(const TargetMachine& target, uint64_t C, Instruction* tmpReg, Instruction* dest, std::vector& mvec) { assert(C > (unsigned int) ~0 && "Use SETUW/SETSW for 32-bit values!"); MachineInstr* MI; // Code to set the upper 32 bits of the value in register `tmpReg' CreateSETUWConst(target, (C >> 32), tmpReg, mvec); // Shift tmpReg left by 32 bits mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) .addRegDef(tmpReg)); // Code to set the low 32 bits of the value in register `dest' CreateSETUWConst(target, C, dest, mvec); // dest = OR(tmpReg, dest) mvec.push_back(BuildMI(V9::ORr,3).addReg(dest).addReg(tmpReg).addRegDef(dest)); } //---------------------------------------------------------------------------- // Function: CreateSETUWLabel // // Set a 32-bit constant (given by a symbolic label) in the register `dest'. //---------------------------------------------------------------------------- static inline void CreateSETUWLabel(const TargetMachine& target, Value* val, Instruction* dest, std::vector& mvec) { MachineInstr* MI; // Set the high 22 bits in dest MI = BuildMI(V9::SETHI, 2).addReg(val).addRegDef(dest); MI->setOperandHi32(0); mvec.push_back(MI); // Set the low 10 bits in dest MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(val).addRegDef(dest); MI->setOperandLo32(1); mvec.push_back(MI); } //---------------------------------------------------------------------------- // Function: CreateSETXLabel // // Set a 64-bit constant (given by a symbolic label) in the register `dest'. //---------------------------------------------------------------------------- static inline void CreateSETXLabel(const TargetMachine& target, Value* val, Instruction* tmpReg, Instruction* dest, std::vector& mvec) { assert(isa(val) || isa(val) && "I only know about constant values and global addresses"); MachineInstr* MI; MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(tmpReg); MI->setOperandHi64(0); mvec.push_back(MI); MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addPCDisp(val).addRegDef(tmpReg); MI->setOperandLo64(1); mvec.push_back(MI); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) .addRegDef(tmpReg)); MI = BuildMI(V9::SETHI, 2).addPCDisp(val).addRegDef(dest); MI->setOperandHi32(0); mvec.push_back(MI); MI = BuildMI(V9::ORr, 3).addReg(dest).addReg(tmpReg).addRegDef(dest); mvec.push_back(MI); MI = BuildMI(V9::ORi, 3).addReg(dest).addPCDisp(val).addRegDef(dest); MI->setOperandLo32(1); mvec.push_back(MI); } //---------------------------------------------------------------------------- // Function: CreateUIntSetInstruction // // Create code to Set an unsigned constant in the register `dest'. // Uses CreateSETUWConst, CreateSETSWConst or CreateSETXConst as needed. // CreateSETSWConst is an optimization for the case that the unsigned value // has all ones in the 33 high bits (so that sign-extension sets them all). //---------------------------------------------------------------------------- static inline void CreateUIntSetInstruction(const TargetMachine& target, uint64_t C, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { static const uint64_t lo32 = (uint32_t) ~0; if (C <= lo32) // High 32 bits are 0. Set low 32 bits. CreateSETUWConst(target, (uint32_t) C, dest, mvec); else if ((C & ~lo32) == ~lo32 && (C & (1U << 31))) { // All high 33 (not 32) bits are 1s: sign-extension will take care // of high 32 bits, so use the sequence for signed int CreateSETSWConst(target, (int32_t) C, dest, mvec); } else if (C > lo32) { // C does not fit in 32 bits TmpInstruction* tmpReg = new TmpInstruction(mcfi, Type::IntTy); CreateSETXConst(target, C, tmpReg, dest, mvec); } } //---------------------------------------------------------------------------- // Function: CreateIntSetInstruction // // Create code to Set a signed constant in the register `dest'. // Really the same as CreateUIntSetInstruction. //---------------------------------------------------------------------------- static inline void CreateIntSetInstruction(const TargetMachine& target, int64_t C, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) { CreateUIntSetInstruction(target, (uint64_t) C, dest, mvec, mcfi); } //--------------------------------------------------------------------------- // Create a table of LLVM opcode -> max. immediate constant likely to // be usable for that operation. //--------------------------------------------------------------------------- // Entry == 0 ==> no immediate constant field exists at all. // Entry > 0 ==> abs(immediate constant) <= Entry // std::vector MaxConstantsTable(Instruction::OtherOpsEnd); static int MaxConstantForInstr(unsigned llvmOpCode) { int modelOpCode = -1; if (llvmOpCode >= Instruction::BinaryOpsBegin && llvmOpCode < Instruction::BinaryOpsEnd) modelOpCode = V9::ADDi; else switch(llvmOpCode) { case Instruction::Ret: modelOpCode = V9::JMPLCALLi; break; case Instruction::Malloc: case Instruction::Alloca: case Instruction::GetElementPtr: case Instruction::PHI: case Instruction::Cast: case Instruction::Call: modelOpCode = V9::ADDi; break; case Instruction::Shl: case Instruction::Shr: modelOpCode = V9::SLLXi6; break; default: break; }; return (modelOpCode < 0)? 0: SparcV9MachineInstrDesc[modelOpCode].maxImmedConst; } static void InitializeMaxConstantsTable() { unsigned op; assert(MaxConstantsTable.size() == Instruction::OtherOpsEnd && "assignments below will be illegal!"); for (op = Instruction::TermOpsBegin; op < Instruction::TermOpsEnd; ++op) MaxConstantsTable[op] = MaxConstantForInstr(op); for (op = Instruction::BinaryOpsBegin; op < Instruction::BinaryOpsEnd; ++op) MaxConstantsTable[op] = MaxConstantForInstr(op); for (op = Instruction::MemoryOpsBegin; op < Instruction::MemoryOpsEnd; ++op) MaxConstantsTable[op] = MaxConstantForInstr(op); for (op = Instruction::OtherOpsBegin; op < Instruction::OtherOpsEnd; ++op) MaxConstantsTable[op] = MaxConstantForInstr(op); } //--------------------------------------------------------------------------- // class SparcV9InstrInfo // // Purpose: // Information about individual instructions. // Most information is stored in the SparcV9MachineInstrDesc array above. // Other information is computed on demand, and most such functions // default to member functions in base class TargetInstrInfo. //--------------------------------------------------------------------------- SparcV9InstrInfo::SparcV9InstrInfo() : TargetInstrInfo(SparcV9MachineInstrDesc, V9::NUM_TOTAL_OPCODES) { InitializeMaxConstantsTable(); } bool SparcV9InstrInfo::ConstantMayNotFitInImmedField(const Constant* CV, const Instruction* I) const { if (I->getOpcode() >= MaxConstantsTable.size()) // user-defined op (or bug!) return true; if (isa(CV)) // can always use %g0 return false; if (isa(I)) // Switch instructions will be lowered! return false; if (const ConstantInt* CI = dyn_cast(CV)) return labs((int64_t)CI->getRawValue()) > MaxConstantsTable[I->getOpcode()]; if (isa(CV)) return 1 > MaxConstantsTable[I->getOpcode()]; return true; } // // Create an instruction sequence to put the constant `val' into // the virtual register `dest'. `val' may be a Constant or a // GlobalValue, viz., the constant address of a global variable or function. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via MachineFunction. // void SparcV9InstrInfo::CreateCodeToLoadConst(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const { assert(isa(val) || isa(val) && "I only know about constant values and global addresses"); // Use a "set" instruction for known constants or symbolic constants (labels) // that can go in an integer reg. // We have to use a "load" instruction for all other constants, // in particular, floating point constants. // const Type* valType = val->getType(); // A ConstantPointerRef is just a reference to GlobalValue. while (isa(val)) val = cast(val)->getValue(); if (isa(val)) { TmpInstruction* tmpReg = new TmpInstruction(mcfi, PointerType::get(val->getType()), val); CreateSETXLabel(target, val, tmpReg, dest, mvec); return; } bool isValid; uint64_t C = ConvertConstantToIntType(target, val, dest->getType(), isValid); if (isValid) { if (dest->getType()->isSigned()) CreateUIntSetInstruction(target, C, dest, mvec, mcfi); else CreateIntSetInstruction(target, (int64_t) C, dest, mvec, mcfi); } else { // Make an instruction sequence to load the constant, viz: // SETX , tmpReg, addrReg // LOAD /*addr*/ addrReg, /*offset*/ 0, dest // First, create a tmp register to be used by the SETX sequence. TmpInstruction* tmpReg = new TmpInstruction(mcfi, PointerType::get(val->getType())); // Create another TmpInstruction for the address register TmpInstruction* addrReg = new TmpInstruction(mcfi, PointerType::get(val->getType())); // Get the constant pool index for this constant MachineConstantPool *CP = MachineFunction::get(F).getConstantPool(); Constant *C = cast(val); unsigned CPI = CP->getConstantPoolIndex(C); // Put the address of the constant into a register MachineInstr* MI; MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(tmpReg); MI->setOperandHi64(0); mvec.push_back(MI); MI = BuildMI(V9::ORi, 3).addReg(tmpReg).addConstantPoolIndex(CPI) .addRegDef(tmpReg); MI->setOperandLo64(1); mvec.push_back(MI); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(tmpReg).addZImm(32) .addRegDef(tmpReg)); MI = BuildMI(V9::SETHI, 2).addConstantPoolIndex(CPI).addRegDef(addrReg); MI->setOperandHi32(0); mvec.push_back(MI); MI = BuildMI(V9::ORr, 3).addReg(addrReg).addReg(tmpReg).addRegDef(addrReg); mvec.push_back(MI); MI = BuildMI(V9::ORi, 3).addReg(addrReg).addConstantPoolIndex(CPI) .addRegDef(addrReg); MI->setOperandLo32(1); mvec.push_back(MI); // Now load the constant from out ConstantPool label unsigned Opcode = ChooseLoadInstruction(val->getType()); Opcode = convertOpcodeFromRegToImm(Opcode); mvec.push_back(BuildMI(Opcode, 3) .addReg(addrReg).addSImm((int64_t)0).addRegDef(dest)); } } // Create an instruction sequence to copy an integer register `val' // to a floating point register `dest' by copying to memory and back. // val must be an integral type. dest must be a Float or Double. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via MachineFunction. // void SparcV9InstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const { assert((val->getType()->isIntegral() || isa(val->getType())) && "Source type must be integral (integer or bool) or pointer"); assert(dest->getType()->isFloatingPoint() && "Dest type must be float/double"); // Get a stack slot to use for the copy int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); // Get the size of the source value being copied. size_t srcSize = target.getTargetData().getTypeSize(val->getType()); // Store instruction stores `val' to [%fp+offset]. // The store and load opCodes are based on the size of the source value. // If the value is smaller than 32 bits, we must sign- or zero-extend it // to 32 bits since the load-float will load 32 bits. // Note that the store instruction is the same for signed and unsigned ints. const Type* storeType = (srcSize <= 4)? Type::IntTy : Type::LongTy; Value* storeVal = val; if (srcSize < target.getTargetData().getTypeSize(Type::FloatTy)) { // sign- or zero-extend respectively storeVal = new TmpInstruction(mcfi, storeType, val); if (val->getType()->isSigned()) CreateSignExtensionInstructions(target, F, val, storeVal, 8*srcSize, mvec, mcfi); else CreateZeroExtensionInstructions(target, F, val, storeVal, 8*srcSize, mvec, mcfi); } unsigned FPReg = target.getRegInfo()->getFramePointer(); unsigned StoreOpcode = ChooseStoreInstruction(storeType); StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); mvec.push_back(BuildMI(StoreOpcode, 3) .addReg(storeVal).addMReg(FPReg).addSImm(offset)); // Load instruction loads [%fp+offset] to `dest'. // The type of the load opCode is the floating point type that matches the // stored type in size: // On SparcV9: float for int or smaller, double for long. // const Type* loadType = (srcSize <= 4)? Type::FloatTy : Type::DoubleTy; unsigned LoadOpcode = ChooseLoadInstruction(loadType); LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); mvec.push_back(BuildMI(LoadOpcode, 3) .addMReg(FPReg).addSImm(offset).addRegDef(dest)); } // Similarly, create an instruction sequence to copy an FP register // `val' to an integer register `dest' by copying to memory and back. // The generated instructions are returned in `mvec'. // Any temp. virtual registers (TmpInstruction) created are recorded in mcfi. // Temporary stack space required is allocated via MachineFunction. // void SparcV9InstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target, Function* F, Value* val, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const { const Type* opTy = val->getType(); const Type* destTy = dest->getType(); assert(opTy->isFloatingPoint() && "Source type must be float/double"); assert((destTy->isIntegral() || isa(destTy)) && "Dest type must be integer, bool or pointer"); // FIXME: For now, we allocate permanent space because the stack frame // manager does not allow locals to be allocated (e.g., for alloca) after // a temp is allocated! // int offset = MachineFunction::get(F).getInfo()->allocateLocalVar(val); unsigned FPReg = target.getRegInfo()->getFramePointer(); // Store instruction stores `val' to [%fp+offset]. // The store opCode is based only the source value being copied. // unsigned StoreOpcode = ChooseStoreInstruction(opTy); StoreOpcode = convertOpcodeFromRegToImm(StoreOpcode); mvec.push_back(BuildMI(StoreOpcode, 3) .addReg(val).addMReg(FPReg).addSImm(offset)); // Load instruction loads [%fp+offset] to `dest'. // The type of the load opCode is the integer type that matches the // source type in size: // On SparcV9: int for float, long for double. // Note that we *must* use signed loads even for unsigned dest types, to // ensure correct sign-extension for UByte, UShort or UInt: // const Type* loadTy = (opTy == Type::FloatTy)? Type::IntTy : Type::LongTy; unsigned LoadOpcode = ChooseLoadInstruction(loadTy); LoadOpcode = convertOpcodeFromRegToImm(LoadOpcode); mvec.push_back(BuildMI(LoadOpcode, 3).addMReg(FPReg) .addSImm(offset).addRegDef(dest)); } // Create instruction(s) to copy src to dest, for arbitrary types // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via MachineFunction. // void SparcV9InstrInfo::CreateCopyInstructionsByType(const TargetMachine& target, Function *F, Value* src, Instruction* dest, std::vector& mvec, MachineCodeForInstruction& mcfi) const { bool loadConstantToReg = false; const Type* resultType = dest->getType(); MachineOpCode opCode = ChooseAddInstructionByType(resultType); assert (opCode != V9::INVALID_OPCODE && "Unsupported result type in CreateCopyInstructionsByType()"); // if `src' is a constant that doesn't fit in the immed field or if it is // a global variable (i.e., a constant address), generate a load // instruction instead of an add // if (isa(src)) { unsigned int machineRegNum; int64_t immedValue; MachineOperand::MachineOperandType opType = ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true, machineRegNum, immedValue); if (opType == MachineOperand::MO_VirtualRegister) loadConstantToReg = true; } else if (isa(src)) loadConstantToReg = true; if (loadConstantToReg) { // `src' is constant and cannot fit in immed field for the ADD // Insert instructions to "load" the constant into a register target.getInstrInfo()->CreateCodeToLoadConst(target, F, src, dest, mvec, mcfi); } else { // Create a reg-to-reg copy instruction for the given type: // -- For FP values, create a FMOVS or FMOVD instruction // -- For non-FP values, create an add-with-0 instruction (opCode as above) // Make `src' the second operand, in case it is a small constant! // MachineInstr* MI; if (resultType->isFloatingPoint()) MI = (BuildMI(resultType == Type::FloatTy? V9::FMOVS : V9::FMOVD, 2) .addReg(src).addRegDef(dest)); else { const Type* Ty =isa(resultType)? Type::ULongTy :resultType; MI = (BuildMI(opCode, 3) .addSImm((int64_t) 0).addReg(src).addRegDef(dest)); } mvec.push_back(MI); } } // Helper function for sign-extension and zero-extension. // For SPARC v9, we sign-extend the given operand using SLL; SRA/SRL. inline void CreateBitExtensionInstructions(bool signExtend, const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned int numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) { MachineInstr* M; assert(numLowBits <= 32 && "Otherwise, nothing should be done here!"); if (numLowBits < 32) { // SLL is needed since operand size is < 32 bits. TmpInstruction *tmpI = new TmpInstruction(mcfi, destVal->getType(), srcVal, destVal, "make32"); mvec.push_back(BuildMI(V9::SLLXi6, 3).addReg(srcVal) .addZImm(32-numLowBits).addRegDef(tmpI)); srcVal = tmpI; } mvec.push_back(BuildMI(signExtend? V9::SRAi5 : V9::SRLi5, 3) .addReg(srcVal).addZImm(32-numLowBits).addRegDef(destVal)); } // Create instruction sequence to produce a sign-extended register value // from an arbitrary-sized integer value (sized in bits, not bytes). // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via MachineFunction. // void SparcV9InstrInfo::CreateSignExtensionInstructions( const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned int numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) const { CreateBitExtensionInstructions(/*signExtend*/ true, target, F, srcVal, destVal, numLowBits, mvec, mcfi); } // Create instruction sequence to produce a zero-extended register value // from an arbitrary-sized integer value (sized in bits, not bytes). // For SPARC v9, we sign-extend the given operand using SLL; SRL. // The generated instructions are returned in `mvec'. // Any temp. registers (TmpInstruction) created are recorded in mcfi. // Any stack space required is allocated via MachineFunction. // void SparcV9InstrInfo::CreateZeroExtensionInstructions( const TargetMachine& target, Function* F, Value* srcVal, Value* destVal, unsigned int numLowBits, std::vector& mvec, MachineCodeForInstruction& mcfi) const { CreateBitExtensionInstructions(/*signExtend*/ false, target, F, srcVal, destVal, numLowBits, mvec, mcfi); } } // End llvm namespace