//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the function verifier interface, that can be used for some // sanity checking of input to the system. // // Note that this does not provide full `Java style' security and verifications, // instead it just tries to ensure that code is well-formed. // // * Both of a binary operator's parameters are of the same type // * Verify that the indices of mem access instructions match other operands // * Verify that arithmetic and other things are only performed on first-class // types. Verify that shifts & logicals only happen on integrals f.e. // * All of the constants in a switch statement are of the correct type // * The code is in valid SSA form // * It should be illegal to put a label into any other type (like a structure) // or to return one. [except constant arrays!] // * Only phi nodes can be self referential: 'add int %0, %0 ; :0' is bad // * PHI nodes must have an entry for each predecessor, with no extras. // * PHI nodes must be the first thing in a basic block, all grouped together // * PHI nodes must have at least one entry // * All basic blocks should only end with terminator insts, not contain them // * The entry node to a function must not have predecessors // * All Instructions must be embedded into a basic block // * Functions cannot take a void-typed parameter // * Verify that a function's argument list agrees with it's declared type. // * It is illegal to specify a name for a void value. // * It is illegal to have a internal global value with no initializer // * It is illegal to have a ret instruction that returns a value that does not // agree with the function return value type. // * Function call argument types match the function prototype // * All other things that are tested by asserts spread about the code... // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Verifier.h" #include "llvm/Assembly/Writer.h" #include "llvm/CallingConv.h" #include "llvm/Constants.h" #include "llvm/Pass.h" #include "llvm/Module.h" #include "llvm/ModuleProvider.h" #include "llvm/ParameterAttributes.h" #include "llvm/DerivedTypes.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Intrinsics.h" #include "llvm/PassManager.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/Streams.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Compiler.h" #include #include #include using namespace llvm; namespace { // Anonymous namespace for class struct VISIBILITY_HIDDEN Verifier : public FunctionPass, InstVisitor { static char ID; // Pass ID, replacement for typeid bool Broken; // Is this module found to be broken? bool RealPass; // Are we not being run by a PassManager? VerifierFailureAction action; // What to do if verification fails. Module *Mod; // Module we are verifying right now DominatorTree *DT; // Dominator Tree, caution can be null! std::stringstream msgs; // A stringstream to collect messages /// InstInThisBlock - when verifying a basic block, keep track of all of the /// instructions we have seen so far. This allows us to do efficient /// dominance checks for the case when an instruction has an operand that is /// an instruction in the same block. SmallPtrSet InstsInThisBlock; Verifier() : FunctionPass((intptr_t)&ID), Broken(false), RealPass(true), action(AbortProcessAction), DT(0), msgs( std::ios::app | std::ios::out ) {} Verifier( VerifierFailureAction ctn ) : FunctionPass((intptr_t)&ID), Broken(false), RealPass(true), action(ctn), DT(0), msgs( std::ios::app | std::ios::out ) {} Verifier(bool AB ) : FunctionPass((intptr_t)&ID), Broken(false), RealPass(true), action( AB ? AbortProcessAction : PrintMessageAction), DT(0), msgs( std::ios::app | std::ios::out ) {} Verifier(DominatorTree &dt) : FunctionPass((intptr_t)&ID), Broken(false), RealPass(false), action(PrintMessageAction), DT(&dt), msgs( std::ios::app | std::ios::out ) {} bool doInitialization(Module &M) { Mod = &M; verifyTypeSymbolTable(M.getTypeSymbolTable()); // If this is a real pass, in a pass manager, we must abort before // returning back to the pass manager, or else the pass manager may try to // run other passes on the broken module. if (RealPass) return abortIfBroken(); return false; } bool runOnFunction(Function &F) { // Get dominator information if we are being run by PassManager if (RealPass) DT = &getAnalysis(); Mod = F.getParent(); visit(F); InstsInThisBlock.clear(); // If this is a real pass, in a pass manager, we must abort before // returning back to the pass manager, or else the pass manager may try to // run other passes on the broken module. if (RealPass) return abortIfBroken(); return false; } bool doFinalization(Module &M) { // Scan through, checking all of the external function's linkage now... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { visitGlobalValue(*I); // Check to make sure function prototypes are okay. if (I->isDeclaration()) visitFunction(*I); } for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) visitGlobalVariable(*I); for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) visitGlobalAlias(*I); // If the module is broken, abort at this time. return abortIfBroken(); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); if (RealPass) AU.addRequired(); } /// abortIfBroken - If the module is broken and we are supposed to abort on /// this condition, do so. /// bool abortIfBroken() { if (Broken) { msgs << "Broken module found, "; switch (action) { case AbortProcessAction: msgs << "compilation aborted!\n"; cerr << msgs.str(); abort(); case PrintMessageAction: msgs << "verification continues.\n"; cerr << msgs.str(); return false; case ReturnStatusAction: msgs << "compilation terminated.\n"; return Broken; } } return false; } // Verification methods... void verifyTypeSymbolTable(TypeSymbolTable &ST); void visitGlobalValue(GlobalValue &GV); void visitGlobalVariable(GlobalVariable &GV); void visitGlobalAlias(GlobalAlias &GA); void visitFunction(Function &F); void visitBasicBlock(BasicBlock &BB); void visitTruncInst(TruncInst &I); void visitZExtInst(ZExtInst &I); void visitSExtInst(SExtInst &I); void visitFPTruncInst(FPTruncInst &I); void visitFPExtInst(FPExtInst &I); void visitFPToUIInst(FPToUIInst &I); void visitFPToSIInst(FPToSIInst &I); void visitUIToFPInst(UIToFPInst &I); void visitSIToFPInst(SIToFPInst &I); void visitIntToPtrInst(IntToPtrInst &I); void visitPtrToIntInst(PtrToIntInst &I); void visitBitCastInst(BitCastInst &I); void visitPHINode(PHINode &PN); void visitBinaryOperator(BinaryOperator &B); void visitICmpInst(ICmpInst &IC); void visitFCmpInst(FCmpInst &FC); void visitExtractElementInst(ExtractElementInst &EI); void visitInsertElementInst(InsertElementInst &EI); void visitShuffleVectorInst(ShuffleVectorInst &EI); void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } void visitCallInst(CallInst &CI); void visitGetElementPtrInst(GetElementPtrInst &GEP); void visitLoadInst(LoadInst &LI); void visitStoreInst(StoreInst &SI); void visitInstruction(Instruction &I); void visitTerminatorInst(TerminatorInst &I); void visitReturnInst(ReturnInst &RI); void visitSwitchInst(SwitchInst &SI); void visitSelectInst(SelectInst &SI); void visitUserOp1(Instruction &I); void visitUserOp2(Instruction &I) { visitUserOp1(I); } void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI); void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, ...); void WriteValue(const Value *V) { if (!V) return; if (isa(V)) { msgs << *V; } else { WriteAsOperand(msgs, V, true, Mod); msgs << "\n"; } } void WriteType(const Type* T ) { if ( !T ) return; WriteTypeSymbolic(msgs, T, Mod ); } // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. void CheckFailed(const std::string &Message, const Value *V1 = 0, const Value *V2 = 0, const Value *V3 = 0, const Value *V4 = 0) { msgs << Message << "\n"; WriteValue(V1); WriteValue(V2); WriteValue(V3); WriteValue(V4); Broken = true; } void CheckFailed( const std::string& Message, const Value* V1, const Type* T2, const Value* V3 = 0 ) { msgs << Message << "\n"; WriteValue(V1); WriteType(T2); WriteValue(V3); Broken = true; } }; char Verifier::ID = 0; RegisterPass X("verify", "Module Verifier"); } // End anonymous namespace // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ do { if (!(C)) { CheckFailed(M); return; } } while (0) #define Assert1(C, M, V1) \ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) #define Assert2(C, M, V1, V2) \ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) #define Assert3(C, M, V1, V2, V3) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) void Verifier::visitGlobalValue(GlobalValue &GV) { Assert1(!GV.isDeclaration() || GV.hasExternalLinkage() || GV.hasDLLImportLinkage() || GV.hasExternalWeakLinkage() || (isa(GV) && (GV.hasInternalLinkage() || GV.hasWeakLinkage())), "Global is external, but doesn't have external or dllimport or weak linkage!", &GV); Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(), "Global is marked as dllimport, but not external", &GV); Assert1(!GV.hasAppendingLinkage() || isa(GV), "Only global variables can have appending linkage!", &GV); if (GV.hasAppendingLinkage()) { GlobalVariable &GVar = cast(GV); Assert1(isa(GVar.getType()->getElementType()), "Only global arrays can have appending linkage!", &GV); } } void Verifier::visitGlobalVariable(GlobalVariable &GV) { if (GV.hasInitializer()) Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(), "Global variable initializer type does not match global " "variable type!", &GV); visitGlobalValue(GV); } void Verifier::visitGlobalAlias(GlobalAlias &GA) { Assert1(!GA.getName().empty(), "Alias name cannot be empty!", &GA); Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() || GA.hasWeakLinkage(), "Alias should have external or external weak linkage!", &GA); Assert1(GA.getType() == GA.getAliasee()->getType(), "Alias and aliasee types should match!", &GA); if (!isa(GA.getAliasee())) { const ConstantExpr *CE = dyn_cast(GA.getAliasee()); Assert1(CE && CE->getOpcode() == Instruction::BitCast && isa(CE->getOperand(0)), "Aliasee should be either GlobalValue or bitcast of GlobalValue", &GA); } visitGlobalValue(GA); } void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) { } // visitFunction - Verify that a function is ok. // void Verifier::visitFunction(Function &F) { // Check function arguments. const FunctionType *FT = F.getFunctionType(); unsigned NumArgs = F.getArgumentList().size(); Assert2(FT->getNumParams() == NumArgs, "# formal arguments must match # of arguments for function type!", &F, FT); Assert1(F.getReturnType()->isFirstClassType() || F.getReturnType() == Type::VoidTy, "Functions cannot return aggregate values!", &F); Assert1(!FT->isStructReturn() || FT->getReturnType() == Type::VoidTy, "Invalid struct-return function!", &F); const uint16_t ReturnIncompatible = ParamAttr::ByVal | ParamAttr::InReg | ParamAttr::Nest | ParamAttr::StructRet; const uint16_t ParameterIncompatible = ParamAttr::NoReturn | ParamAttr::NoUnwind; const uint16_t MutuallyIncompatible = ParamAttr::ByVal | ParamAttr::InReg | ParamAttr::Nest | ParamAttr::StructRet; const uint16_t IntegerTypeOnly = ParamAttr::SExt | ParamAttr::ZExt; const uint16_t PointerTypeOnly = ParamAttr::ByVal | ParamAttr::Nest | ParamAttr::NoAlias | ParamAttr::StructRet; bool SawSRet = false; if (const ParamAttrsList *Attrs = FT->getParamAttrs()) { unsigned Idx = 1; bool SawNest = false; uint16_t RetI = Attrs->getParamAttrs(0) & ReturnIncompatible; Assert1(!RetI, "Attribute " + Attrs->getParamAttrsText(RetI) + "should not apply to functions!", &F); for (FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end(); I != E; ++I, ++Idx) { uint16_t Attr = Attrs->getParamAttrs(Idx); uint16_t ParmI = Attr & ParameterIncompatible; Assert1(!ParmI, "Attribute " + Attrs->getParamAttrsText(ParmI) + "should only be applied to function!", &F); uint16_t MutI = Attr & MutuallyIncompatible; Assert1(!(MutI & (MutI - 1)), "Attributes " + Attrs->getParamAttrsText(MutI) + "are incompatible!", &F); uint16_t IType = Attr & IntegerTypeOnly; Assert1(!IType || FT->getParamType(Idx-1)->isInteger(), "Attribute " + Attrs->getParamAttrsText(IType) + "should only apply to Integer type!", &F); uint16_t PType = Attr & PointerTypeOnly; Assert1(!PType || isa(FT->getParamType(Idx-1)), "Attribute " + Attrs->getParamAttrsText(PType) + "should only apply to Pointer type!", &F); if (Attrs->paramHasAttr(Idx, ParamAttr::ByVal)) { const PointerType *Ty = dyn_cast(FT->getParamType(Idx-1)); Assert1(!Ty || isa(Ty->getElementType()), "Attribute byval should only apply to pointer to structs!", &F); } if (Attrs->paramHasAttr(Idx, ParamAttr::Nest)) { Assert1(!SawNest, "More than one parameter has attribute nest!", &F); SawNest = true; } if (Attrs->paramHasAttr(Idx, ParamAttr::StructRet)) { SawSRet = true; Assert1(Idx == 1, "Attribute sret not on first parameter!", &F); } } } Assert1(SawSRet == FT->isStructReturn(), "StructReturn function with no sret attribute!", &F); // Check that this function meets the restrictions on this calling convention. switch (F.getCallingConv()) { default: break; case CallingConv::C: break; case CallingConv::Fast: case CallingConv::Cold: case CallingConv::X86_FastCall: Assert1(!F.isVarArg(), "Varargs functions must have C calling conventions!", &F); break; } // Check that the argument values match the function type for this function... unsigned i = 0; for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I, ++i) { Assert2(I->getType() == FT->getParamType(i), "Argument value does not match function argument type!", I, FT->getParamType(i)); // Make sure no aggregates are passed by value. Assert1(I->getType()->isFirstClassType(), "Functions cannot take aggregates as arguments by value!", I); } if (!F.isDeclaration()) { // Verify that this function (which has a body) is not named "llvm.*". It // is not legal to define intrinsics. if (F.getName().size() >= 5) Assert1(F.getName().substr(0, 5) != "llvm.", "llvm intrinsics cannot be defined!", &F); // Check the entry node BasicBlock *Entry = &F.getEntryBlock(); Assert1(pred_begin(Entry) == pred_end(Entry), "Entry block to function must not have predecessors!", Entry); } } // verifyBasicBlock - Verify that a basic block is well formed... // void Verifier::visitBasicBlock(BasicBlock &BB) { InstsInThisBlock.clear(); // Ensure that basic blocks have terminators! Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB); // Check constraints that this basic block imposes on all of the PHI nodes in // it. if (isa(BB.front())) { SmallVector Preds(pred_begin(&BB), pred_end(&BB)); SmallVector, 8> Values; std::sort(Preds.begin(), Preds.end()); PHINode *PN; for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast(I));++I) { // Ensure that PHI nodes have at least one entry! Assert1(PN->getNumIncomingValues() != 0, "PHI nodes must have at least one entry. If the block is dead, " "the PHI should be removed!", PN); Assert1(PN->getNumIncomingValues() == Preds.size(), "PHINode should have one entry for each predecessor of its " "parent basic block!", PN); // Get and sort all incoming values in the PHI node... Values.clear(); Values.reserve(PN->getNumIncomingValues()); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) Values.push_back(std::make_pair(PN->getIncomingBlock(i), PN->getIncomingValue(i))); std::sort(Values.begin(), Values.end()); for (unsigned i = 0, e = Values.size(); i != e; ++i) { // Check to make sure that if there is more than one entry for a // particular basic block in this PHI node, that the incoming values are // all identical. // Assert4(i == 0 || Values[i].first != Values[i-1].first || Values[i].second == Values[i-1].second, "PHI node has multiple entries for the same basic block with " "different incoming values!", PN, Values[i].first, Values[i].second, Values[i-1].second); // Check to make sure that the predecessors and PHI node entries are // matched up. Assert3(Values[i].first == Preds[i], "PHI node entries do not match predecessors!", PN, Values[i].first, Preds[i]); } } } } void Verifier::visitTerminatorInst(TerminatorInst &I) { // Ensure that terminators only exist at the end of the basic block. Assert1(&I == I.getParent()->getTerminator(), "Terminator found in the middle of a basic block!", I.getParent()); visitInstruction(I); } void Verifier::visitReturnInst(ReturnInst &RI) { Function *F = RI.getParent()->getParent(); if (RI.getNumOperands() == 0) Assert2(F->getReturnType() == Type::VoidTy, "Found return instr that returns void in Function of non-void " "return type!", &RI, F->getReturnType()); else Assert2(F->getReturnType() == RI.getOperand(0)->getType(), "Function return type does not match operand " "type of return inst!", &RI, F->getReturnType()); // Check to make sure that the return value has necessary properties for // terminators... visitTerminatorInst(RI); } void Verifier::visitSwitchInst(SwitchInst &SI) { // Check to make sure that all of the constants in the switch instruction // have the same type as the switched-on value. const Type *SwitchTy = SI.getCondition()->getType(); for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i) Assert1(SI.getCaseValue(i)->getType() == SwitchTy, "Switch constants must all be same type as switch value!", &SI); visitTerminatorInst(SI); } void Verifier::visitSelectInst(SelectInst &SI) { Assert1(SI.getCondition()->getType() == Type::Int1Ty, "Select condition type must be bool!", &SI); Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(), "Select values must have identical types!", &SI); Assert1(SI.getTrueValue()->getType() == SI.getType(), "Select values must have same type as select instruction!", &SI); visitInstruction(SI); } /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of /// a pass, if any exist, it's an error. /// void Verifier::visitUserOp1(Instruction &I) { Assert1(0, "User-defined operators should not live outside of a pass!", &I); } void Verifier::visitTruncInst(TruncInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); Assert1(SrcTy->isInteger(), "Trunc only operates on integer", &I); Assert1(DestTy->isInteger(), "Trunc only produces integer", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I); visitInstruction(I); } void Verifier::visitZExtInst(ZExtInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later Assert1(SrcTy->isInteger(), "ZExt only operates on integer", &I); Assert1(DestTy->isInteger(), "ZExt only produces an integer", &I); unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I); visitInstruction(I); } void Verifier::visitSExtInst(SExtInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); Assert1(SrcTy->isInteger(), "SExt only operates on integer", &I); Assert1(DestTy->isInteger(), "SExt only produces an integer", &I); Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I); visitInstruction(I); } void Verifier::visitFPTruncInst(FPTruncInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); Assert1(SrcTy->isFloatingPoint(),"FPTrunc only operates on FP", &I); Assert1(DestTy->isFloatingPoint(),"FPTrunc only produces an FP", &I); Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I); visitInstruction(I); } void Verifier::visitFPExtInst(FPExtInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); Assert1(SrcTy->isFloatingPoint(),"FPExt only operates on FP", &I); Assert1(DestTy->isFloatingPoint(),"FPExt only produces an FP", &I); Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I); visitInstruction(I); } void Verifier::visitUIToFPInst(UIToFPInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); Assert1(SrcTy->isInteger(),"UInt2FP source must be integral", &I); Assert1(DestTy->isFloatingPoint(),"UInt2FP result must be FP", &I); visitInstruction(I); } void Verifier::visitSIToFPInst(SIToFPInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); Assert1(SrcTy->isInteger(),"SInt2FP source must be integral", &I); Assert1(DestTy->isFloatingPoint(),"SInt2FP result must be FP", &I); visitInstruction(I); } void Verifier::visitFPToUIInst(FPToUIInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); Assert1(SrcTy->isFloatingPoint(),"FP2UInt source must be FP", &I); Assert1(DestTy->isInteger(),"FP2UInt result must be integral", &I); visitInstruction(I); } void Verifier::visitFPToSIInst(FPToSIInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); Assert1(SrcTy->isFloatingPoint(),"FPToSI source must be FP", &I); Assert1(DestTy->isInteger(),"FP2ToI result must be integral", &I); visitInstruction(I); } void Verifier::visitPtrToIntInst(PtrToIntInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); Assert1(isa(SrcTy), "PtrToInt source must be pointer", &I); Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I); visitInstruction(I); } void Verifier::visitIntToPtrInst(IntToPtrInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I); Assert1(isa(DestTy), "IntToPtr result must be a pointer",&I); visitInstruction(I); } void Verifier::visitBitCastInst(BitCastInst &I) { // Get the source and destination types const Type *SrcTy = I.getOperand(0)->getType(); const Type *DestTy = I.getType(); // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. Assert1(isa(DestTy) == isa(DestTy), "Bitcast requires both operands to be pointer or neither", &I); Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I); visitInstruction(I); } /// visitPHINode - Ensure that a PHI node is well formed. /// void Verifier::visitPHINode(PHINode &PN) { // Ensure that the PHI nodes are all grouped together at the top of the block. // This can be tested by checking whether the instruction before this is // either nonexistent (because this is begin()) or is a PHI node. If not, // then there is some other instruction before a PHI. Assert2(&PN == &PN.getParent()->front() || isa(--BasicBlock::iterator(&PN)), "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); // Check that all of the operands of the PHI node have the same type as the // result. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) Assert1(PN.getType() == PN.getIncomingValue(i)->getType(), "PHI node operands are not the same type as the result!", &PN); // All other PHI node constraints are checked in the visitBasicBlock method. visitInstruction(PN); } void Verifier::visitCallInst(CallInst &CI) { Assert1(isa(CI.getOperand(0)->getType()), "Called function must be a pointer!", &CI); const PointerType *FPTy = cast(CI.getOperand(0)->getType()); Assert1(isa(FPTy->getElementType()), "Called function is not pointer to function type!", &CI); const FunctionType *FTy = cast(FPTy->getElementType()); // Verify that the correct number of arguments are being passed if (FTy->isVarArg()) Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(), "Called function requires more parameters than were provided!",&CI); else Assert1(CI.getNumOperands()-1 == FTy->getNumParams(), "Incorrect number of arguments passed to called function!", &CI); // Verify that all arguments to the call match the function type... for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) Assert3(CI.getOperand(i+1)->getType() == FTy->getParamType(i), "Call parameter type does not match function signature!", CI.getOperand(i+1), FTy->getParamType(i), &CI); if (Function *F = CI.getCalledFunction()) if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) visitIntrinsicFunctionCall(ID, CI); visitInstruction(CI); } /// visitBinaryOperator - Check that both arguments to the binary operator are /// of the same type! /// void Verifier::visitBinaryOperator(BinaryOperator &B) { Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(), "Both operands to a binary operator are not of the same type!", &B); switch (B.getOpcode()) { // Check that logical operators are only used with integral operands. case Instruction::And: case Instruction::Or: case Instruction::Xor: Assert1(B.getType()->isInteger() || (isa(B.getType()) && cast(B.getType())->getElementType()->isInteger()), "Logical operators only work with integral types!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Logical operators must have same type for operands and result!", &B); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: Assert1(B.getType()->isInteger(), "Shift must return an integer result!", &B); Assert1(B.getType() == B.getOperand(0)->getType(), "Shift return type must be same as operands!", &B); /* FALL THROUGH */ default: // Arithmetic operators only work on integer or fp values Assert1(B.getType() == B.getOperand(0)->getType(), "Arithmetic operators must have same type for operands and result!", &B); Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() || isa(B.getType()), "Arithmetic operators must have integer, fp, or vector type!", &B); break; } visitInstruction(B); } void Verifier::visitICmpInst(ICmpInst& IC) { // Check that the operands are the same type const Type* Op0Ty = IC.getOperand(0)->getType(); const Type* Op1Ty = IC.getOperand(1)->getType(); Assert1(Op0Ty == Op1Ty, "Both operands to ICmp instruction are not of the same type!", &IC); // Check that the operands are the right type Assert1(Op0Ty->isInteger() || isa(Op0Ty), "Invalid operand types for ICmp instruction", &IC); visitInstruction(IC); } void Verifier::visitFCmpInst(FCmpInst& FC) { // Check that the operands are the same type const Type* Op0Ty = FC.getOperand(0)->getType(); const Type* Op1Ty = FC.getOperand(1)->getType(); Assert1(Op0Ty == Op1Ty, "Both operands to FCmp instruction are not of the same type!", &FC); // Check that the operands are the right type Assert1(Op0Ty->isFloatingPoint(), "Invalid operand types for FCmp instruction", &FC); visitInstruction(FC); } void Verifier::visitExtractElementInst(ExtractElementInst &EI) { Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), "Invalid extractelement operands!", &EI); visitInstruction(EI); } void Verifier::visitInsertElementInst(InsertElementInst &IE) { Assert1(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), IE.getOperand(2)), "Invalid insertelement operands!", &IE); visitInstruction(IE); } void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), SV.getOperand(2)), "Invalid shufflevector operands!", &SV); Assert1(SV.getType() == SV.getOperand(0)->getType(), "Result of shufflevector must match first operand type!", &SV); // Check to see if Mask is valid. if (const ConstantVector *MV = dyn_cast(SV.getOperand(2))) { for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { Assert1(isa(MV->getOperand(i)) || isa(MV->getOperand(i)), "Invalid shufflevector shuffle mask!", &SV); } } else { Assert1(isa(SV.getOperand(2)) || isa(SV.getOperand(2)), "Invalid shufflevector shuffle mask!", &SV); } visitInstruction(SV); } void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { SmallVector Idxs(GEP.idx_begin(), GEP.idx_end()); const Type *ElTy = GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(), &Idxs[0], Idxs.size(), true); Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP); Assert2(isa(GEP.getType()) && cast(GEP.getType())->getElementType() == ElTy, "GEP is not of right type for indices!", &GEP, ElTy); visitInstruction(GEP); } void Verifier::visitLoadInst(LoadInst &LI) { const Type *ElTy = cast(LI.getOperand(0)->getType())->getElementType(); Assert2(ElTy == LI.getType(), "Load result type does not match pointer operand type!", &LI, ElTy); visitInstruction(LI); } void Verifier::visitStoreInst(StoreInst &SI) { const Type *ElTy = cast(SI.getOperand(1)->getType())->getElementType(); Assert2(ElTy == SI.getOperand(0)->getType(), "Stored value type does not match pointer operand type!", &SI, ElTy); visitInstruction(SI); } /// verifyInstruction - Verify that an instruction is well formed. /// void Verifier::visitInstruction(Instruction &I) { BasicBlock *BB = I.getParent(); Assert1(BB, "Instruction not embedded in basic block!", &I); if (!isa(I)) { // Check that non-phi nodes are not self referential for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) Assert1(*UI != (User*)&I || !DT->dominates(&BB->getParent()->getEntryBlock(), BB), "Only PHI nodes may reference their own value!", &I); } // Check that void typed values don't have names Assert1(I.getType() != Type::VoidTy || !I.hasName(), "Instruction has a name, but provides a void value!", &I); // Check that the return value of the instruction is either void or a legal // value type. Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType(), "Instruction returns a non-scalar type!", &I); // Check that all uses of the instruction, if they are instructions // themselves, actually have parent basic blocks. If the use is not an // instruction, it is an error! for (User::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) { Assert1(isa(*UI), "Use of instruction is not an instruction!", *UI); Instruction *Used = cast(*UI); Assert2(Used->getParent() != 0, "Instruction referencing instruction not" " embeded in a basic block!", &I, Used); } for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I); // Check to make sure that only first-class-values are operands to // instructions. Assert1(I.getOperand(i)->getType()->isFirstClassType(), "Instruction operands must be first-class values!", &I); if (Function *F = dyn_cast(I.getOperand(i))) { // Check to make sure that the "address of" an intrinsic function is never // taken. Assert1(!F->isIntrinsic() || (i == 0 && isa(I)), "Cannot take the address of an intrinsic!", &I); Assert1(F->getParent() == Mod, "Referencing function in another module!", &I); } else if (BasicBlock *OpBB = dyn_cast(I.getOperand(i))) { Assert1(OpBB->getParent() == BB->getParent(), "Referring to a basic block in another function!", &I); } else if (Argument *OpArg = dyn_cast(I.getOperand(i))) { Assert1(OpArg->getParent() == BB->getParent(), "Referring to an argument in another function!", &I); } else if (GlobalValue *GV = dyn_cast(I.getOperand(i))) { Assert1(GV->getParent() == Mod, "Referencing global in another module!", &I); } else if (Instruction *Op = dyn_cast(I.getOperand(i))) { BasicBlock *OpBlock = Op->getParent(); // Check that a definition dominates all of its uses. if (!isa(I)) { // Invoke results are only usable in the normal destination, not in the // exceptional destination. if (InvokeInst *II = dyn_cast(Op)) { OpBlock = II->getNormalDest(); Assert2(OpBlock != II->getUnwindDest(), "No uses of invoke possible due to dominance structure!", Op, II); // If the normal successor of an invoke instruction has multiple // predecessors, then the normal edge from the invoke is critical, so // the invoke value can only be live if the destination block // dominates all of it's predecessors (other than the invoke) or if // the invoke value is only used by a phi in the successor. if (!OpBlock->getSinglePredecessor() && DT->dominates(&BB->getParent()->getEntryBlock(), BB)) { // The first case we allow is if the use is a PHI operand in the // normal block, and if that PHI operand corresponds to the invoke's // block. bool Bad = true; if (PHINode *PN = dyn_cast(&I)) if (PN->getParent() == OpBlock && PN->getIncomingBlock(i/2) == Op->getParent()) Bad = false; // If it is used by something non-phi, then the other case is that // 'OpBlock' dominates all of its predecessors other than the // invoke. In this case, the invoke value can still be used. if (Bad) { Bad = false; for (pred_iterator PI = pred_begin(OpBlock), E = pred_end(OpBlock); PI != E; ++PI) { if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) { Bad = true; break; } } } Assert2(!Bad, "Invoke value defined on critical edge but not dead!", &I, Op); } } else if (OpBlock == BB) { // If they are in the same basic block, make sure that the definition // comes before the use. Assert2(InstsInThisBlock.count(Op) || !DT->dominates(&BB->getParent()->getEntryBlock(), BB), "Instruction does not dominate all uses!", Op, &I); } // Definition must dominate use unless use is unreachable! Assert2(DT->dominates(OpBlock, BB) || !DT->dominates(&BB->getParent()->getEntryBlock(), BB), "Instruction does not dominate all uses!", Op, &I); } else { // PHI nodes are more difficult than other nodes because they actually // "use" the value in the predecessor basic blocks they correspond to. BasicBlock *PredBB = cast(I.getOperand(i+1)); Assert2(DT->dominates(OpBlock, PredBB) || !DT->dominates(&BB->getParent()->getEntryBlock(), PredBB), "Instruction does not dominate all uses!", Op, &I); } } else if (isa(I.getOperand(i))) { Assert1(i == 0 && isa(I), "Cannot take the address of an inline asm!", &I); } } InstsInThisBlock.insert(&I); } /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways. /// void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) { Function *IF = CI.getCalledFunction(); Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!", IF); #define GET_INTRINSIC_VERIFIER #include "llvm/Intrinsics.gen" #undef GET_INTRINSIC_VERIFIER } /// VerifyIntrinsicPrototype - TableGen emits calls to this function into /// Intrinsics.gen. This implements a little state machine that verifies the /// prototype of intrinsics. void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F, ...) { va_list VA; va_start(VA, F); const FunctionType *FTy = F->getFunctionType(); // For overloaded intrinsics, the Suffix of the function name must match the // types of the arguments. This variable keeps track of the expected // suffix, to be checked at the end. std::string Suffix; // Note that "arg#0" is the return type. for (unsigned ArgNo = 0; 1; ++ArgNo) { int TypeID = va_arg(VA, int); if (TypeID == -2) { break; } if (TypeID == -1) { if (ArgNo != FTy->getNumParams()+1) CheckFailed("Intrinsic prototype has too many arguments!", F); break; } if (ArgNo == FTy->getNumParams()+1) { CheckFailed("Intrinsic prototype has too few arguments!", F); break; } const Type *Ty; if (ArgNo == 0) Ty = FTy->getReturnType(); else Ty = FTy->getParamType(ArgNo-1); if (TypeID != Ty->getTypeID()) { if (ArgNo == 0) CheckFailed("Intrinsic prototype has incorrect result type!", F); else CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F); break; } if (TypeID == Type::IntegerTyID) { unsigned ExpectedBits = (unsigned) va_arg(VA, int); unsigned GotBits = cast(Ty)->getBitWidth(); if (ExpectedBits == 0) { Suffix += ".i" + utostr(GotBits); } else if (GotBits != ExpectedBits) { std::string bitmsg = " Expected " + utostr(ExpectedBits) + " but got "+ utostr(GotBits) + " bits."; if (ArgNo == 0) CheckFailed("Intrinsic prototype has incorrect integer result width!" + bitmsg, F); else CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " has " "incorrect integer width!" + bitmsg, F); break; } // Check some constraints on various intrinsics. switch (ID) { default: break; // Not everything needs to be checked. case Intrinsic::bswap: if (GotBits < 16 || GotBits % 16 != 0) CheckFailed("Intrinsic requires even byte width argument", F); /* FALL THROUGH */ case Intrinsic::part_set: case Intrinsic::part_select: if (ArgNo == 1) { unsigned ResultBits = cast(FTy->getReturnType())->getBitWidth(); if (GotBits != ResultBits) CheckFailed("Intrinsic requires the bit widths of the first " "parameter and the result to match", F); } break; } } else if (TypeID == Type::VectorTyID) { // If this is a vector argument, verify the number and type of elements. const VectorType *PTy = cast(Ty); int ElemTy = va_arg(VA, int); if (ElemTy != PTy->getElementType()->getTypeID()) { CheckFailed("Intrinsic prototype has incorrect vector element type!", F); break; } if (ElemTy == Type::IntegerTyID) { unsigned NumBits = (unsigned)va_arg(VA, int); unsigned ExpectedBits = cast(PTy->getElementType())->getBitWidth(); if (NumBits != ExpectedBits) { CheckFailed("Intrinsic prototype has incorrect vector element type!", F); break; } } if ((unsigned)va_arg(VA, int) != PTy->getNumElements()) { CheckFailed("Intrinsic prototype has incorrect number of " "vector elements!",F); break; } } } va_end(VA); // If we computed a Suffix then the intrinsic is overloaded and we need to // make sure that the name of the function is correct. We add the suffix to // the name of the intrinsic and compare against the given function name. If // they are not the same, the function name is invalid. This ensures that // overloading of intrinsics uses a sane and consistent naming convention. if (!Suffix.empty()) { std::string Name(Intrinsic::getName(ID)); if (Name + Suffix != F->getName()) CheckFailed("Overloaded intrinsic has incorrect suffix: '" + F->getName().substr(Name.length()) + "'. It should be '" + Suffix + "'", F); } } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) { return new Verifier(action); } // verifyFunction - Create bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot verify external functions"); FunctionPassManager FPM(new ExistingModuleProvider(F.getParent())); Verifier *V = new Verifier(action); FPM.add(V); FPM.run(F); return V->Broken; } /// verifyModule - Check a module for errors, printing messages on stderr. /// Return true if the module is corrupt. /// bool llvm::verifyModule(const Module &M, VerifierFailureAction action, std::string *ErrorInfo) { PassManager PM; Verifier *V = new Verifier(action); PM.add(V); PM.run((Module&)M); if (ErrorInfo && V->Broken) *ErrorInfo = V->msgs.str(); return V->Broken; } // vim: sw=2