//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG This pass is where algebraic // simplification happens. // // This pass combines things like: // %Y = add int %X, 1 // %Z = add int %Y, 1 // into: // %Z = add int %X, 2 // // This is a simple worklist driven algorithm. // // This pass guarantees that the following canonicalizations are performed on // the program: // 1. If a binary operator has a constant operand, it is moved to the RHS // 2. Bitwise operators with constant operands are always grouped so that // shifts are performed first, then or's, then and's, then xor's. // 3. SetCC instructions are converted from <,>,<=,>= to ==,!= if possible // 4. All SetCC instructions on boolean values are replaced with logical ops // 5. add X, X is represented as (X*2) => (X << 1) // 6. Multiplies with a power-of-two constant argument are transformed into // shifts. // ... etc. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "instcombine" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/DerivedTypes.h" #include "llvm/GlobalVariable.h" #include "llvm/Target/TargetData.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/InstVisitor.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/PatternMatch.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/STLExtras.h" #include #include using namespace llvm; using namespace llvm::PatternMatch; namespace { Statistic<> NumCombined ("instcombine", "Number of insts combined"); Statistic<> NumConstProp("instcombine", "Number of constant folds"); Statistic<> NumDeadInst ("instcombine", "Number of dead inst eliminated"); Statistic<> NumDeadStore("instcombine", "Number of dead stores eliminated"); Statistic<> NumSunkInst ("instcombine", "Number of instructions sunk"); class InstCombiner : public FunctionPass, public InstVisitor { // Worklist of all of the instructions that need to be simplified. std::vector WorkList; TargetData *TD; /// AddUsersToWorkList - When an instruction is simplified, add all users of /// the instruction to the work lists because they might get more simplified /// now. /// void AddUsersToWorkList(Value &I) { for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ++UI) WorkList.push_back(cast(*UI)); } /// AddUsesToWorkList - When an instruction is simplified, add operands to /// the work lists because they might get more simplified now. /// void AddUsesToWorkList(Instruction &I) { for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) if (Instruction *Op = dyn_cast(I.getOperand(i))) WorkList.push_back(Op); } // removeFromWorkList - remove all instances of I from the worklist. void removeFromWorkList(Instruction *I); public: virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.setPreservesCFG(); } TargetData &getTargetData() const { return *TD; } // Visitation implementation - Implement instruction combining for different // instruction types. The semantics are as follows: // Return Value: // null - No change was made // I - Change was made, I is still valid, I may be dead though // otherwise - Change was made, replace I with returned instruction // Instruction *visitAdd(BinaryOperator &I); Instruction *visitSub(BinaryOperator &I); Instruction *visitMul(BinaryOperator &I); Instruction *visitDiv(BinaryOperator &I); Instruction *visitRem(BinaryOperator &I); Instruction *visitAnd(BinaryOperator &I); Instruction *visitOr (BinaryOperator &I); Instruction *visitXor(BinaryOperator &I); Instruction *visitSetCondInst(SetCondInst &I); Instruction *visitSetCondInstWithCastAndCast(SetCondInst &SCI); Instruction *FoldGEPSetCC(User *GEPLHS, Value *RHS, Instruction::BinaryOps Cond, Instruction &I); Instruction *visitShiftInst(ShiftInst &I); Instruction *FoldShiftByConstant(Value *Op0, ConstantUInt *Op1, ShiftInst &I); Instruction *visitCastInst(CastInst &CI); Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI); Instruction *visitSelectInst(SelectInst &CI); Instruction *visitCallInst(CallInst &CI); Instruction *visitInvokeInst(InvokeInst &II); Instruction *visitPHINode(PHINode &PN); Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP); Instruction *visitAllocationInst(AllocationInst &AI); Instruction *visitFreeInst(FreeInst &FI); Instruction *visitLoadInst(LoadInst &LI); Instruction *visitStoreInst(StoreInst &SI); Instruction *visitBranchInst(BranchInst &BI); Instruction *visitSwitchInst(SwitchInst &SI); Instruction *visitExtractElementInst(ExtractElementInst &EI); // visitInstruction - Specify what to return for unhandled instructions... Instruction *visitInstruction(Instruction &I) { return 0; } private: Instruction *visitCallSite(CallSite CS); bool transformConstExprCastCall(CallSite CS); public: // InsertNewInstBefore - insert an instruction New before instruction Old // in the program. Add the new instruction to the worklist. // Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { assert(New && New->getParent() == 0 && "New instruction already inserted into a basic block!"); BasicBlock *BB = Old.getParent(); BB->getInstList().insert(&Old, New); // Insert inst WorkList.push_back(New); // Add to worklist return New; } /// InsertCastBefore - Insert a cast of V to TY before the instruction POS. /// This also adds the cast to the worklist. Finally, this returns the /// cast. Value *InsertCastBefore(Value *V, const Type *Ty, Instruction &Pos) { if (V->getType() == Ty) return V; Instruction *C = new CastInst(V, Ty, V->getName(), &Pos); WorkList.push_back(C); return C; } // ReplaceInstUsesWith - This method is to be used when an instruction is // found to be dead, replacable with another preexisting expression. Here // we add all uses of I to the worklist, replace all uses of I with the new // value, then return I, so that the inst combiner will know that I was // modified. // Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) { AddUsersToWorkList(I); // Add all modified instrs to worklist if (&I != V) { I.replaceAllUsesWith(V); return &I; } else { // If we are replacing the instruction with itself, this must be in a // segment of unreachable code, so just clobber the instruction. I.replaceAllUsesWith(UndefValue::get(I.getType())); return &I; } } // UpdateValueUsesWith - This method is to be used when an value is // found to be replacable with another preexisting expression or was // updated. Here we add all uses of I to the worklist, replace all uses of // I with the new value (unless the instruction was just updated), then // return true, so that the inst combiner will know that I was modified. // bool UpdateValueUsesWith(Value *Old, Value *New) { AddUsersToWorkList(*Old); // Add all modified instrs to worklist if (Old != New) Old->replaceAllUsesWith(New); if (Instruction *I = dyn_cast(Old)) WorkList.push_back(I); if (Instruction *I = dyn_cast(New)) WorkList.push_back(I); return true; } // EraseInstFromFunction - When dealing with an instruction that has side // effects or produces a void value, we can't rely on DCE to delete the // instruction. Instead, visit methods should return the value returned by // this function. Instruction *EraseInstFromFunction(Instruction &I) { assert(I.use_empty() && "Cannot erase instruction that is used!"); AddUsesToWorkList(I); removeFromWorkList(&I); I.eraseFromParent(); return 0; // Don't do anything with FI } private: /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the /// InsertBefore instruction. This is specialized a bit to avoid inserting /// casts that are known to not do anything... /// Value *InsertOperandCastBefore(Value *V, const Type *DestTy, Instruction *InsertBefore); // SimplifyCommutative - This performs a few simplifications for commutative // operators. bool SimplifyCommutative(BinaryOperator &I); bool SimplifyDemandedBits(Value *V, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0); // FoldOpIntoPhi - Given a binary operator or cast instruction which has a // PHI node as operand #0, see if we can fold the instruction into the PHI // (which is only possible if all operands to the PHI are constants). Instruction *FoldOpIntoPhi(Instruction &I); // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *FoldPHIArgOpIntoPHI(PHINode &PN); Instruction *OptAndOp(Instruction *Op, ConstantIntegral *OpRHS, ConstantIntegral *AndRHS, BinaryOperator &TheAnd); Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask, bool isSub, Instruction &I); Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool Inside, Instruction &IB); Instruction *PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI); }; RegisterOpt X("instcombine", "Combine redundant instructions"); } // getComplexity: Assign a complexity or rank value to LLVM Values... // 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst static unsigned getComplexity(Value *V) { if (isa(V)) { if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V)) return 3; return 4; } if (isa(V)) return 3; return isa(V) ? (isa(V) ? 0 : 1) : 2; } // isOnlyUse - Return true if this instruction will be deleted if we stop using // it. static bool isOnlyUse(Value *V) { return V->hasOneUse() || isa(V); } // getPromotedType - Return the specified type promoted as it would be to pass // though a va_arg area... static const Type *getPromotedType(const Type *Ty) { switch (Ty->getTypeID()) { case Type::SByteTyID: case Type::ShortTyID: return Type::IntTy; case Type::UByteTyID: case Type::UShortTyID: return Type::UIntTy; case Type::FloatTyID: return Type::DoubleTy; default: return Ty; } } /// isCast - If the specified operand is a CastInst or a constant expr cast, /// return the operand value, otherwise return null. static Value *isCast(Value *V) { if (CastInst *I = dyn_cast(V)) return I->getOperand(0); else if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::Cast) return CE->getOperand(0); return 0; } // SimplifyCommutative - This performs a few simplifications for commutative // operators: // // 1. Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. // // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) // bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { bool Changed = false; if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) Changed = !I.swapOperands(); if (!I.isAssociative()) return Changed; Instruction::BinaryOps Opcode = I.getOpcode(); if (BinaryOperator *Op = dyn_cast(I.getOperand(0))) if (Op->getOpcode() == Opcode && isa(Op->getOperand(1))) { if (isa(I.getOperand(1))) { Constant *Folded = ConstantExpr::get(I.getOpcode(), cast(I.getOperand(1)), cast(Op->getOperand(1))); I.setOperand(0, Op->getOperand(0)); I.setOperand(1, Folded); return true; } else if (BinaryOperator *Op1=dyn_cast(I.getOperand(1))) if (Op1->getOpcode() == Opcode && isa(Op1->getOperand(1)) && isOnlyUse(Op) && isOnlyUse(Op1)) { Constant *C1 = cast(Op->getOperand(1)); Constant *C2 = cast(Op1->getOperand(1)); // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0), Op1->getOperand(0), Op1->getName(), &I); WorkList.push_back(New); I.setOperand(0, New); I.setOperand(1, Folded); return true; } } return Changed; } // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction // if the LHS is a constant zero (which is the 'negate' form). // static inline Value *dyn_castNegVal(Value *V) { if (BinaryOperator::isNeg(V)) return BinaryOperator::getNegArgument(V); // Constants can be considered to be negated values if they can be folded. if (ConstantInt *C = dyn_cast(V)) return ConstantExpr::getNeg(C); return 0; } static inline Value *dyn_castNotVal(Value *V) { if (BinaryOperator::isNot(V)) return BinaryOperator::getNotArgument(V); // Constants can be considered to be not'ed values... if (ConstantIntegral *C = dyn_cast(V)) return ConstantExpr::getNot(C); return 0; } // dyn_castFoldableMul - If this value is a multiply that can be folded into // other computations (because it has a constant operand), return the // non-constant operand of the multiply, and set CST to point to the multiplier. // Otherwise, return null. // static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { if (V->hasOneUse() && V->getType()->isInteger()) if (Instruction *I = dyn_cast(V)) { if (I->getOpcode() == Instruction::Mul) if ((CST = dyn_cast(I->getOperand(1)))) return I->getOperand(0); if (I->getOpcode() == Instruction::Shl) if ((CST = dyn_cast(I->getOperand(1)))) { // The multiplier is really 1 << CST. Constant *One = ConstantInt::get(V->getType(), 1); CST = cast(ConstantExpr::getShl(One, CST)); return I->getOperand(0); } } return 0; } /// dyn_castGetElementPtr - If this is a getelementptr instruction or constant /// expression, return it. static User *dyn_castGetElementPtr(Value *V) { if (isa(V)) return cast(V); if (ConstantExpr *CE = dyn_cast(V)) if (CE->getOpcode() == Instruction::GetElementPtr) return cast(V); return false; } // AddOne, SubOne - Add or subtract a constant one from an integer constant... static ConstantInt *AddOne(ConstantInt *C) { return cast(ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1))); } static ConstantInt *SubOne(ConstantInt *C) { return cast(ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1))); } /// GetConstantInType - Return a ConstantInt with the specified type and value. /// static ConstantIntegral *GetConstantInType(const Type *Ty, uint64_t Val) { if (Ty->isUnsigned()) return ConstantUInt::get(Ty, Val); else if (Ty->getTypeID() == Type::BoolTyID) return ConstantBool::get(Val); int64_t SVal = Val; SVal <<= 64-Ty->getPrimitiveSizeInBits(); SVal >>= 64-Ty->getPrimitiveSizeInBits(); return ConstantSInt::get(Ty, SVal); } /// ComputeMaskedBits - Determine which of the bits specified in Mask are /// known to be either zero or one and return them in the KnownZero/KnownOne /// bitsets. This code only analyzes bits in Mask, in order to short-circuit /// processing. static void ComputeMaskedBits(Value *V, uint64_t Mask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth = 0) { // Note, we cannot consider 'undef' to be "IsZero" here. The problem is that // we cannot optimize based on the assumption that it is zero without changing // it to be an explicit zero. If we don't change it to zero, other code could // optimized based on the contradictory assumption that it is non-zero. // Because instcombine aggressively folds operations with undef args anyway, // this won't lose us code quality. if (ConstantIntegral *CI = dyn_cast(V)) { // We know all of the bits for a constant! KnownOne = CI->getZExtValue() & Mask; KnownZero = ~KnownOne & Mask; return; } KnownZero = KnownOne = 0; // Don't know anything. if (Depth == 6 || Mask == 0) return; // Limit search depth. uint64_t KnownZero2, KnownOne2; Instruction *I = dyn_cast(V); if (!I) return; switch (I->getOpcode()) { case Instruction::And: // If either the LHS or the RHS are Zero, the result is zero. ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); Mask &= ~KnownZero; ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; return; case Instruction::Or: ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); Mask &= ~KnownOne; ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; return; case Instruction::Xor: { ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Output known-0 bits are known if clear or set in both the LHS & RHS. uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); KnownZero = KnownZeroOut; return; } case Instruction::Select: ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1); ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; return; case Instruction::Cast: { const Type *SrcTy = I->getOperand(0)->getType(); if (!SrcTy->isIntegral()) return; // If this is an integer truncate or noop, just look in the input. if (SrcTy->getPrimitiveSizeInBits() >= I->getType()->getPrimitiveSizeInBits()) { ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); return; } // Sign or Zero extension. Compute the bits in the result that are not // present in the input. uint64_t NotIn = ~SrcTy->getIntegralTypeMask(); uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn; // Handle zero extension. if (!SrcTy->isSigned()) { Mask &= SrcTy->getIntegralTypeMask(); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // The top bits are known to be zero. KnownZero |= NewBits; } else { // Sign extension. Mask &= SrcTy->getIntegralTypeMask(); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1); if (KnownZero & InSignBit) { // Input sign bit known zero KnownZero |= NewBits; KnownOne &= ~NewBits; } else if (KnownOne & InSignBit) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } } return; } case Instruction::Shl: // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 if (ConstantUInt *SA = dyn_cast(I->getOperand(1))) { Mask >>= SA->getValue(); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= SA->getValue(); KnownOne <<= SA->getValue(); KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. return; } break; case Instruction::Shr: // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 if (ConstantUInt *SA = dyn_cast(I->getOperand(1))) { // Compute the new bits that are at the top now. uint64_t HighBits = (1ULL << SA->getValue())-1; HighBits <<= I->getType()->getPrimitiveSizeInBits()-SA->getValue(); if (I->getType()->isUnsigned()) { // Unsigned shift right. Mask <<= SA->getValue(); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero >>= SA->getValue(); KnownOne >>= SA->getValue(); KnownZero |= HighBits; // high bits known zero. } else { Mask <<= SA->getValue(); ComputeMaskedBits(I->getOperand(0), Mask, KnownZero,KnownOne,Depth+1); assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?"); KnownZero >>= SA->getValue(); KnownOne >>= SA->getValue(); // Handle the sign bits. uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1); SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. if (KnownZero & SignBit) { // New bits are known zero. KnownZero |= HighBits; } else if (KnownOne & SignBit) { // New bits are known one. KnownOne |= HighBits; } } return; } break; } } /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use /// this predicate to simplify operations downstream. Mask is known to be zero /// for bits that V cannot have. static bool MaskedValueIsZero(Value *V, uint64_t Mask, unsigned Depth = 0) { uint64_t KnownZero, KnownOne; ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth); assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); return (KnownZero & Mask) == Mask; } /// ShrinkDemandedConstant - Check to see if the specified operand of the /// specified instruction is a constant integer. If so, check to see if there /// are any bits set in the constant that are not demanded. If so, shrink the /// constant and return true. static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, uint64_t Demanded) { ConstantInt *OpC = dyn_cast(I->getOperand(OpNo)); if (!OpC) return false; // If there are no bits set that aren't demanded, nothing to do. if ((~Demanded & OpC->getZExtValue()) == 0) return false; // This is producing any bits that are not needed, shrink the RHS. uint64_t Val = Demanded & OpC->getZExtValue(); I->setOperand(OpNo, GetConstantInType(OpC->getType(), Val)); return true; } // ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a // set of known zero and one bits, compute the maximum and minimum values that // could have the specified known zero and known one bits, returning them in // min/max. static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty, uint64_t KnownZero, uint64_t KnownOne, int64_t &Min, int64_t &Max) { uint64_t TypeBits = Ty->getIntegralTypeMask(); uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits; uint64_t SignBit = 1ULL << (Ty->getPrimitiveSizeInBits()-1); // The minimum value is when all unknown bits are zeros, EXCEPT for the sign // bit if it is unknown. Min = KnownOne; Max = KnownOne|UnknownBits; if (SignBit & UnknownBits) { // Sign bit is unknown Min |= SignBit; Max &= ~SignBit; } // Sign extend the min/max values. int ShAmt = 64-Ty->getPrimitiveSizeInBits(); Min = (Min << ShAmt) >> ShAmt; Max = (Max << ShAmt) >> ShAmt; } // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and // a set of known zero and one bits, compute the maximum and minimum values that // could have the specified known zero and known one bits, returning them in // min/max. static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty, uint64_t KnownZero, uint64_t KnownOne, uint64_t &Min, uint64_t &Max) { uint64_t TypeBits = Ty->getIntegralTypeMask(); uint64_t UnknownBits = ~(KnownZero|KnownOne) & TypeBits; // The minimum value is when the unknown bits are all zeros. Min = KnownOne; // The maximum value is when the unknown bits are all ones. Max = KnownOne|UnknownBits; } /// SimplifyDemandedBits - Look at V. At this point, we know that only the /// DemandedMask bits of the result of V are ever used downstream. If we can /// use this information to simplify V, do so and return true. Otherwise, /// analyze the expression and return a mask of KnownOne and KnownZero bits for /// the expression (used to simplify the caller). The KnownZero/One bits may /// only be accurate for those bits in the DemandedMask. bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask, uint64_t &KnownZero, uint64_t &KnownOne, unsigned Depth) { if (ConstantIntegral *CI = dyn_cast(V)) { // We know all of the bits for a constant! KnownOne = CI->getZExtValue() & DemandedMask; KnownZero = ~KnownOne & DemandedMask; return false; } KnownZero = KnownOne = 0; if (!V->hasOneUse()) { // Other users may use these bits. if (Depth != 0) { // Not at the root. // Just compute the KnownZero/KnownOne bits to simplify things downstream. ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth); return false; } // If this is the root being simplified, allow it to have multiple uses, // just set the DemandedMask to all bits. DemandedMask = V->getType()->getIntegralTypeMask(); } else if (DemandedMask == 0) { // Not demanding any bits from V. if (V != UndefValue::get(V->getType())) return UpdateValueUsesWith(V, UndefValue::get(V->getType())); return false; } else if (Depth == 6) { // Limit search depth. return false; } Instruction *I = dyn_cast(V); if (!I) return false; // Only analyze instructions. uint64_t KnownZero2, KnownOne2; switch (I->getOpcode()) { default: break; case Instruction::And: // If either the LHS or the RHS are Zero, the result is zero. if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If something is known zero on the RHS, the bits aren't demanded on the // LHS. if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownZero, KnownZero2, KnownOne2, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known one on one side, return the other. // These bits cannot contribute to the result of the 'and'. if ((DemandedMask & ~KnownZero2 & KnownOne) == (DemandedMask & ~KnownZero2)) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & ~KnownZero & KnownOne2) == (DemandedMask & ~KnownZero)) return UpdateValueUsesWith(I, I->getOperand(1)); // If all of the demanded bits in the inputs are known zeros, return zero. if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) return UpdateValueUsesWith(I, Constant::getNullValue(I->getType())); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask & ~KnownZero2)) return UpdateValueUsesWith(I, I); // Output known-1 bits are only known if set in both the LHS & RHS. KnownOne &= KnownOne2; // Output known-0 are known to be clear if zero in either the LHS | RHS. KnownZero |= KnownZero2; break; case Instruction::Or: if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~KnownOne, KnownZero2, KnownOne2, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'or'. if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) return UpdateValueUsesWith(I, I->getOperand(1)); // If all of the potentially set bits on one side are known to be set on // the other side, just use the 'other' side. if ((DemandedMask & (~KnownZero) & KnownOne2) == (DemandedMask & (~KnownZero))) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & (~KnownZero2) & KnownOne) == (DemandedMask & (~KnownZero2))) return UpdateValueUsesWith(I, I->getOperand(1)); // If the RHS is a constant, see if we can simplify it. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return UpdateValueUsesWith(I, I); // Output known-0 bits are only known if clear in both the LHS & RHS. KnownZero &= KnownZero2; // Output known-1 are known to be set if set in either the LHS | RHS. KnownOne |= KnownOne2; break; case Instruction::Xor: { if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, KnownZero2, KnownOne2, Depth+1)) return true; assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If all of the demanded bits are known zero on one side, return the other. // These bits cannot contribute to the result of the 'xor'. if ((DemandedMask & KnownZero) == DemandedMask) return UpdateValueUsesWith(I, I->getOperand(0)); if ((DemandedMask & KnownZero2) == DemandedMask) return UpdateValueUsesWith(I, I->getOperand(1)); // Output known-0 bits are known if clear or set in both the LHS & RHS. uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); // Output known-1 are known to be set if set in only one of the LHS, RHS. uint64_t KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); // If all of the unknown bits are known to be zero on one side or the other // (but not both) turn this into an *inclusive* or. // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut)) { if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits) { Instruction *Or = BinaryOperator::createOr(I->getOperand(0), I->getOperand(1), I->getName()); InsertNewInstBefore(Or, *I); return UpdateValueUsesWith(I, Or); } } // If all of the demanded bits on one side are known, and all of the set // bits on that side are also known to be set on the other side, turn this // into an AND, as we know the bits will be cleared. // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known if ((KnownOne & KnownOne2) == KnownOne) { Constant *AndC = GetConstantInType(I->getType(), ~KnownOne & DemandedMask); Instruction *And = BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp"); InsertNewInstBefore(And, *I); return UpdateValueUsesWith(I, And); } } // If the RHS is a constant, see if we can simplify it. // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return UpdateValueUsesWith(I, I); KnownZero = KnownZeroOut; KnownOne = KnownOneOut; break; } case Instruction::Select: if (SimplifyDemandedBits(I->getOperand(2), DemandedMask, KnownZero, KnownOne, Depth+1)) return true; if (SimplifyDemandedBits(I->getOperand(1), DemandedMask, KnownZero2, KnownOne2, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); // If the operands are constants, see if we can simplify them. if (ShrinkDemandedConstant(I, 1, DemandedMask)) return UpdateValueUsesWith(I, I); if (ShrinkDemandedConstant(I, 2, DemandedMask)) return UpdateValueUsesWith(I, I); // Only known if known in both the LHS and RHS. KnownOne &= KnownOne2; KnownZero &= KnownZero2; break; case Instruction::Cast: { const Type *SrcTy = I->getOperand(0)->getType(); if (!SrcTy->isIntegral()) return false; // If this is an integer truncate or noop, just look in the input. if (SrcTy->getPrimitiveSizeInBits() >= I->getType()->getPrimitiveSizeInBits()) { if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); break; } // Sign or Zero extension. Compute the bits in the result that are not // present in the input. uint64_t NotIn = ~SrcTy->getIntegralTypeMask(); uint64_t NewBits = I->getType()->getIntegralTypeMask() & NotIn; // Handle zero extension. if (!SrcTy->isSigned()) { DemandedMask &= SrcTy->getIntegralTypeMask(); if (SimplifyDemandedBits(I->getOperand(0), DemandedMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // The top bits are known to be zero. KnownZero |= NewBits; } else { // Sign extension. uint64_t InSignBit = 1ULL << (SrcTy->getPrimitiveSizeInBits()-1); int64_t InputDemandedBits = DemandedMask & SrcTy->getIntegralTypeMask(); // If any of the sign extended bits are demanded, we know that the sign // bit is demanded. if (NewBits & DemandedMask) InputDemandedBits |= InSignBit; if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); // If the sign bit of the input is known set or clear, then we know the // top bits of the result. // If the input sign bit is known zero, or if the NewBits are not demanded // convert this into a zero extension. if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) { // Convert to unsigned first. Instruction *NewVal; NewVal = new CastInst(I->getOperand(0), SrcTy->getUnsignedVersion(), I->getOperand(0)->getName()); InsertNewInstBefore(NewVal, *I); // Then cast that to the destination type. NewVal = new CastInst(NewVal, I->getType(), I->getName()); InsertNewInstBefore(NewVal, *I); return UpdateValueUsesWith(I, NewVal); } else if (KnownOne & InSignBit) { // Input sign bit known set KnownOne |= NewBits; KnownZero &= ~NewBits; } else { // Input sign bit unknown KnownZero &= ~NewBits; KnownOne &= ~NewBits; } } break; } case Instruction::Shl: if (ConstantUInt *SA = dyn_cast(I->getOperand(1))) { if (SimplifyDemandedBits(I->getOperand(0), DemandedMask >> SA->getValue(), KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero <<= SA->getValue(); KnownOne <<= SA->getValue(); KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero. } break; case Instruction::Shr: if (ConstantUInt *SA = dyn_cast(I->getOperand(1))) { unsigned ShAmt = SA->getValue(); // Compute the new bits that are at the top now. uint64_t HighBits = (1ULL << ShAmt)-1; HighBits <<= I->getType()->getPrimitiveSizeInBits() - ShAmt; uint64_t TypeMask = I->getType()->getIntegralTypeMask(); if (I->getType()->isUnsigned()) { // Unsigned shift right. if (SimplifyDemandedBits(I->getOperand(0), (DemandedMask << ShAmt) & TypeMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero &= TypeMask; KnownOne &= TypeMask; KnownZero >>= ShAmt; KnownOne >>= ShAmt; KnownZero |= HighBits; // high bits known zero. } else { // Signed shift right. if (SimplifyDemandedBits(I->getOperand(0), (DemandedMask << ShAmt) & TypeMask, KnownZero, KnownOne, Depth+1)) return true; assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); KnownZero &= TypeMask; KnownOne &= TypeMask; KnownZero >>= SA->getValue(); KnownOne >>= SA->getValue(); // Handle the sign bits. uint64_t SignBit = 1ULL << (I->getType()->getPrimitiveSizeInBits()-1); SignBit >>= SA->getValue(); // Adjust to where it is now in the mask. // If the input sign bit is known to be zero, or if none of the top bits // are demanded, turn this into an unsigned shift right. if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { // Convert the input to unsigned. Instruction *NewVal; NewVal = new CastInst(I->getOperand(0), I->getType()->getUnsignedVersion(), I->getOperand(0)->getName()); InsertNewInstBefore(NewVal, *I); // Perform the unsigned shift right. NewVal = new ShiftInst(Instruction::Shr, NewVal, SA, I->getName()); InsertNewInstBefore(NewVal, *I); // Then cast that to the destination type. NewVal = new CastInst(NewVal, I->getType(), I->getName()); InsertNewInstBefore(NewVal, *I); return UpdateValueUsesWith(I, NewVal); } else if (KnownOne & SignBit) { // New bits are known one. KnownOne |= HighBits; } } } break; } // If the client is only demanding bits that we know, return the known // constant. if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) return UpdateValueUsesWith(I, GetConstantInType(I->getType(), KnownOne)); return false; } // isTrueWhenEqual - Return true if the specified setcondinst instruction is // true when both operands are equal... // static bool isTrueWhenEqual(Instruction &I) { return I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetGE || I.getOpcode() == Instruction::SetLE; } /// AssociativeOpt - Perform an optimization on an associative operator. This /// function is designed to check a chain of associative operators for a /// potential to apply a certain optimization. Since the optimization may be /// applicable if the expression was reassociated, this checks the chain, then /// reassociates the expression as necessary to expose the optimization /// opportunity. This makes use of a special Functor, which must define /// 'shouldApply' and 'apply' methods. /// template Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) { unsigned Opcode = Root.getOpcode(); Value *LHS = Root.getOperand(0); // Quick check, see if the immediate LHS matches... if (F.shouldApply(LHS)) return F.apply(Root); // Otherwise, if the LHS is not of the same opcode as the root, return. Instruction *LHSI = dyn_cast(LHS); while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) { // Should we apply this transform to the RHS? bool ShouldApply = F.shouldApply(LHSI->getOperand(1)); // If not to the RHS, check to see if we should apply to the LHS... if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) { cast(LHSI)->swapOperands(); // Make the LHS the RHS ShouldApply = true; } // If the functor wants to apply the optimization to the RHS of LHSI, // reassociate the expression from ((? op A) op B) to (? op (A op B)) if (ShouldApply) { BasicBlock *BB = Root.getParent(); // Now all of the instructions are in the current basic block, go ahead // and perform the reassociation. Instruction *TmpLHSI = cast(Root.getOperand(0)); // First move the selected RHS to the LHS of the root... Root.setOperand(0, LHSI->getOperand(1)); // Make what used to be the LHS of the root be the user of the root... Value *ExtraOperand = TmpLHSI->getOperand(1); if (&Root == TmpLHSI) { Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType())); return 0; } Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root TmpLHSI->getParent()->getInstList().remove(TmpLHSI); BasicBlock::iterator ARI = &Root; ++ARI; BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root ARI = Root; // Now propagate the ExtraOperand down the chain of instructions until we // get to LHSI. while (TmpLHSI != LHSI) { Instruction *NextLHSI = cast(TmpLHSI->getOperand(0)); // Move the instruction to immediately before the chain we are // constructing to avoid breaking dominance properties. NextLHSI->getParent()->getInstList().remove(NextLHSI); BB->getInstList().insert(ARI, NextLHSI); ARI = NextLHSI; Value *NextOp = NextLHSI->getOperand(1); NextLHSI->setOperand(1, ExtraOperand); TmpLHSI = NextLHSI; ExtraOperand = NextOp; } // Now that the instructions are reassociated, have the functor perform // the transformation... return F.apply(Root); } LHSI = dyn_cast(LHSI->getOperand(0)); } return 0; } // AddRHS - Implements: X + X --> X << 1 struct AddRHS { Value *RHS; AddRHS(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Add) const { return new ShiftInst(Instruction::Shl, Add.getOperand(0), ConstantInt::get(Type::UByteTy, 1)); } }; // AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2) // iff C1&C2 == 0 struct AddMaskingAnd { Constant *C2; AddMaskingAnd(Constant *c) : C2(c) {} bool shouldApply(Value *LHS) const { ConstantInt *C1; return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) && ConstantExpr::getAnd(C1, C2)->isNullValue(); } Instruction *apply(BinaryOperator &Add) const { return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1)); } }; static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner *IC) { if (isa(I)) { if (Constant *SOC = dyn_cast(SO)) return ConstantExpr::getCast(SOC, I.getType()); return IC->InsertNewInstBefore(new CastInst(SO, I.getType(), SO->getName() + ".cast"), I); } // Figure out if the constant is the left or the right argument. bool ConstIsRHS = isa(I.getOperand(1)); Constant *ConstOperand = cast(I.getOperand(ConstIsRHS)); if (Constant *SOC = dyn_cast(SO)) { if (ConstIsRHS) return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); } Value *Op0 = SO, *Op1 = ConstOperand; if (!ConstIsRHS) std::swap(Op0, Op1); Instruction *New; if (BinaryOperator *BO = dyn_cast(&I)) New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op"); else if (ShiftInst *SI = dyn_cast(&I)) New = new ShiftInst(SI->getOpcode(), Op0, Op1, SO->getName()+".sh"); else { assert(0 && "Unknown binary instruction type!"); abort(); } return IC->InsertNewInstBefore(New, I); } // FoldOpIntoSelect - Given an instruction with a select as one operand and a // constant as the other operand, try to fold the binary operator into the // select arguments. This also works for Cast instructions, which obviously do // not have a second operand. static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI, InstCombiner *IC) { // Don't modify shared select instructions if (!SI->hasOneUse()) return 0; Value *TV = SI->getOperand(1); Value *FV = SI->getOperand(2); if (isa(TV) || isa(FV)) { // Bool selects with constant operands can be folded to logical ops. if (SI->getType() == Type::BoolTy) return 0; Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC); return new SelectInst(SI->getCondition(), SelectTrueVal, SelectFalseVal); } return 0; } /// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI /// node as operand #0, see if we can fold the instruction into the PHI (which /// is only possible if all operands to the PHI are constants). Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); if (!PN->hasOneUse() || NumPHIValues == 0 || !isa(PN->getIncomingValue(0))) return 0; // Check to see if all of the operands of the PHI are constants. If not, we // cannot do the transformation. for (unsigned i = 1; i != NumPHIValues; ++i) if (!isa(PN->getIncomingValue(i))) return 0; // Okay, we can do the transformation: create the new PHI node. PHINode *NewPN = new PHINode(I.getType(), I.getName()); I.setName(""); NewPN->reserveOperandSpace(PN->getNumOperands()/2); InsertNewInstBefore(NewPN, *PN); // Next, add all of the operands to the PHI. if (I.getNumOperands() == 2) { Constant *C = cast(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Constant *InV = cast(PN->getIncomingValue(i)); NewPN->addIncoming(ConstantExpr::get(I.getOpcode(), InV, C), PN->getIncomingBlock(i)); } } else { assert(isa(I) && "Unary op should be a cast!"); const Type *RetTy = I.getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Constant *InV = cast(PN->getIncomingValue(i)); NewPN->addIncoming(ConstantExpr::getCast(InV, RetTy), PN->getIncomingBlock(i)); } } return ReplaceInstUsesWith(I, NewPN); } Instruction *InstCombiner::visitAdd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); if (Constant *RHSC = dyn_cast(RHS)) { // X + undef -> undef if (isa(RHS)) return ReplaceInstUsesWith(I, RHS); // X + 0 --> X if (!I.getType()->isFloatingPoint()) { // NOTE: -0 + +0 = +0. if (RHSC->isNullValue()) return ReplaceInstUsesWith(I, LHS); } else if (ConstantFP *CFP = dyn_cast(RHSC)) { if (CFP->isExactlyValue(-0.0)) return ReplaceInstUsesWith(I, LHS); } // X + (signbit) --> X ^ signbit if (ConstantInt *CI = dyn_cast(RHSC)) { uint64_t Val = CI->getZExtValue(); if (Val == (1ULL << (CI->getType()->getPrimitiveSizeInBits()-1))) return BinaryOperator::createXor(LHS, RHS); } if (isa(LHS)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; ConstantInt *XorRHS = 0; Value *XorLHS = 0; if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { unsigned TySizeBits = I.getType()->getPrimitiveSizeInBits(); int64_t RHSSExt = cast(RHSC)->getSExtValue(); uint64_t RHSZExt = cast(RHSC)->getZExtValue(); uint64_t C0080Val = 1ULL << 31; int64_t CFF80Val = -C0080Val; unsigned Size = 32; do { if (TySizeBits > Size) { bool Found = false; // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. if (RHSSExt == CFF80Val) { if (XorRHS->getZExtValue() == C0080Val) Found = true; } else if (RHSZExt == C0080Val) { if (XorRHS->getSExtValue() == CFF80Val) Found = true; } if (Found) { // This is a sign extend if the top bits are known zero. uint64_t Mask = ~0ULL; Mask <<= 64-(TySizeBits-Size); Mask &= XorLHS->getType()->getIntegralTypeMask(); if (!MaskedValueIsZero(XorLHS, Mask)) Size = 0; // Not a sign ext, but can't be any others either. goto FoundSExt; } } Size >>= 1; C0080Val >>= Size; CFF80Val >>= Size; } while (Size >= 8); FoundSExt: const Type *MiddleType = 0; switch (Size) { default: break; case 32: MiddleType = Type::IntTy; break; case 16: MiddleType = Type::ShortTy; break; case 8: MiddleType = Type::SByteTy; break; } if (MiddleType) { Instruction *NewTrunc = new CastInst(XorLHS, MiddleType, "sext"); InsertNewInstBefore(NewTrunc, I); return new CastInst(NewTrunc, I.getType()); } } } // X + X --> X << 1 if (I.getType()->isInteger()) { if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result; if (Instruction *RHSI = dyn_cast(RHS)) { if (RHSI->getOpcode() == Instruction::Sub) if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B return ReplaceInstUsesWith(I, RHSI->getOperand(0)); } if (Instruction *LHSI = dyn_cast(LHS)) { if (LHSI->getOpcode() == Instruction::Sub) if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B return ReplaceInstUsesWith(I, LHSI->getOperand(0)); } } // -A + B --> B - A if (Value *V = dyn_castNegVal(LHS)) return BinaryOperator::createSub(RHS, V); // A + -B --> A - B if (!isa(RHS)) if (Value *V = dyn_castNegVal(RHS)) return BinaryOperator::createSub(LHS, V); ConstantInt *C2; if (Value *X = dyn_castFoldableMul(LHS, C2)) { if (X == RHS) // X*C + X --> X * (C+1) return BinaryOperator::createMul(RHS, AddOne(C2)); // X*C1 + X*C2 --> X * (C1+C2) ConstantInt *C1; if (X == dyn_castFoldableMul(RHS, C1)) return BinaryOperator::createMul(X, ConstantExpr::getAdd(C1, C2)); } // X + X*C --> X * (C+1) if (dyn_castFoldableMul(RHS, C2) == LHS) return BinaryOperator::createMul(LHS, AddOne(C2)); // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2)))) if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2))) return R; if (ConstantInt *CRHS = dyn_cast(RHS)) { Value *X = 0; if (match(LHS, m_Not(m_Value(X)))) { // ~X + C --> (C-1) - X Constant *C= ConstantExpr::getSub(CRHS, ConstantInt::get(I.getType(), 1)); return BinaryOperator::createSub(C, X); } // (X & FF00) + xx00 -> (X+xx00) & FF00 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) { Constant *Anded = ConstantExpr::getAnd(CRHS, C2); if (Anded == CRHS) { // See if all bits from the first bit set in the Add RHS up are included // in the mask. First, get the rightmost bit. uint64_t AddRHSV = CRHS->getRawValue(); // Form a mask of all bits from the lowest bit added through the top. uint64_t AddRHSHighBits = ~((AddRHSV & -AddRHSV)-1); AddRHSHighBits &= C2->getType()->getIntegralTypeMask(); // See if the and mask includes all of these bits. uint64_t AddRHSHighBitsAnd = AddRHSHighBits & C2->getRawValue(); if (AddRHSHighBits == AddRHSHighBitsAnd) { // Okay, the xform is safe. Insert the new add pronto. Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS, LHS->getName()), I); return BinaryOperator::createAnd(NewAdd, C2); } } } // Try to fold constant add into select arguments. if (SelectInst *SI = dyn_cast(LHS)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } return Changed ? &I : 0; } // isSignBit - Return true if the value represented by the constant only has the // highest order bit set. static bool isSignBit(ConstantInt *CI) { unsigned NumBits = CI->getType()->getPrimitiveSizeInBits(); return (CI->getRawValue() & (~0ULL >> (64-NumBits))) == (1ULL << (NumBits-1)); } /// RemoveNoopCast - Strip off nonconverting casts from the value. /// static Value *RemoveNoopCast(Value *V) { if (CastInst *CI = dyn_cast(V)) { const Type *CTy = CI->getType(); const Type *OpTy = CI->getOperand(0)->getType(); if (CTy->isInteger() && OpTy->isInteger()) { if (CTy->getPrimitiveSizeInBits() == OpTy->getPrimitiveSizeInBits()) return RemoveNoopCast(CI->getOperand(0)); } else if (isa(CTy) && isa(OpTy)) return RemoveNoopCast(CI->getOperand(0)); } return V; } Instruction *InstCombiner::visitSub(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (Op0 == Op1) // sub X, X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // If this is a 'B = x-(-A)', change to B = x+A... if (Value *V = dyn_castNegVal(Op1)) return BinaryOperator::createAdd(Op0, V); if (isa(Op0)) return ReplaceInstUsesWith(I, Op0); // undef - X -> undef if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X - undef -> undef if (ConstantInt *C = dyn_cast(Op0)) { // Replace (-1 - A) with (~A)... if (C->isAllOnesValue()) return BinaryOperator::createNot(Op1); // C - ~X == X + (1+C) Value *X = 0; if (match(Op1, m_Not(m_Value(X)))) return BinaryOperator::createAdd(X, ConstantExpr::getAdd(C, ConstantInt::get(I.getType(), 1))); // -((uint)X >> 31) -> ((int)X >> 31) // -((int)X >> 31) -> ((uint)X >> 31) if (C->isNullValue()) { Value *NoopCastedRHS = RemoveNoopCast(Op1); if (ShiftInst *SI = dyn_cast(NoopCastedRHS)) if (SI->getOpcode() == Instruction::Shr) if (ConstantUInt *CU = dyn_cast(SI->getOperand(1))) { const Type *NewTy; if (SI->getType()->isSigned()) NewTy = SI->getType()->getUnsignedVersion(); else NewTy = SI->getType()->getSignedVersion(); // Check to see if we are shifting out everything but the sign bit. if (CU->getValue() == SI->getType()->getPrimitiveSizeInBits()-1) { // Ok, the transformation is safe. Insert a cast of the incoming // value, then the new shift, then the new cast. Instruction *FirstCast = new CastInst(SI->getOperand(0), NewTy, SI->getOperand(0)->getName()); Value *InV = InsertNewInstBefore(FirstCast, I); Instruction *NewShift = new ShiftInst(Instruction::Shr, FirstCast, CU, SI->getName()); if (NewShift->getType() == I.getType()) return NewShift; else { InV = InsertNewInstBefore(NewShift, I); return new CastInst(NewShift, I.getType()); } } } } // Try to fold constant sub into select arguments. if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (BinaryOperator *Op1I = dyn_cast(Op1)) { if (Op1I->getOpcode() == Instruction::Add && !Op0->getType()->isFloatingPoint()) { if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName()); else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName()); else if (ConstantInt *CI1 = dyn_cast(I.getOperand(0))) { if (ConstantInt *CI2 = dyn_cast(Op1I->getOperand(1))) // C1-(X+C2) --> (C1-C2)-X return BinaryOperator::createSub(ConstantExpr::getSub(CI1, CI2), Op1I->getOperand(0)); } } if (Op1I->hasOneUse()) { // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression // is not used by anyone else... // if (Op1I->getOpcode() == Instruction::Sub && !Op1I->getType()->isFloatingPoint()) { // Swap the two operands of the subexpr... Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1); Op1I->setOperand(0, IIOp1); Op1I->setOperand(1, IIOp0); // Create the new top level add instruction... return BinaryOperator::createAdd(Op0, Op1); } // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)... // if (Op1I->getOpcode() == Instruction::And && (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) { Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0); Value *NewNot = InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I); return BinaryOperator::createAnd(Op0, NewNot); } // -(X sdiv C) -> (X sdiv -C) if (Op1I->getOpcode() == Instruction::Div) if (ConstantSInt *CSI = dyn_cast(Op0)) if (CSI->isNullValue()) if (Constant *DivRHS = dyn_cast(Op1I->getOperand(1))) return BinaryOperator::createDiv(Op1I->getOperand(0), ConstantExpr::getNeg(DivRHS)); // X - X*C --> X * (1-C) ConstantInt *C2 = 0; if (dyn_castFoldableMul(Op1I, C2) == Op0) { Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(), 1), C2); return BinaryOperator::createMul(Op0, CP1); } } } if (!Op0->getType()->isFloatingPoint()) if (BinaryOperator *Op0I = dyn_cast(Op0)) if (Op0I->getOpcode() == Instruction::Add) { if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X return ReplaceInstUsesWith(I, Op0I->getOperand(1)); else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X return ReplaceInstUsesWith(I, Op0I->getOperand(0)); } else if (Op0I->getOpcode() == Instruction::Sub) { if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName()); } ConstantInt *C1; if (Value *X = dyn_castFoldableMul(Op0, C1)) { if (X == Op1) { // X*C - X --> X * (C-1) Constant *CP1 = ConstantExpr::getSub(C1, ConstantInt::get(I.getType(),1)); return BinaryOperator::createMul(Op1, CP1); } ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) if (X == dyn_castFoldableMul(Op1, C2)) return BinaryOperator::createMul(Op1, ConstantExpr::getSub(C1, C2)); } return 0; } /// isSignBitCheck - Given an exploded setcc instruction, return true if it is /// really just returns true if the most significant (sign) bit is set. static bool isSignBitCheck(unsigned Opcode, Value *LHS, ConstantInt *RHS) { if (RHS->getType()->isSigned()) { // True if source is LHS < 0 or LHS <= -1 return Opcode == Instruction::SetLT && RHS->isNullValue() || Opcode == Instruction::SetLE && RHS->isAllOnesValue(); } else { ConstantUInt *RHSC = cast(RHS); // True if source is LHS > 127 or LHS >= 128, where the constants depend on // the size of the integer type. if (Opcode == Instruction::SetGE) return RHSC->getValue() == 1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1); if (Opcode == Instruction::SetGT) return RHSC->getValue() == (1ULL << (RHS->getType()->getPrimitiveSizeInBits()-1))-1; } return false; } Instruction *InstCombiner::visitMul(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0); if (isa(I.getOperand(1))) // undef * X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // Simplify mul instructions with a constant RHS... if (Constant *Op1 = dyn_cast(I.getOperand(1))) { if (ConstantInt *CI = dyn_cast(Op1)) { // ((X << C1)*C2) == (X * (C2 << C1)) if (ShiftInst *SI = dyn_cast(Op0)) if (SI->getOpcode() == Instruction::Shl) if (Constant *ShOp = dyn_cast(SI->getOperand(1))) return BinaryOperator::createMul(SI->getOperand(0), ConstantExpr::getShl(CI, ShOp)); if (CI->isNullValue()) return ReplaceInstUsesWith(I, Op1); // X * 0 == 0 if (CI->equalsInt(1)) // X * 1 == X return ReplaceInstUsesWith(I, Op0); if (CI->isAllOnesValue()) // X * -1 == 0 - X return BinaryOperator::createNeg(Op0, I.getName()); int64_t Val = (int64_t)cast(CI)->getRawValue(); if (isPowerOf2_64(Val)) { // Replace X*(2^C) with X << C uint64_t C = Log2_64(Val); return new ShiftInst(Instruction::Shl, Op0, ConstantUInt::get(Type::UByteTy, C)); } } else if (ConstantFP *Op1F = dyn_cast(Op1)) { if (Op1F->isNullValue()) return ReplaceInstUsesWith(I, Op1); // "In IEEE floating point, x*1 is not equivalent to x for nans. However, // ANSI says we can drop signals, so we can do this anyway." (from GCC) if (Op1F->getValue() == 1.0) return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0' } // Try to fold constant mul into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y if (Value *Op1v = dyn_castNegVal(I.getOperand(1))) return BinaryOperator::createMul(Op0v, Op1v); // If one of the operands of the multiply is a cast from a boolean value, then // we know the bool is either zero or one, so this is a 'masking' multiply. // See if we can simplify things based on how the boolean was originally // formed. CastInst *BoolCast = 0; if (CastInst *CI = dyn_cast(I.getOperand(0))) if (CI->getOperand(0)->getType() == Type::BoolTy) BoolCast = CI; if (!BoolCast) if (CastInst *CI = dyn_cast(I.getOperand(1))) if (CI->getOperand(0)->getType() == Type::BoolTy) BoolCast = CI; if (BoolCast) { if (SetCondInst *SCI = dyn_cast(BoolCast->getOperand(0))) { Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1); const Type *SCOpTy = SCIOp0->getType(); // If the setcc is true iff the sign bit of X is set, then convert this // multiply into a shift/and combination. if (isa(SCIOp1) && isSignBitCheck(SCI->getOpcode(), SCIOp0, cast(SCIOp1))) { // Shift the X value right to turn it into "all signbits". Constant *Amt = ConstantUInt::get(Type::UByteTy, SCOpTy->getPrimitiveSizeInBits()-1); if (SCIOp0->getType()->isUnsigned()) { const Type *NewTy = SCIOp0->getType()->getSignedVersion(); SCIOp0 = InsertNewInstBefore(new CastInst(SCIOp0, NewTy, SCIOp0->getName()), I); } Value *V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, SCIOp0, Amt, BoolCast->getOperand(0)->getName()+ ".mask"), I); // If the multiply type is not the same as the source type, sign extend // or truncate to the multiply type. if (I.getType() != V->getType()) V = InsertNewInstBefore(new CastInst(V, I.getType(), V->getName()),I); Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0; return BinaryOperator::createAnd(V, OtherOp); } } } return Changed ? &I : 0; } Instruction *InstCombiner::visitDiv(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op0)) // undef / X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X / undef -> undef if (ConstantInt *RHS = dyn_cast(Op1)) { // div X, 1 == X if (RHS->equalsInt(1)) return ReplaceInstUsesWith(I, Op0); // div X, -1 == -X if (RHS->isAllOnesValue()) return BinaryOperator::createNeg(Op0); if (Instruction *LHS = dyn_cast(Op0)) if (LHS->getOpcode() == Instruction::Div) if (ConstantInt *LHSRHS = dyn_cast(LHS->getOperand(1))) { // (X / C1) / C2 -> X / (C1*C2) return BinaryOperator::createDiv(LHS->getOperand(0), ConstantExpr::getMul(RHS, LHSRHS)); } // Check to see if this is an unsigned division with an exact power of 2, // if so, convert to a right shift. if (ConstantUInt *C = dyn_cast(RHS)) if (uint64_t Val = C->getValue()) // Don't break X / 0 if (isPowerOf2_64(Val)) { uint64_t C = Log2_64(Val); return new ShiftInst(Instruction::Shr, Op0, ConstantUInt::get(Type::UByteTy, C)); } // -X/C -> X/-C if (RHS->getType()->isSigned()) if (Value *LHSNeg = dyn_castNegVal(Op0)) return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS)); if (!RHS->isNullValue()) { if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } } // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two, // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'. if (SelectInst *SI = dyn_cast(Op1)) if (ConstantUInt *STO = dyn_cast(SI->getOperand(1))) if (ConstantUInt *SFO = dyn_cast(SI->getOperand(2))) { if (STO->getValue() == 0) { // Couldn't be this argument. I.setOperand(1, SFO); return &I; } else if (SFO->getValue() == 0) { I.setOperand(1, STO); return &I; } uint64_t TVA = STO->getValue(), FVA = SFO->getValue(); if (isPowerOf2_64(TVA) && isPowerOf2_64(FVA)) { unsigned TSA = Log2_64(TVA), FSA = Log2_64(FVA); Constant *TC = ConstantUInt::get(Type::UByteTy, TSA); Instruction *TSI = new ShiftInst(Instruction::Shr, Op0, TC, SI->getName()+".t"); TSI = InsertNewInstBefore(TSI, I); Constant *FC = ConstantUInt::get(Type::UByteTy, FSA); Instruction *FSI = new ShiftInst(Instruction::Shr, Op0, FC, SI->getName()+".f"); FSI = InsertNewInstBefore(FSI, I); return new SelectInst(SI->getOperand(0), TSI, FSI); } } // 0 / X == 0, we don't need to preserve faults! if (ConstantInt *LHS = dyn_cast(Op0)) if (LHS->equalsInt(0)) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (I.getType()->isSigned()) { // If the sign bits of both operands are zero (i.e. we can prove they are // unsigned inputs), turn this into a udiv. uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1); if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { const Type *NTy = Op0->getType()->getUnsignedVersion(); Instruction *LHS = new CastInst(Op0, NTy, Op0->getName()); InsertNewInstBefore(LHS, I); Value *RHS; if (Constant *R = dyn_cast(Op1)) RHS = ConstantExpr::getCast(R, NTy); else RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I); Instruction *Div = BinaryOperator::createDiv(LHS, RHS, I.getName()); InsertNewInstBefore(Div, I); return new CastInst(Div, I.getType()); } } else { // Known to be an unsigned division. if (Instruction *RHSI = dyn_cast(I.getOperand(1))) { // Turn A / (C1 << N), where C1 is "1<> (N+C2) [udiv only]. if (RHSI->getOpcode() == Instruction::Shl && isa(RHSI->getOperand(0))) { unsigned C1 = cast(RHSI->getOperand(0))->getRawValue(); if (isPowerOf2_64(C1)) { unsigned C2 = Log2_64(C1); Value *Add = RHSI->getOperand(1); if (C2) { Constant *C2V = ConstantUInt::get(Add->getType(), C2); Add = InsertNewInstBefore(BinaryOperator::createAdd(Add, C2V, "tmp"), I); } return new ShiftInst(Instruction::Shr, Op0, Add); } } } } return 0; } /// GetFactor - If we can prove that the specified value is at least a multiple /// of some factor, return that factor. static Constant *GetFactor(Value *V) { if (ConstantInt *CI = dyn_cast(V)) return CI; // Unless we can be tricky, we know this is a multiple of 1. Constant *Result = ConstantInt::get(V->getType(), 1); Instruction *I = dyn_cast(V); if (!I) return Result; if (I->getOpcode() == Instruction::Mul) { // Handle multiplies by a constant, etc. return ConstantExpr::getMul(GetFactor(I->getOperand(0)), GetFactor(I->getOperand(1))); } else if (I->getOpcode() == Instruction::Shl) { // (X< X * (1 << C) if (Constant *ShRHS = dyn_cast(I->getOperand(1))) { ShRHS = ConstantExpr::getShl(Result, ShRHS); return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS); } } else if (I->getOpcode() == Instruction::And) { if (ConstantInt *RHS = dyn_cast(I->getOperand(1))) { // X & 0xFFF0 is known to be a multiple of 16. unsigned Zeros = CountTrailingZeros_64(RHS->getZExtValue()); if (Zeros != V->getType()->getPrimitiveSizeInBits()) return ConstantExpr::getShl(Result, ConstantUInt::get(Type::UByteTy, Zeros)); } } else if (I->getOpcode() == Instruction::Cast) { Value *Op = I->getOperand(0); // Only handle int->int casts. if (!Op->getType()->isInteger()) return Result; return ConstantExpr::getCast(GetFactor(Op), V->getType()); } return Result; } Instruction *InstCombiner::visitRem(BinaryOperator &I) { Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // 0 % X == 0, we don't need to preserve faults! if (Constant *LHS = dyn_cast(Op0)) if (LHS->isNullValue()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(Op0)) // undef % X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X % undef -> undef if (I.getType()->isSigned()) { if (Value *RHSNeg = dyn_castNegVal(Op1)) if (!isa(RHSNeg) || cast(RHSNeg)->getValue() > 0) { // X % -Y -> X % Y AddUsesToWorkList(I); I.setOperand(1, RHSNeg); return &I; } // If the top bits of both operands are zero (i.e. we can prove they are // unsigned inputs), turn this into a urem. uint64_t Mask = 1ULL << (I.getType()->getPrimitiveSizeInBits()-1); if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) { const Type *NTy = Op0->getType()->getUnsignedVersion(); Instruction *LHS = new CastInst(Op0, NTy, Op0->getName()); InsertNewInstBefore(LHS, I); Value *RHS; if (Constant *R = dyn_cast(Op1)) RHS = ConstantExpr::getCast(R, NTy); else RHS = InsertNewInstBefore(new CastInst(Op1, NTy, Op1->getName()), I); Instruction *Rem = BinaryOperator::createRem(LHS, RHS, I.getName()); InsertNewInstBefore(Rem, I); return new CastInst(Rem, I.getType()); } } if (ConstantInt *RHS = dyn_cast(Op1)) { // X % 0 == undef, we don't need to preserve faults! if (RHS->equalsInt(0)) return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); if (RHS->equalsInt(1)) // X % 1 == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // Check to see if this is an unsigned remainder with an exact power of 2, // if so, convert to a bitwise and. if (ConstantUInt *C = dyn_cast(RHS)) if (isPowerOf2_64(C->getValue())) return BinaryOperator::createAnd(Op0, SubOne(C)); if (Instruction *Op0I = dyn_cast(Op0)) { if (SelectInst *SI = dyn_cast(Op0I)) { if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; } else if (isa(Op0I)) { if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } // X*C1%C2 --> 0 iff C1%C2 == 0 if (ConstantExpr::getRem(GetFactor(Op0I), RHS)->isNullValue()) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } } if (Instruction *RHSI = dyn_cast(I.getOperand(1))) { // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1) [urem only]. if (I.getType()->isUnsigned() && RHSI->getOpcode() == Instruction::Shl && isa(RHSI->getOperand(0))) { unsigned C1 = cast(RHSI->getOperand(0))->getRawValue(); if (isPowerOf2_64(C1)) { Constant *N1 = ConstantInt::getAllOnesValue(I.getType()); Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1, "tmp"), I); return BinaryOperator::createAnd(Op0, Add); } } // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two, // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'. if (SelectInst *SI = dyn_cast(Op1)) if (ConstantUInt *STO = dyn_cast(SI->getOperand(1))) if (ConstantUInt *SFO = dyn_cast(SI->getOperand(2))) { if (STO->getValue() == 0) { // Couldn't be this argument. I.setOperand(1, SFO); return &I; } else if (SFO->getValue() == 0) { I.setOperand(1, STO); return &I; } if (isPowerOf2_64(STO->getValue()) && isPowerOf2_64(SFO->getValue())){ Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I); Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I); return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd); } } } return 0; } // isMaxValueMinusOne - return true if this is Max-1 static bool isMaxValueMinusOne(const ConstantInt *C) { if (const ConstantUInt *CU = dyn_cast(C)) return CU->getValue() == C->getType()->getIntegralTypeMask()-1; const ConstantSInt *CS = cast(C); // Calculate 0111111111..11111 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits(); int64_t Val = INT64_MAX; // All ones Val >>= 64-TypeBits; // Shift out unwanted 1 bits... return CS->getValue() == Val-1; } // isMinValuePlusOne - return true if this is Min+1 static bool isMinValuePlusOne(const ConstantInt *C) { if (const ConstantUInt *CU = dyn_cast(C)) return CU->getValue() == 1; const ConstantSInt *CS = cast(C); // Calculate 1111111111000000000000 unsigned TypeBits = C->getType()->getPrimitiveSizeInBits(); int64_t Val = -1; // All ones Val <<= TypeBits-1; // Shift over to the right spot return CS->getValue() == Val+1; } // isOneBitSet - Return true if there is exactly one bit set in the specified // constant. static bool isOneBitSet(const ConstantInt *CI) { uint64_t V = CI->getRawValue(); return V && (V & (V-1)) == 0; } #if 0 // Currently unused // isLowOnes - Return true if the constant is of the form 0+1+. static bool isLowOnes(const ConstantInt *CI) { uint64_t V = CI->getRawValue(); // There won't be bits set in parts that the type doesn't contain. V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue(); uint64_t U = V+1; // If it is low ones, this should be a power of two. return U && V && (U & V) == 0; } #endif // isHighOnes - Return true if the constant is of the form 1+0+. // This is the same as lowones(~X). static bool isHighOnes(const ConstantInt *CI) { uint64_t V = ~CI->getRawValue(); if (~V == 0) return false; // 0's does not match "1+" // There won't be bits set in parts that the type doesn't contain. V &= ConstantInt::getAllOnesValue(CI->getType())->getRawValue(); uint64_t U = V+1; // If it is low ones, this should be a power of two. return U && V && (U & V) == 0; } /// getSetCondCode - Encode a setcc opcode into a three bit mask. These bits /// are carefully arranged to allow folding of expressions such as: /// /// (A < B) | (A > B) --> (A != B) /// /// Bit value '4' represents that the comparison is true if A > B, bit value '2' /// represents that the comparison is true if A == B, and bit value '1' is true /// if A < B. /// static unsigned getSetCondCode(const SetCondInst *SCI) { switch (SCI->getOpcode()) { // False -> 0 case Instruction::SetGT: return 1; case Instruction::SetEQ: return 2; case Instruction::SetGE: return 3; case Instruction::SetLT: return 4; case Instruction::SetNE: return 5; case Instruction::SetLE: return 6; // True -> 7 default: assert(0 && "Invalid SetCC opcode!"); return 0; } } /// getSetCCValue - This is the complement of getSetCondCode, which turns an /// opcode and two operands into either a constant true or false, or a brand new /// SetCC instruction. static Value *getSetCCValue(unsigned Opcode, Value *LHS, Value *RHS) { switch (Opcode) { case 0: return ConstantBool::False; case 1: return new SetCondInst(Instruction::SetGT, LHS, RHS); case 2: return new SetCondInst(Instruction::SetEQ, LHS, RHS); case 3: return new SetCondInst(Instruction::SetGE, LHS, RHS); case 4: return new SetCondInst(Instruction::SetLT, LHS, RHS); case 5: return new SetCondInst(Instruction::SetNE, LHS, RHS); case 6: return new SetCondInst(Instruction::SetLE, LHS, RHS); case 7: return ConstantBool::True; default: assert(0 && "Illegal SetCCCode!"); return 0; } } // FoldSetCCLogical - Implements (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B) struct FoldSetCCLogical { InstCombiner &IC; Value *LHS, *RHS; FoldSetCCLogical(InstCombiner &ic, SetCondInst *SCI) : IC(ic), LHS(SCI->getOperand(0)), RHS(SCI->getOperand(1)) {} bool shouldApply(Value *V) const { if (SetCondInst *SCI = dyn_cast(V)) return (SCI->getOperand(0) == LHS && SCI->getOperand(1) == RHS || SCI->getOperand(0) == RHS && SCI->getOperand(1) == LHS); return false; } Instruction *apply(BinaryOperator &Log) const { SetCondInst *SCI = cast(Log.getOperand(0)); if (SCI->getOperand(0) != LHS) { assert(SCI->getOperand(1) == LHS); SCI->swapOperands(); // Swap the LHS and RHS of the SetCC } unsigned LHSCode = getSetCondCode(SCI); unsigned RHSCode = getSetCondCode(cast(Log.getOperand(1))); unsigned Code; switch (Log.getOpcode()) { case Instruction::And: Code = LHSCode & RHSCode; break; case Instruction::Or: Code = LHSCode | RHSCode; break; case Instruction::Xor: Code = LHSCode ^ RHSCode; break; default: assert(0 && "Illegal logical opcode!"); return 0; } Value *RV = getSetCCValue(Code, LHS, RHS); if (Instruction *I = dyn_cast(RV)) return I; // Otherwise, it's a constant boolean value... return IC.ReplaceInstUsesWith(Log, RV); } }; // OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where // the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is // guaranteed to be either a shift instruction or a binary operator. Instruction *InstCombiner::OptAndOp(Instruction *Op, ConstantIntegral *OpRHS, ConstantIntegral *AndRHS, BinaryOperator &TheAnd) { Value *X = Op->getOperand(0); Constant *Together = 0; if (!isa(Op)) Together = ConstantExpr::getAnd(AndRHS, OpRHS); switch (Op->getOpcode()) { case Instruction::Xor: if (Op->hasOneUse()) { // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) std::string OpName = Op->getName(); Op->setName(""); Instruction *And = BinaryOperator::createAnd(X, AndRHS, OpName); InsertNewInstBefore(And, TheAnd); return BinaryOperator::createXor(And, Together); } break; case Instruction::Or: if (Together == AndRHS) // (X | C) & C --> C return ReplaceInstUsesWith(TheAnd, AndRHS); if (Op->hasOneUse() && Together != OpRHS) { // (X | C1) & C2 --> (X | (C1&C2)) & C2 std::string Op0Name = Op->getName(); Op->setName(""); Instruction *Or = BinaryOperator::createOr(X, Together, Op0Name); InsertNewInstBefore(Or, TheAnd); return BinaryOperator::createAnd(Or, AndRHS); } break; case Instruction::Add: if (Op->hasOneUse()) { // Adding a one to a single bit bit-field should be turned into an XOR // of the bit. First thing to check is to see if this AND is with a // single bit constant. uint64_t AndRHSV = cast(AndRHS)->getRawValue(); // Clear bits that are not part of the constant. AndRHSV &= AndRHS->getType()->getIntegralTypeMask(); // If there is only one bit set... if (isOneBitSet(cast(AndRHS))) { // Ok, at this point, we know that we are masking the result of the // ADD down to exactly one bit. If the constant we are adding has // no bits set below this bit, then we can eliminate the ADD. uint64_t AddRHS = cast(OpRHS)->getRawValue(); // Check to see if any bits below the one bit set in AndRHSV are set. if ((AddRHS & (AndRHSV-1)) == 0) { // If not, the only thing that can effect the output of the AND is // the bit specified by AndRHSV. If that bit is set, the effect of // the XOR is to toggle the bit. If it is clear, then the ADD has // no effect. if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop TheAnd.setOperand(0, X); return &TheAnd; } else { std::string Name = Op->getName(); Op->setName(""); // Pull the XOR out of the AND. Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS, Name); InsertNewInstBefore(NewAnd, TheAnd); return BinaryOperator::createXor(NewAnd, AndRHS); } } } } break; case Instruction::Shl: { // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! // Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType()); Constant *ShlMask = ConstantExpr::getShl(AllOne, OpRHS); Constant *CI = ConstantExpr::getAnd(AndRHS, ShlMask); if (CI == ShlMask) { // Masking out bits that the shift already masks return ReplaceInstUsesWith(TheAnd, Op); // No need for the and. } else if (CI != AndRHS) { // Reducing bits set in and. TheAnd.setOperand(1, CI); return &TheAnd; } break; } case Instruction::Shr: // We know that the AND will not produce any of the bits shifted in, so if // the anded constant includes them, clear them now! This only applies to // unsigned shifts, because a signed shr may bring in set bits! // if (AndRHS->getType()->isUnsigned()) { Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType()); Constant *ShrMask = ConstantExpr::getShr(AllOne, OpRHS); Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask); if (CI == ShrMask) { // Masking out bits that the shift already masks. return ReplaceInstUsesWith(TheAnd, Op); } else if (CI != AndRHS) { TheAnd.setOperand(1, CI); // Reduce bits set in and cst. return &TheAnd; } } else { // Signed shr. // See if this is shifting in some sign extension, then masking it out // with an and. if (Op->hasOneUse()) { Constant *AllOne = ConstantIntegral::getAllOnesValue(AndRHS->getType()); Constant *ShrMask = ConstantExpr::getUShr(AllOne, OpRHS); Constant *CI = ConstantExpr::getAnd(AndRHS, ShrMask); if (CI == AndRHS) { // Masking out bits shifted in. // Make the argument unsigned. Value *ShVal = Op->getOperand(0); ShVal = InsertCastBefore(ShVal, ShVal->getType()->getUnsignedVersion(), TheAnd); ShVal = InsertNewInstBefore(new ShiftInst(Instruction::Shr, ShVal, OpRHS, Op->getName()), TheAnd); Value *AndRHS2 = ConstantExpr::getCast(AndRHS, ShVal->getType()); ShVal = InsertNewInstBefore(BinaryOperator::createAnd(ShVal, AndRHS2, TheAnd.getName()), TheAnd); return new CastInst(ShVal, Op->getType()); } } } break; } return 0; } /// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is /// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient /// (V-Lo) (ConstantExpr::getSetLE(Lo, Hi))->getValue() && "Lo is not <= Hi in range emission code!"); if (Inside) { if (Lo == Hi) // Trivially false. return new SetCondInst(Instruction::SetNE, V, V); if (cast(Lo)->isMinValue()) return new SetCondInst(Instruction::SetLT, V, Hi); Constant *AddCST = ConstantExpr::getNeg(Lo); Instruction *Add = BinaryOperator::createAdd(V, AddCST,V->getName()+".off"); InsertNewInstBefore(Add, IB); // Convert to unsigned for the comparison. const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, IB); AddCST = ConstantExpr::getAdd(AddCST, Hi); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST); } if (Lo == Hi) // Trivially true. return new SetCondInst(Instruction::SetEQ, V, V); Hi = SubOne(cast(Hi)); if (cast(Lo)->isMinValue()) // V < 0 || V >= Hi ->'V > Hi-1' return new SetCondInst(Instruction::SetGT, V, Hi); // Emit X-Lo > Hi-Lo-1 Constant *AddCST = ConstantExpr::getNeg(Lo); Instruction *Add = BinaryOperator::createAdd(V, AddCST, V->getName()+".off"); InsertNewInstBefore(Add, IB); // Convert to unsigned for the comparison. const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, IB); AddCST = ConstantExpr::getAdd(AddCST, Hi); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST); } // isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with // any number of 0s on either side. The 1s are allowed to wrap from LSB to // MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is // not, since all 1s are not contiguous. static bool isRunOfOnes(ConstantIntegral *Val, unsigned &MB, unsigned &ME) { uint64_t V = Val->getRawValue(); if (!isShiftedMask_64(V)) return false; // look for the first zero bit after the run of ones MB = 64-CountLeadingZeros_64((V - 1) ^ V); // look for the first non-zero bit ME = 64-CountLeadingZeros_64(V); return true; } /// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask, /// where isSub determines whether the operator is a sub. If we can fold one of /// the following xforms: /// /// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask /// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 /// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0 /// /// return (A +/- B). /// Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantIntegral *Mask, bool isSub, Instruction &I) { Instruction *LHSI = dyn_cast(LHS); if (!LHSI || LHSI->getNumOperands() != 2 || !isa(LHSI->getOperand(1))) return 0; ConstantInt *N = cast(LHSI->getOperand(1)); switch (LHSI->getOpcode()) { default: return 0; case Instruction::And: if (ConstantExpr::getAnd(N, Mask) == Mask) { // If the AndRHS is a power of two minus one (0+1+), this is simple. if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0) break; // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+ // part, we don't need any explicit masks to take them out of A. If that // is all N is, ignore it. unsigned MB, ME; if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive uint64_t Mask = RHS->getType()->getIntegralTypeMask(); Mask >>= 64-MB+1; if (MaskedValueIsZero(RHS, Mask)) break; } } return 0; case Instruction::Or: case Instruction::Xor: // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0 if ((Mask->getRawValue() & Mask->getRawValue()+1) == 0 && ConstantExpr::getAnd(N, Mask)->isNullValue()) break; return 0; } Instruction *New; if (isSub) New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold"); else New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold"); return InsertNewInstBefore(New, I); } Instruction *InstCombiner::visitAnd(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) // X & undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // and X, X = X if (Op0 == Op1) return ReplaceInstUsesWith(I, Op1); // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint64_t KnownZero, KnownOne; if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(), KnownZero, KnownOne)) return &I; if (ConstantIntegral *AndRHS = dyn_cast(Op1)) { uint64_t AndRHSMask = AndRHS->getZExtValue(); uint64_t TypeMask = Op0->getType()->getIntegralTypeMask(); uint64_t NotAndRHS = AndRHSMask^TypeMask; // Optimize a variety of ((val OP C1) & C2) combinations... if (isa(Op0) || isa(Op0)) { Instruction *Op0I = cast(Op0); Value *Op0LHS = Op0I->getOperand(0); Value *Op0RHS = Op0I->getOperand(1); switch (Op0I->getOpcode()) { case Instruction::Xor: case Instruction::Or: // If the mask is only needed on one incoming arm, push it up. if (Op0I->hasOneUse()) { if (MaskedValueIsZero(Op0LHS, NotAndRHS)) { // Not masking anything out for the LHS, move to RHS. Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS, Op0RHS->getName()+".masked"); InsertNewInstBefore(NewRHS, I); return BinaryOperator::create( cast(Op0I)->getOpcode(), Op0LHS, NewRHS); } if (!isa(Op0RHS) && MaskedValueIsZero(Op0RHS, NotAndRHS)) { // Not masking anything out for the RHS, move to LHS. Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS, Op0LHS->getName()+".masked"); InsertNewInstBefore(NewLHS, I); return BinaryOperator::create( cast(Op0I)->getOpcode(), NewLHS, Op0RHS); } } break; case Instruction::Add: // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS. // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I)) return BinaryOperator::createAnd(V, AndRHS); if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I)) return BinaryOperator::createAnd(V, AndRHS); // Add commutes break; case Instruction::Sub: // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS. // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I)) return BinaryOperator::createAnd(V, AndRHS); break; } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I)) return Res; } else if (CastInst *CI = dyn_cast(Op0)) { const Type *SrcTy = CI->getOperand(0)->getType(); // If this is an integer truncation or change from signed-to-unsigned, and // if the source is an and/or with immediate, transform it. This // frequently occurs for bitfield accesses. if (Instruction *CastOp = dyn_cast(CI->getOperand(0))) { if (SrcTy->getPrimitiveSizeInBits() >= I.getType()->getPrimitiveSizeInBits() && CastOp->getNumOperands() == 2) if (ConstantInt *AndCI = dyn_cast(CastOp->getOperand(1))) if (CastOp->getOpcode() == Instruction::And) { // Change: and (cast (and X, C1) to T), C2 // into : and (cast X to T), trunc(C1)&C2 // This will folds the two ands together, which may allow other // simplifications. Instruction *NewCast = new CastInst(CastOp->getOperand(0), I.getType(), CastOp->getName()+".shrunk"); NewCast = InsertNewInstBefore(NewCast, I); Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1) C3 = ConstantExpr::getAnd(C3, AndRHS); // trunc(C1)&C2 return BinaryOperator::createAnd(NewCast, C3); } else if (CastOp->getOpcode() == Instruction::Or) { // Change: and (cast (or X, C1) to T), C2 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2 Constant *C3=ConstantExpr::getCast(AndCI, I.getType());//trunc(C1) if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2 return ReplaceInstUsesWith(I, AndRHS); } } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *Op0NotVal = dyn_castNotVal(Op0); Value *Op1NotVal = dyn_castNotVal(Op1); if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); // (~A & ~B) == (~(A | B)) - De Morgan's Law if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) { Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal, I.getName()+".demorgan"); InsertNewInstBefore(Or, I); return BinaryOperator::createNot(Or); } { Value *A = 0, *B = 0; ConstantInt *C1 = 0, *C2 = 0; if (match(Op0, m_Or(m_Value(A), m_Value(B)))) if (A == Op1 || B == Op1) // (A | ?) & A --> A return ReplaceInstUsesWith(I, Op1); if (match(Op1, m_Or(m_Value(A), m_Value(B)))) if (A == Op0 || B == Op0) // A & (A | ?) --> A return ReplaceInstUsesWith(I, Op0); } if (SetCondInst *RHS = dyn_cast(Op1)) { // (setcc1 A, B) & (setcc2 A, B) --> (setcc3 A, B) if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS))) return R; Value *LHSVal, *RHSVal; ConstantInt *LHSCst, *RHSCst; Instruction::BinaryOps LHSCC, RHSCC; if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) if (LHSVal == RHSVal && // Found (X setcc C1) & (X setcc C2) // Set[GL]E X, CST is folded to Set[GL]T elsewhere. LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) { // Ensure that the larger constant is on the RHS. Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst); SetCondInst *LHS = cast(Op0); if (cast(Cmp)->getValue()) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two setcc instructions // comparing a value against two constants and and'ing the result // together. Because of the above check, we know that we only have // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the // FoldSetCCLogical check above), that the two constants are not // equal. assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X == 13 & X == 15) -> false case Instruction::SetGT: // (X == 13 & X > 15) -> false return ReplaceInstUsesWith(I, ConstantBool::False); case Instruction::SetNE: // (X == 13 & X != 15) -> X == 13 case Instruction::SetLT: // (X == 13 & X < 15) -> X == 13 return ReplaceInstUsesWith(I, LHS); } case Instruction::SetNE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetLT: if (LHSCst == SubOne(RHSCst)) // (X != 13 & X < 14) -> X < 13 return new SetCondInst(Instruction::SetLT, LHSVal, LHSCst); break; // (X != 13 & X < 15) -> no change case Instruction::SetEQ: // (X != 13 & X == 15) -> X == 15 case Instruction::SetGT: // (X != 13 & X > 15) -> X > 15 return ReplaceInstUsesWith(I, RHS); case Instruction::SetNE: if (LHSCst == SubOne(RHSCst)) {// (X != 13 & X != 14) -> X-13 >u 1 Constant *AddCST = ConstantExpr::getNeg(LHSCst); Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST, LHSVal->getName()+".off"); InsertNewInstBefore(Add, I); const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, I); AddCST = ConstantExpr::getSub(RHSCst, LHSCst); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetGT, OffsetVal, AddCST); } break; // (X != 13 & X != 15) -> no change } break; case Instruction::SetLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X < 13 & X == 15) -> false case Instruction::SetGT: // (X < 13 & X > 15) -> false return ReplaceInstUsesWith(I, ConstantBool::False); case Instruction::SetNE: // (X < 13 & X != 15) -> X < 13 case Instruction::SetLT: // (X < 13 & X < 15) -> X < 13 return ReplaceInstUsesWith(I, LHS); } case Instruction::SetGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X > 13 & X == 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case Instruction::SetGT: // (X > 13 & X > 15) -> X > 15 return ReplaceInstUsesWith(I, RHS); case Instruction::SetNE: if (RHSCst == AddOne(LHSCst)) // (X > 13 & X != 14) -> X > 14 return new SetCondInst(Instruction::SetGT, LHSVal, RHSCst); break; // (X > 13 & X != 15) -> no change case Instruction::SetLT: // (X > 13 & X < 15) -> (X-14) (Op1)) return ReplaceInstUsesWith(I, // X | undef -> -1 ConstantIntegral::getAllOnesValue(I.getType())); // or X, X = X if (Op0 == Op1) return ReplaceInstUsesWith(I, Op0); // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint64_t KnownZero, KnownOne; if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(), KnownZero, KnownOne)) return &I; // or X, -1 == -1 if (ConstantIntegral *RHS = dyn_cast(Op1)) { ConstantInt *C1 = 0; Value *X = 0; // (X & C1) | C2 --> (X | C2) & (C1|C2) if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { Instruction *Or = BinaryOperator::createOr(X, RHS, Op0->getName()); Op0->setName(""); InsertNewInstBefore(Or, I); return BinaryOperator::createAnd(Or, ConstantExpr::getOr(RHS, C1)); } // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2) if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) { std::string Op0Name = Op0->getName(); Op0->setName(""); Instruction *Or = BinaryOperator::createOr(X, RHS, Op0Name); InsertNewInstBefore(Or, I); return BinaryOperator::createXor(Or, ConstantExpr::getAnd(C1, ConstantExpr::getNot(RHS))); } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } Value *A = 0, *B = 0; ConstantInt *C1 = 0, *C2 = 0; if (match(Op0, m_And(m_Value(A), m_Value(B)))) if (A == Op1 || B == Op1) // (A & ?) | A --> A return ReplaceInstUsesWith(I, Op1); if (match(Op1, m_And(m_Value(A), m_Value(B)))) if (A == Op0 || B == Op0) // A | (A & ?) --> A return ReplaceInstUsesWith(I, Op0); // (X^C)|Y -> (X|Y)^C iff Y&C == 0 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) && MaskedValueIsZero(Op1, C1->getZExtValue())) { Instruction *NOr = BinaryOperator::createOr(A, Op1, Op0->getName()); Op0->setName(""); return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1); } // Y|(X^C) -> (X|Y)^C iff Y&C == 0 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) && MaskedValueIsZero(Op0, C1->getZExtValue())) { Instruction *NOr = BinaryOperator::createOr(A, Op0, Op1->getName()); Op0->setName(""); return BinaryOperator::createXor(InsertNewInstBefore(NOr, I), C1); } // (A & C1)|(B & C2) if (match(Op0, m_And(m_Value(A), m_ConstantInt(C1))) && match(Op1, m_And(m_Value(B), m_ConstantInt(C2)))) { if (A == B) // (A & C1)|(A & C2) == A & (C1|C2) return BinaryOperator::createAnd(A, ConstantExpr::getOr(C1, C2)); // If we have: ((V + N) & C1) | (V & C2) // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 // replace with V+N. if (C1 == ConstantExpr::getNot(C2)) { Value *V1 = 0, *V2 = 0; if ((C2->getRawValue() & (C2->getRawValue()+1)) == 0 && // C2 == 0+1+ match(A, m_Add(m_Value(V1), m_Value(V2)))) { // Add commutes, try both ways. if (V1 == B && MaskedValueIsZero(V2, C2->getZExtValue())) return ReplaceInstUsesWith(I, A); if (V2 == B && MaskedValueIsZero(V1, C2->getZExtValue())) return ReplaceInstUsesWith(I, A); } // Or commutes, try both ways. if ((C1->getRawValue() & (C1->getRawValue()+1)) == 0 && match(B, m_Add(m_Value(V1), m_Value(V2)))) { // Add commutes, try both ways. if (V1 == A && MaskedValueIsZero(V2, C1->getZExtValue())) return ReplaceInstUsesWith(I, B); if (V2 == A && MaskedValueIsZero(V1, C1->getZExtValue())) return ReplaceInstUsesWith(I, B); } } } if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1 if (A == Op1) // ~A | A == -1 return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); } else { A = 0; } // Note, A is still live here! if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B if (Op0 == B) return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); // (~A | ~B) == (~(A & B)) - De Morgan's Law if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) { Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B, I.getName()+".demorgan"), I); return BinaryOperator::createNot(And); } } // (setcc1 A, B) | (setcc2 A, B) --> (setcc3 A, B) if (SetCondInst *RHS = dyn_cast(I.getOperand(1))) { if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS))) return R; Value *LHSVal, *RHSVal; ConstantInt *LHSCst, *RHSCst; Instruction::BinaryOps LHSCC, RHSCC; if (match(Op0, m_SetCond(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst)))) if (match(RHS, m_SetCond(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst)))) if (LHSVal == RHSVal && // Found (X setcc C1) | (X setcc C2) // Set[GL]E X, CST is folded to Set[GL]T elsewhere. LHSCC != Instruction::SetGE && LHSCC != Instruction::SetLE && RHSCC != Instruction::SetGE && RHSCC != Instruction::SetLE) { // Ensure that the larger constant is on the RHS. Constant *Cmp = ConstantExpr::getSetGT(LHSCst, RHSCst); SetCondInst *LHS = cast(Op0); if (cast(Cmp)->getValue()) { std::swap(LHS, RHS); std::swap(LHSCst, RHSCst); std::swap(LHSCC, RHSCC); } // At this point, we know we have have two setcc instructions // comparing a value against two constants and or'ing the result // together. Because of the above check, we know that we only have // SetEQ, SetNE, SetLT, and SetGT here. We also know (from the // FoldSetCCLogical check above), that the two constants are not // equal. assert(LHSCst != RHSCst && "Compares not folded above?"); switch (LHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 getName()+".off"); InsertNewInstBefore(Add, I); const Type *UnsType = Add->getType()->getUnsignedVersion(); Value *OffsetVal = InsertCastBefore(Add, UnsType, I); AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst); AddCST = ConstantExpr::getCast(AddCST, UnsType); return new SetCondInst(Instruction::SetLT, OffsetVal, AddCST); } break; // (X == 13 | X == 15) -> no change case Instruction::SetGT: // (X == 13 | X > 14) -> no change break; case Instruction::SetNE: // (X == 13 | X != 15) -> X != 15 case Instruction::SetLT: // (X == 13 | X < 15) -> X < 15 return ReplaceInstUsesWith(I, RHS); } break; case Instruction::SetNE: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X != 13 | X == 15) -> X != 13 case Instruction::SetGT: // (X != 13 | X > 15) -> X != 13 return ReplaceInstUsesWith(I, LHS); case Instruction::SetNE: // (X != 13 | X != 15) -> true case Instruction::SetLT: // (X != 13 | X < 15) -> true return ReplaceInstUsesWith(I, ConstantBool::True); } break; case Instruction::SetLT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X < 13 | X == 14) -> no change break; case Instruction::SetGT: // (X < 13 | X > 15) -> (X-13) > 2 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false, I); case Instruction::SetNE: // (X < 13 | X != 15) -> X != 15 case Instruction::SetLT: // (X < 13 | X < 15) -> X < 15 return ReplaceInstUsesWith(I, RHS); } break; case Instruction::SetGT: switch (RHSCC) { default: assert(0 && "Unknown integer condition code!"); case Instruction::SetEQ: // (X > 13 | X == 15) -> X > 13 case Instruction::SetGT: // (X > 13 | X > 15) -> X > 13 return ReplaceInstUsesWith(I, LHS); case Instruction::SetNE: // (X > 13 | X != 15) -> true case Instruction::SetLT: // (X > 13 | X < 15) -> true return ReplaceInstUsesWith(I, ConstantBool::True); } } } } return Changed ? &I : 0; } // XorSelf - Implements: X ^ X --> 0 struct XorSelf { Value *RHS; XorSelf(Value *rhs) : RHS(rhs) {} bool shouldApply(Value *LHS) const { return LHS == RHS; } Instruction *apply(BinaryOperator &Xor) const { return &Xor; } }; Instruction *InstCombiner::visitXor(BinaryOperator &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (isa(Op1)) return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef // xor X, X = 0, even if X is nested in a sequence of Xor's. if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) { assert(Result == &I && "AssociativeOpt didn't work?"); return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint64_t KnownZero, KnownOne; if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(), KnownZero, KnownOne)) return &I; if (ConstantIntegral *RHS = dyn_cast(Op1)) { if (BinaryOperator *Op0I = dyn_cast(Op0)) { // xor (setcc A, B), true = not (setcc A, B) = setncc A, B if (SetCondInst *SCI = dyn_cast(Op0I)) if (RHS == ConstantBool::True && SCI->hasOneUse()) return new SetCondInst(SCI->getInverseCondition(), SCI->getOperand(0), SCI->getOperand(1)); // ~(c-X) == X-c-1 == X+(-c-1) if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue()) if (Constant *Op0I0C = dyn_cast(Op0I->getOperand(0))) { Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C); Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C, ConstantInt::get(I.getType(), 1)); return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS); } // ~(~X & Y) --> (X | ~Y) if (Op0I->getOpcode() == Instruction::And && RHS->isAllOnesValue()) { if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands(); if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) { Instruction *NotY = BinaryOperator::createNot(Op0I->getOperand(1), Op0I->getOperand(1)->getName()+".not"); InsertNewInstBefore(NotY, I); return BinaryOperator::createOr(Op0NotVal, NotY); } } if (ConstantInt *Op0CI = dyn_cast(Op0I->getOperand(1))) if (Op0I->getOpcode() == Instruction::Add) { // ~(X-c) --> (-c-1)-X if (RHS->isAllOnesValue()) { Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI); return BinaryOperator::createSub( ConstantExpr::getSub(NegOp0CI, ConstantInt::get(I.getType(), 1)), Op0I->getOperand(0)); } } else if (Op0I->getOpcode() == Instruction::Or) { // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getZExtValue())) { Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS); // Anything in both C1 and C2 is known to be zero, remove it from // NewRHS. Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS); NewRHS = ConstantExpr::getAnd(NewRHS, ConstantExpr::getNot(CommonBits)); WorkList.push_back(Op0I); I.setOperand(0, Op0I->getOperand(0)); I.setOperand(1, NewRHS); return &I; } } } // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; } if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1 if (X == Op1) return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1 if (X == Op0) return ReplaceInstUsesWith(I, ConstantIntegral::getAllOnesValue(I.getType())); if (Instruction *Op1I = dyn_cast(Op1)) if (Op1I->getOpcode() == Instruction::Or) { if (Op1I->getOperand(0) == Op0) { // B^(B|A) == (A|B)^B cast(Op1I)->swapOperands(); I.swapOperands(); std::swap(Op0, Op1); } else if (Op1I->getOperand(1) == Op0) { // B^(A|B) == (A|B)^B I.swapOperands(); std::swap(Op0, Op1); } } else if (Op1I->getOpcode() == Instruction::Xor) { if (Op0 == Op1I->getOperand(0)) // A^(A^B) == B return ReplaceInstUsesWith(I, Op1I->getOperand(1)); else if (Op0 == Op1I->getOperand(1)) // A^(B^A) == B return ReplaceInstUsesWith(I, Op1I->getOperand(0)); } if (Instruction *Op0I = dyn_cast(Op0)) if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) { if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B cast(Op0I)->swapOperands(); if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B Value *NotB = InsertNewInstBefore(BinaryOperator::createNot(Op1, Op1->getName()+".not"), I); return BinaryOperator::createAnd(Op0I->getOperand(0), NotB); } } else if (Op0I->getOpcode() == Instruction::Xor) { if (Op1 == Op0I->getOperand(0)) // (A^B)^A == B return ReplaceInstUsesWith(I, Op0I->getOperand(1)); else if (Op1 == Op0I->getOperand(1)) // (B^A)^A == B return ReplaceInstUsesWith(I, Op0I->getOperand(0)); } // (setcc1 A, B) ^ (setcc2 A, B) --> (setcc3 A, B) if (SetCondInst *RHS = dyn_cast(I.getOperand(1))) if (Instruction *R = AssociativeOpt(I, FoldSetCCLogical(*this, RHS))) return R; return Changed ? &I : 0; } /// MulWithOverflow - Compute Result = In1*In2, returning true if the result /// overflowed for this type. static bool MulWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2) { Result = cast(ConstantExpr::getMul(In1, In2)); return !In2->isNullValue() && ConstantExpr::getDiv(Result, In2) != In1; } static bool isPositive(ConstantInt *C) { return cast(C)->getValue() >= 0; } /// AddWithOverflow - Compute Result = In1+In2, returning true if the result /// overflowed for this type. static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1, ConstantInt *In2) { Result = cast(ConstantExpr::getAdd(In1, In2)); if (In1->getType()->isUnsigned()) return cast(Result)->getValue() < cast(In1)->getValue(); if (isPositive(In1) != isPositive(In2)) return false; if (isPositive(In1)) return cast(Result)->getValue() < cast(In1)->getValue(); return cast(Result)->getValue() > cast(In1)->getValue(); } /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the /// code necessary to compute the offset from the base pointer (without adding /// in the base pointer). Return the result as a signed integer of intptr size. static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) { TargetData &TD = IC.getTargetData(); gep_type_iterator GTI = gep_type_begin(GEP); const Type *UIntPtrTy = TD.getIntPtrType(); const Type *SIntPtrTy = UIntPtrTy->getSignedVersion(); Value *Result = Constant::getNullValue(SIntPtrTy); // Build a mask for high order bits. uint64_t PtrSizeMask = ~0ULL >> (64-TD.getPointerSize()*8); for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { Value *Op = GEP->getOperand(i); uint64_t Size = TD.getTypeSize(GTI.getIndexedType()) & PtrSizeMask; Constant *Scale = ConstantExpr::getCast(ConstantUInt::get(UIntPtrTy, Size), SIntPtrTy); if (Constant *OpC = dyn_cast(Op)) { if (!OpC->isNullValue()) { OpC = ConstantExpr::getCast(OpC, SIntPtrTy); Scale = ConstantExpr::getMul(OpC, Scale); if (Constant *RC = dyn_cast(Result)) Result = ConstantExpr::getAdd(RC, Scale); else { // Emit an add instruction. Result = IC.InsertNewInstBefore( BinaryOperator::createAdd(Result, Scale, GEP->getName()+".offs"), I); } } } else { // Convert to correct type. Op = IC.InsertNewInstBefore(new CastInst(Op, SIntPtrTy, Op->getName()+".c"), I); if (Size != 1) // We'll let instcombine(mul) convert this to a shl if possible. Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale, GEP->getName()+".idx"), I); // Emit an add instruction. Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result, GEP->getName()+".offs"), I); } } return Result; } /// FoldGEPSetCC - Fold comparisons between a GEP instruction and something /// else. At this point we know that the GEP is on the LHS of the comparison. Instruction *InstCombiner::FoldGEPSetCC(User *GEPLHS, Value *RHS, Instruction::BinaryOps Cond, Instruction &I) { assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!"); if (CastInst *CI = dyn_cast(RHS)) if (isa(CI->getOperand(0)->getType())) RHS = CI->getOperand(0); Value *PtrBase = GEPLHS->getOperand(0); if (PtrBase == RHS) { // As an optimization, we don't actually have to compute the actual value of // OFFSET if this is a seteq or setne comparison, just return whether each // index is zero or not. if (Cond == Instruction::SetEQ || Cond == Instruction::SetNE) { Instruction *InVal = 0; gep_type_iterator GTI = gep_type_begin(GEPLHS); for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) { bool EmitIt = true; if (Constant *C = dyn_cast(GEPLHS->getOperand(i))) { if (isa(C)) // undef index -> undef. return ReplaceInstUsesWith(I, UndefValue::get(I.getType())); if (C->isNullValue()) EmitIt = false; else if (TD->getTypeSize(GTI.getIndexedType()) == 0) { EmitIt = false; // This is indexing into a zero sized array? } else if (isa(C)) return ReplaceInstUsesWith(I, // No comparison is needed here. ConstantBool::get(Cond == Instruction::SetNE)); } if (EmitIt) { Instruction *Comp = new SetCondInst(Cond, GEPLHS->getOperand(i), Constant::getNullValue(GEPLHS->getOperand(i)->getType())); if (InVal == 0) InVal = Comp; else { InVal = InsertNewInstBefore(InVal, I); InsertNewInstBefore(Comp, I); if (Cond == Instruction::SetNE) // True if any are unequal InVal = BinaryOperator::createOr(InVal, Comp); else // True if all are equal InVal = BinaryOperator::createAnd(InVal, Comp); } } } if (InVal) return InVal; else ReplaceInstUsesWith(I, // No comparison is needed here, all indexes = 0 ConstantBool::get(Cond == Instruction::SetEQ)); } // Only lower this if the setcc is the only user of the GEP or if we expect // the result to fold to a constant! if (isa(GEPLHS) || GEPLHS->hasOneUse()) { // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0). Value *Offset = EmitGEPOffset(GEPLHS, I, *this); return new SetCondInst(Cond, Offset, Constant::getNullValue(Offset->getType())); } } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) { // If the base pointers are different, but the indices are the same, just // compare the base pointer. if (PtrBase != GEPRHS->getOperand(0)) { bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands(); IndicesTheSame &= GEPLHS->getOperand(0)->getType() == GEPRHS->getOperand(0)->getType(); if (IndicesTheSame) for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { IndicesTheSame = false; break; } // If all indices are the same, just compare the base pointers. if (IndicesTheSame) return new SetCondInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0)); // Otherwise, the base pointers are different and the indices are // different, bail out. return 0; } // If one of the GEPs has all zero indices, recurse. bool AllZeros = true; for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i) if (!isa(GEPLHS->getOperand(i)) || !cast(GEPLHS->getOperand(i))->isNullValue()) { AllZeros = false; break; } if (AllZeros) return FoldGEPSetCC(GEPRHS, GEPLHS->getOperand(0), SetCondInst::getSwappedCondition(Cond), I); // If the other GEP has all zero indices, recurse. AllZeros = true; for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (!isa(GEPRHS->getOperand(i)) || !cast(GEPRHS->getOperand(i))->isNullValue()) { AllZeros = false; break; } if (AllZeros) return FoldGEPSetCC(GEPLHS, GEPRHS->getOperand(0), Cond, I); if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) { // If the GEPs only differ by one index, compare it. unsigned NumDifferences = 0; // Keep track of # differences. unsigned DiffOperand = 0; // The operand that differs. for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i) if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) { if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() != GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) { // Irreconcilable differences. NumDifferences = 2; break; } else { if (NumDifferences++) break; DiffOperand = i; } } if (NumDifferences == 0) // SAME GEP? return ReplaceInstUsesWith(I, // No comparison is needed here. ConstantBool::get(Cond == Instruction::SetEQ)); else if (NumDifferences == 1) { Value *LHSV = GEPLHS->getOperand(DiffOperand); Value *RHSV = GEPRHS->getOperand(DiffOperand); // Convert the operands to signed values to make sure to perform a // signed comparison. const Type *NewTy = LHSV->getType()->getSignedVersion(); if (LHSV->getType() != NewTy) LHSV = InsertNewInstBefore(new CastInst(LHSV, NewTy, LHSV->getName()), I); if (RHSV->getType() != NewTy) RHSV = InsertNewInstBefore(new CastInst(RHSV, NewTy, RHSV->getName()), I); return new SetCondInst(Cond, LHSV, RHSV); } } // Only lower this if the setcc is the only user of the GEP or if we expect // the result to fold to a constant! if ((isa(GEPLHS) || GEPLHS->hasOneUse()) && (isa(GEPRHS) || GEPRHS->hasOneUse())) { // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2) Value *L = EmitGEPOffset(GEPLHS, I, *this); Value *R = EmitGEPOffset(GEPRHS, I, *this); return new SetCondInst(Cond, L, R); } } return 0; } Instruction *InstCombiner::visitSetCondInst(SetCondInst &I) { bool Changed = SimplifyCommutative(I); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); const Type *Ty = Op0->getType(); // setcc X, X if (Op0 == Op1) return ReplaceInstUsesWith(I, ConstantBool::get(isTrueWhenEqual(I))); if (isa(Op1)) // X setcc undef -> undef return ReplaceInstUsesWith(I, UndefValue::get(Type::BoolTy)); // setcc , - Global/Stack value // addresses never equal each other! We already know that Op0 != Op1. if ((isa(Op0) || isa(Op0) || isa(Op0)) && (isa(Op1) || isa(Op1) || isa(Op1))) return ReplaceInstUsesWith(I, ConstantBool::get(!isTrueWhenEqual(I))); // setcc's with boolean values can always be turned into bitwise operations if (Ty == Type::BoolTy) { switch (I.getOpcode()) { default: assert(0 && "Invalid setcc instruction!"); case Instruction::SetEQ: { // seteq bool %A, %B -> ~(A^B) Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp"); InsertNewInstBefore(Xor, I); return BinaryOperator::createNot(Xor); } case Instruction::SetNE: return BinaryOperator::createXor(Op0, Op1); case Instruction::SetGT: std::swap(Op0, Op1); // Change setgt -> setlt // FALL THROUGH case Instruction::SetLT: { // setlt bool A, B -> ~X & Y Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::createAnd(Not, Op1); } case Instruction::SetGE: std::swap(Op0, Op1); // Change setge -> setle // FALL THROUGH case Instruction::SetLE: { // setle bool %A, %B -> ~A | B Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp"); InsertNewInstBefore(Not, I); return BinaryOperator::createOr(Not, Op1); } } } // See if we are doing a comparison between a constant and an instruction that // can be folded into the comparison. if (ConstantInt *CI = dyn_cast(Op1)) { // Check to see if we are comparing against the minimum or maximum value... if (CI->isMinValue()) { if (I.getOpcode() == Instruction::SetLT) // A < MIN -> FALSE return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetGE) // A >= MIN -> TRUE return ReplaceInstUsesWith(I, ConstantBool::True); if (I.getOpcode() == Instruction::SetLE) // A <= MIN -> A == MIN return BinaryOperator::createSetEQ(Op0, Op1); if (I.getOpcode() == Instruction::SetGT) // A > MIN -> A != MIN return BinaryOperator::createSetNE(Op0, Op1); } else if (CI->isMaxValue()) { if (I.getOpcode() == Instruction::SetGT) // A > MAX -> FALSE return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetLE) // A <= MAX -> TRUE return ReplaceInstUsesWith(I, ConstantBool::True); if (I.getOpcode() == Instruction::SetGE) // A >= MAX -> A == MAX return BinaryOperator::createSetEQ(Op0, Op1); if (I.getOpcode() == Instruction::SetLT) // A < MAX -> A != MAX return BinaryOperator::createSetNE(Op0, Op1); // Comparing against a value really close to min or max? } else if (isMinValuePlusOne(CI)) { if (I.getOpcode() == Instruction::SetLT) // A < MIN+1 -> A == MIN return BinaryOperator::createSetEQ(Op0, SubOne(CI)); if (I.getOpcode() == Instruction::SetGE) // A >= MIN-1 -> A != MIN return BinaryOperator::createSetNE(Op0, SubOne(CI)); } else if (isMaxValueMinusOne(CI)) { if (I.getOpcode() == Instruction::SetGT) // A > MAX-1 -> A == MAX return BinaryOperator::createSetEQ(Op0, AddOne(CI)); if (I.getOpcode() == Instruction::SetLE) // A <= MAX-1 -> A != MAX return BinaryOperator::createSetNE(Op0, AddOne(CI)); } // If we still have a setle or setge instruction, turn it into the // appropriate setlt or setgt instruction. Since the border cases have // already been handled above, this requires little checking. // if (I.getOpcode() == Instruction::SetLE) return BinaryOperator::createSetLT(Op0, AddOne(CI)); if (I.getOpcode() == Instruction::SetGE) return BinaryOperator::createSetGT(Op0, SubOne(CI)); // See if we can fold the comparison based on bits known to be zero or one // in the input. uint64_t KnownZero, KnownOne; if (SimplifyDemandedBits(Op0, Ty->getIntegralTypeMask(), KnownZero, KnownOne, 0)) return &I; // Given the known and unknown bits, compute a range that the LHS could be // in. if (KnownOne | KnownZero) { if (Ty->isUnsigned()) { // Unsigned comparison. uint64_t Min, Max; uint64_t RHSVal = CI->getZExtValue(); ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max); switch (I.getOpcode()) { // LE/GE have been folded already. default: assert(0 && "Unknown setcc opcode!"); case Instruction::SetEQ: if (Max < RHSVal || Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False); break; case Instruction::SetNE: if (Max < RHSVal || Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True); break; case Instruction::SetLT: if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True); if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False); break; case Instruction::SetGT: if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True); if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False); break; } } else { // Signed comparison. int64_t Min, Max; int64_t RHSVal = CI->getSExtValue(); ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min, Max); switch (I.getOpcode()) { // LE/GE have been folded already. default: assert(0 && "Unknown setcc opcode!"); case Instruction::SetEQ: if (Max < RHSVal || Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False); break; case Instruction::SetNE: if (Max < RHSVal || Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True); break; case Instruction::SetLT: if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True); if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False); break; case Instruction::SetGT: if (Min > RHSVal) return ReplaceInstUsesWith(I, ConstantBool::True); if (Max < RHSVal) return ReplaceInstUsesWith(I, ConstantBool::False); break; } } } if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::And: if (LHSI->hasOneUse() && isa(LHSI->getOperand(1)) && LHSI->getOperand(0)->hasOneUse()) { // If this is: (X >> C1) & C2 != C3 (where any shift and any compare // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This // happens a LOT in code produced by the C front-end, for bitfield // access. ShiftInst *Shift = dyn_cast(LHSI->getOperand(0)); ConstantInt *AndCST = cast(LHSI->getOperand(1)); // Check to see if there is a noop-cast between the shift and the and. if (!Shift) { if (CastInst *CI = dyn_cast(LHSI->getOperand(0))) if (CI->getOperand(0)->getType()->isIntegral() && CI->getOperand(0)->getType()->getPrimitiveSizeInBits() == CI->getType()->getPrimitiveSizeInBits()) Shift = dyn_cast(CI->getOperand(0)); } ConstantUInt *ShAmt; ShAmt = Shift ? dyn_cast(Shift->getOperand(1)) : 0; const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift. const Type *AndTy = AndCST->getType(); // Type of the and. // We can fold this as long as we can't shift unknown bits // into the mask. This can only happen with signed shift // rights, as they sign-extend. if (ShAmt) { bool CanFold = Shift->getOpcode() != Instruction::Shr || Ty->isUnsigned(); if (!CanFold) { // To test for the bad case of the signed shr, see if any // of the bits shifted in could be tested after the mask. int ShAmtVal = Ty->getPrimitiveSizeInBits()-ShAmt->getValue(); if (ShAmtVal < 0) ShAmtVal = 0; // Out of range shift. Constant *OShAmt = ConstantUInt::get(Type::UByteTy, ShAmtVal); Constant *ShVal = ConstantExpr::getShl(ConstantInt::getAllOnesValue(AndTy), OShAmt); if (ConstantExpr::getAnd(ShVal, AndCST)->isNullValue()) CanFold = true; } if (CanFold) { Constant *NewCst; if (Shift->getOpcode() == Instruction::Shl) NewCst = ConstantExpr::getUShr(CI, ShAmt); else NewCst = ConstantExpr::getShl(CI, ShAmt); // Check to see if we are shifting out any of the bits being // compared. if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != CI){ // If we shifted bits out, the fold is not going to work out. // As a special case, check to see if this means that the // result is always true or false now. if (I.getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(I, ConstantBool::False); if (I.getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(I, ConstantBool::True); } else { I.setOperand(1, NewCst); Constant *NewAndCST; if (Shift->getOpcode() == Instruction::Shl) NewAndCST = ConstantExpr::getUShr(AndCST, ShAmt); else NewAndCST = ConstantExpr::getShl(AndCST, ShAmt); LHSI->setOperand(1, NewAndCST); if (AndTy == Ty) LHSI->setOperand(0, Shift->getOperand(0)); else { Value *NewCast = InsertCastBefore(Shift->getOperand(0), AndTy, *Shift); LHSI->setOperand(0, NewCast); } WorkList.push_back(Shift); // Shift is dead. AddUsesToWorkList(I); return &I; } } } } break; case Instruction::Shl: // (setcc (shl X, ShAmt), CI) if (ConstantUInt *ShAmt = dyn_cast(LHSI->getOperand(1))) { switch (I.getOpcode()) { default: break; case Instruction::SetEQ: case Instruction::SetNE: { unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits(); // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. if (ShAmt->getValue() >= TypeBits) break; // If we are comparing against bits always shifted out, the // comparison cannot succeed. Constant *Comp = ConstantExpr::getShl(ConstantExpr::getShr(CI, ShAmt), ShAmt); if (Comp != CI) {// Comparing against a bit that we know is zero. bool IsSetNE = I.getOpcode() == Instruction::SetNE; Constant *Cst = ConstantBool::get(IsSetNE); return ReplaceInstUsesWith(I, Cst); } if (LHSI->hasOneUse()) { // Otherwise strength reduce the shift into an and. unsigned ShAmtVal = (unsigned)ShAmt->getValue(); uint64_t Val = (1ULL << (TypeBits-ShAmtVal))-1; Constant *Mask; if (CI->getType()->isUnsigned()) { Mask = ConstantUInt::get(CI->getType(), Val); } else if (ShAmtVal != 0) { Mask = ConstantSInt::get(CI->getType(), Val); } else { Mask = ConstantInt::getAllOnesValue(CI->getType()); } Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, I); return new SetCondInst(I.getOpcode(), And, ConstantExpr::getUShr(CI, ShAmt)); } } } } break; case Instruction::Shr: // (setcc (shr X, ShAmt), CI) if (ConstantUInt *ShAmt = dyn_cast(LHSI->getOperand(1))) { switch (I.getOpcode()) { default: break; case Instruction::SetEQ: case Instruction::SetNE: { // Check that the shift amount is in range. If not, don't perform // undefined shifts. When the shift is visited it will be // simplified. unsigned TypeBits = CI->getType()->getPrimitiveSizeInBits(); if (ShAmt->getValue() >= TypeBits) break; // If we are comparing against bits always shifted out, the // comparison cannot succeed. Constant *Comp = ConstantExpr::getShr(ConstantExpr::getShl(CI, ShAmt), ShAmt); if (Comp != CI) {// Comparing against a bit that we know is zero. bool IsSetNE = I.getOpcode() == Instruction::SetNE; Constant *Cst = ConstantBool::get(IsSetNE); return ReplaceInstUsesWith(I, Cst); } if (LHSI->hasOneUse() || CI->isNullValue()) { unsigned ShAmtVal = (unsigned)ShAmt->getValue(); // Otherwise strength reduce the shift into an and. uint64_t Val = ~0ULL; // All ones. Val <<= ShAmtVal; // Shift over to the right spot. Constant *Mask; if (CI->getType()->isUnsigned()) { Val &= ~0ULL >> (64-TypeBits); Mask = ConstantUInt::get(CI->getType(), Val); } else { Mask = ConstantSInt::get(CI->getType(), Val); } Instruction *AndI = BinaryOperator::createAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask"); Value *And = InsertNewInstBefore(AndI, I); return new SetCondInst(I.getOpcode(), And, ConstantExpr::getShl(CI, ShAmt)); } break; } } } break; case Instruction::Div: // Fold: (div X, C1) op C2 -> range check if (ConstantInt *DivRHS = dyn_cast(LHSI->getOperand(1))) { // Fold this div into the comparison, producing a range check. // Determine, based on the divide type, what the range is being // checked. If there is an overflow on the low or high side, remember // it, otherwise compute the range [low, hi) bounding the new value. bool LoOverflow = false, HiOverflow = 0; ConstantInt *LoBound = 0, *HiBound = 0; ConstantInt *Prod; bool ProdOV = MulWithOverflow(Prod, CI, DivRHS); Instruction::BinaryOps Opcode = I.getOpcode(); if (DivRHS->isNullValue()) { // Don't hack on divide by zeros. } else if (LHSI->getType()->isUnsigned()) { // udiv LoBound = Prod; LoOverflow = ProdOV; HiOverflow = ProdOV || AddWithOverflow(HiBound, LoBound, DivRHS); } else if (isPositive(DivRHS)) { // Divisor is > 0. if (CI->isNullValue()) { // (X / pos) op 0 // Can't overflow. LoBound = cast(ConstantExpr::getNeg(SubOne(DivRHS))); HiBound = DivRHS; } else if (isPositive(CI)) { // (X / pos) op pos LoBound = Prod; LoOverflow = ProdOV; HiOverflow = ProdOV || AddWithOverflow(HiBound, Prod, DivRHS); } else { // (X / pos) op neg Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS)); LoOverflow = AddWithOverflow(LoBound, Prod, cast(DivRHSH)); HiBound = Prod; HiOverflow = ProdOV; } } else { // Divisor is < 0. if (CI->isNullValue()) { // (X / neg) op 0 LoBound = AddOne(DivRHS); HiBound = cast(ConstantExpr::getNeg(DivRHS)); if (HiBound == DivRHS) LoBound = 0; // - INTMIN = INTMIN } else if (isPositive(CI)) { // (X / neg) op pos HiOverflow = LoOverflow = ProdOV; if (!LoOverflow) LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS)); HiBound = AddOne(Prod); } else { // (X / neg) op neg LoBound = Prod; LoOverflow = HiOverflow = ProdOV; HiBound = cast(ConstantExpr::getSub(Prod, DivRHS)); } // Dividing by a negate swaps the condition. Opcode = SetCondInst::getSwappedCondition(Opcode); } if (LoBound) { Value *X = LHSI->getOperand(0); switch (Opcode) { default: assert(0 && "Unhandled setcc opcode!"); case Instruction::SetEQ: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(I, ConstantBool::False); else if (HiOverflow) return new SetCondInst(Instruction::SetGE, X, LoBound); else if (LoOverflow) return new SetCondInst(Instruction::SetLT, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, true, I); case Instruction::SetNE: if (LoOverflow && HiOverflow) return ReplaceInstUsesWith(I, ConstantBool::True); else if (HiOverflow) return new SetCondInst(Instruction::SetLT, X, LoBound); else if (LoOverflow) return new SetCondInst(Instruction::SetGE, X, HiBound); else return InsertRangeTest(X, LoBound, HiBound, false, I); case Instruction::SetLT: if (LoOverflow) return ReplaceInstUsesWith(I, ConstantBool::False); return new SetCondInst(Instruction::SetLT, X, LoBound); case Instruction::SetGT: if (HiOverflow) return ReplaceInstUsesWith(I, ConstantBool::False); return new SetCondInst(Instruction::SetGE, X, HiBound); } } } break; } // Simplify seteq and setne instructions... if (I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetNE) { bool isSetNE = I.getOpcode() == Instruction::SetNE; // If the first operand is (and|or|xor) with a constant, and the second // operand is a constant, simplify a bit. if (BinaryOperator *BO = dyn_cast(Op0)) { switch (BO->getOpcode()) { case Instruction::Rem: // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one. if (CI->isNullValue() && isa(BO->getOperand(1)) && BO->hasOneUse() && cast(BO->getOperand(1))->getValue() > 1) { int64_t V = cast(BO->getOperand(1))->getValue(); if (isPowerOf2_64(V)) { unsigned L2 = Log2_64(V); const Type *UTy = BO->getType()->getUnsignedVersion(); Value *NewX = InsertNewInstBefore(new CastInst(BO->getOperand(0), UTy, "tmp"), I); Constant *RHSCst = ConstantUInt::get(UTy, 1ULL << L2); Value *NewRem =InsertNewInstBefore(BinaryOperator::createRem(NewX, RHSCst, BO->getName()), I); return BinaryOperator::create(I.getOpcode(), NewRem, Constant::getNullValue(UTy)); } } break; case Instruction::Add: // Replace ((add A, B) != C) with (A != C-B) if B & C are constants. if (ConstantInt *BOp1C = dyn_cast(BO->getOperand(1))) { if (BO->hasOneUse()) return new SetCondInst(I.getOpcode(), BO->getOperand(0), ConstantExpr::getSub(CI, BOp1C)); } else if (CI->isNullValue()) { // Replace ((add A, B) != 0) with (A != -B) if A or B is // efficiently invertible, or if the add has just this one use. Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1); if (Value *NegVal = dyn_castNegVal(BOp1)) return new SetCondInst(I.getOpcode(), BOp0, NegVal); else if (Value *NegVal = dyn_castNegVal(BOp0)) return new SetCondInst(I.getOpcode(), NegVal, BOp1); else if (BO->hasOneUse()) { Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName()); BO->setName(""); InsertNewInstBefore(Neg, I); return new SetCondInst(I.getOpcode(), BOp0, Neg); } } break; case Instruction::Xor: // For the xor case, we can xor two constants together, eliminating // the explicit xor. if (Constant *BOC = dyn_cast(BO->getOperand(1))) return BinaryOperator::create(I.getOpcode(), BO->getOperand(0), ConstantExpr::getXor(CI, BOC)); // FALLTHROUGH case Instruction::Sub: // Replace (([sub|xor] A, B) != 0) with (A != B) if (CI->isNullValue()) return new SetCondInst(I.getOpcode(), BO->getOperand(0), BO->getOperand(1)); break; case Instruction::Or: // If bits are being or'd in that are not present in the constant we // are comparing against, then the comparison could never succeed! if (Constant *BOC = dyn_cast(BO->getOperand(1))) { Constant *NotCI = ConstantExpr::getNot(CI); if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue()) return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE)); } break; case Instruction::And: if (ConstantInt *BOC = dyn_cast(BO->getOperand(1))) { // If bits are being compared against that are and'd out, then the // comparison can never succeed! if (!ConstantExpr::getAnd(CI, ConstantExpr::getNot(BOC))->isNullValue()) return ReplaceInstUsesWith(I, ConstantBool::get(isSetNE)); // If we have ((X & C) == C), turn it into ((X & C) != 0). if (CI == BOC && isOneBitSet(CI)) return new SetCondInst(isSetNE ? Instruction::SetEQ : Instruction::SetNE, Op0, Constant::getNullValue(CI->getType())); // Replace (and X, (1 << size(X)-1) != 0) with x < 0, converting X // to be a signed value as appropriate. if (isSignBit(BOC)) { Value *X = BO->getOperand(0); // If 'X' is not signed, insert a cast now... if (!BOC->getType()->isSigned()) { const Type *DestTy = BOC->getType()->getSignedVersion(); X = InsertCastBefore(X, DestTy, I); } return new SetCondInst(isSetNE ? Instruction::SetLT : Instruction::SetGE, X, Constant::getNullValue(X->getType())); } // ((X & ~7) == 0) --> X < 8 if (CI->isNullValue() && isHighOnes(BOC)) { Value *X = BO->getOperand(0); Constant *NegX = ConstantExpr::getNeg(BOC); // If 'X' is signed, insert a cast now. if (NegX->getType()->isSigned()) { const Type *DestTy = NegX->getType()->getUnsignedVersion(); X = InsertCastBefore(X, DestTy, I); NegX = ConstantExpr::getCast(NegX, DestTy); } return new SetCondInst(isSetNE ? Instruction::SetGE : Instruction::SetLT, X, NegX); } } default: break; } } } else { // Not a SetEQ/SetNE // If the LHS is a cast from an integral value of the same size, if (CastInst *Cast = dyn_cast(Op0)) { Value *CastOp = Cast->getOperand(0); const Type *SrcTy = CastOp->getType(); unsigned SrcTySize = SrcTy->getPrimitiveSizeInBits(); if (SrcTy != Cast->getType() && SrcTy->isInteger() && SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) { assert((SrcTy->isSigned() ^ Cast->getType()->isSigned()) && "Source and destination signednesses should differ!"); if (Cast->getType()->isSigned()) { // If this is a signed comparison, check for comparisons in the // vicinity of zero. if (I.getOpcode() == Instruction::SetLT && CI->isNullValue()) // X < 0 => x > 127 return BinaryOperator::createSetGT(CastOp, ConstantUInt::get(SrcTy, (1ULL << (SrcTySize-1))-1)); else if (I.getOpcode() == Instruction::SetGT && cast(CI)->getValue() == -1) // X > -1 => x < 128 return BinaryOperator::createSetLT(CastOp, ConstantUInt::get(SrcTy, 1ULL << (SrcTySize-1))); } else { ConstantUInt *CUI = cast(CI); if (I.getOpcode() == Instruction::SetLT && CUI->getValue() == 1ULL << (SrcTySize-1)) // X < 128 => X > -1 return BinaryOperator::createSetGT(CastOp, ConstantSInt::get(SrcTy, -1)); else if (I.getOpcode() == Instruction::SetGT && CUI->getValue() == (1ULL << (SrcTySize-1))-1) // X > 127 => X < 0 return BinaryOperator::createSetLT(CastOp, Constant::getNullValue(SrcTy)); } } } } } // Handle setcc with constant RHS's that can be integer, FP or pointer. if (Constant *RHSC = dyn_cast(Op1)) { if (Instruction *LHSI = dyn_cast(Op0)) switch (LHSI->getOpcode()) { case Instruction::GetElementPtr: if (RHSC->isNullValue()) { // Transform setcc GEP P, int 0, int 0, int 0, null -> setcc P, null bool isAllZeros = true; for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i) if (!isa(LHSI->getOperand(i)) || !cast(LHSI->getOperand(i))->isNullValue()) { isAllZeros = false; break; } if (isAllZeros) return new SetCondInst(I.getOpcode(), LHSI->getOperand(0), Constant::getNullValue(LHSI->getOperand(0)->getType())); } break; case Instruction::PHI: if (Instruction *NV = FoldOpIntoPhi(I)) return NV; break; case Instruction::Select: // If either operand of the select is a constant, we can fold the // comparison into the select arms, which will cause one to be // constant folded and the select turned into a bitwise or. Value *Op1 = 0, *Op2 = 0; if (LHSI->hasOneUse()) { if (Constant *C = dyn_cast(LHSI->getOperand(1))) { // Fold the known value into the constant operand. Op1 = ConstantExpr::get(I.getOpcode(), C, RHSC); // Insert a new SetCC of the other select operand. Op2 = InsertNewInstBefore(new SetCondInst(I.getOpcode(), LHSI->getOperand(2), RHSC, I.getName()), I); } else if (Constant *C = dyn_cast(LHSI->getOperand(2))) { // Fold the known value into the constant operand. Op2 = ConstantExpr::get(I.getOpcode(), C, RHSC); // Insert a new SetCC of the other select operand. Op1 = InsertNewInstBefore(new SetCondInst(I.getOpcode(), LHSI->getOperand(1), RHSC, I.getName()), I); } } if (Op1) return new SelectInst(LHSI->getOperand(0), Op1, Op2); break; } } // If we can optimize a 'setcc GEP, P' or 'setcc P, GEP', do so now. if (User *GEP = dyn_castGetElementPtr(Op0)) if (Instruction *NI = FoldGEPSetCC(GEP, Op1, I.getOpcode(), I)) return NI; if (User *GEP = dyn_castGetElementPtr(Op1)) if (Instruction *NI = FoldGEPSetCC(GEP, Op0, SetCondInst::getSwappedCondition(I.getOpcode()), I)) return NI; // Test to see if the operands of the setcc are casted versions of other // values. If the cast can be stripped off both arguments, we do so now. if (CastInst *CI = dyn_cast(Op0)) { Value *CastOp0 = CI->getOperand(0); if (CastOp0->getType()->isLosslesslyConvertibleTo(CI->getType()) && (isa(Op1) || isa(Op1)) && (I.getOpcode() == Instruction::SetEQ || I.getOpcode() == Instruction::SetNE)) { // We keep moving the cast from the left operand over to the right // operand, where it can often be eliminated completely. Op0 = CastOp0; // If operand #1 is a cast instruction, see if we can eliminate it as // well. if (CastInst *CI2 = dyn_cast(Op1)) if (CI2->getOperand(0)->getType()->isLosslesslyConvertibleTo( Op0->getType())) Op1 = CI2->getOperand(0); // If Op1 is a constant, we can fold the cast into the constant. if (Op1->getType() != Op0->getType()) if (Constant *Op1C = dyn_cast(Op1)) { Op1 = ConstantExpr::getCast(Op1C, Op0->getType()); } else { // Otherwise, cast the RHS right before the setcc Op1 = new CastInst(Op1, Op0->getType(), Op1->getName()); InsertNewInstBefore(cast(Op1), I); } return BinaryOperator::create(I.getOpcode(), Op0, Op1); } // Handle the special case of: setcc (cast bool to X), // This comes up when you have code like // int X = A < B; // if (X) ... // For generality, we handle any zero-extension of any operand comparison // with a constant or another cast from the same type. if (isa(Op1) || isa(Op1)) if (Instruction *R = visitSetCondInstWithCastAndCast(I)) return R; } if (I.getOpcode() == Instruction::SetNE || I.getOpcode() == Instruction::SetEQ) { Value *A, *B; if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && (A == Op1 || B == Op1)) { // (A^B) == A -> B == 0 Value *OtherVal = A == Op1 ? B : A; return BinaryOperator::create(I.getOpcode(), OtherVal, Constant::getNullValue(A->getType())); } else if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) { // A == (A^B) -> B == 0 Value *OtherVal = A == Op0 ? B : A; return BinaryOperator::create(I.getOpcode(), OtherVal, Constant::getNullValue(A->getType())); } else if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) { // (A-B) == A -> B == 0 return BinaryOperator::create(I.getOpcode(), B, Constant::getNullValue(B->getType())); } else if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) { // A == (A-B) -> B == 0 return BinaryOperator::create(I.getOpcode(), B, Constant::getNullValue(B->getType())); } } return Changed ? &I : 0; } // visitSetCondInstWithCastAndCast - Handle setcond (cast x to y), (cast/cst). // We only handle extending casts so far. // Instruction *InstCombiner::visitSetCondInstWithCastAndCast(SetCondInst &SCI) { Value *LHSCIOp = cast(SCI.getOperand(0))->getOperand(0); const Type *SrcTy = LHSCIOp->getType(); const Type *DestTy = SCI.getOperand(0)->getType(); Value *RHSCIOp; if (!DestTy->isIntegral() || !SrcTy->isIntegral()) return 0; unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); unsigned DestBits = DestTy->getPrimitiveSizeInBits(); if (SrcBits >= DestBits) return 0; // Only handle extending cast. // Is this a sign or zero extension? bool isSignSrc = SrcTy->isSigned(); bool isSignDest = DestTy->isSigned(); if (CastInst *CI = dyn_cast(SCI.getOperand(1))) { // Not an extension from the same type? RHSCIOp = CI->getOperand(0); if (RHSCIOp->getType() != LHSCIOp->getType()) return 0; } else if (ConstantInt *CI = dyn_cast(SCI.getOperand(1))) { // Compute the constant that would happen if we truncated to SrcTy then // reextended to DestTy. Constant *Res = ConstantExpr::getCast(CI, SrcTy); if (ConstantExpr::getCast(Res, DestTy) == CI) { RHSCIOp = Res; } else { // If the value cannot be represented in the shorter type, we cannot emit // a simple comparison. if (SCI.getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(SCI, ConstantBool::False); if (SCI.getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(SCI, ConstantBool::True); // Evaluate the comparison for LT. Value *Result; if (DestTy->isSigned()) { // We're performing a signed comparison. if (isSignSrc) { // Signed extend and signed comparison. if (cast(CI)->getValue() < 0) // X < (small) --> false Result = ConstantBool::False; else Result = ConstantBool::True; // X < (large) --> true } else { // Unsigned extend and signed comparison. if (cast(CI)->getValue() < 0) Result = ConstantBool::False; else Result = ConstantBool::True; } } else { // We're performing an unsigned comparison. if (!isSignSrc) { // Unsigned extend & compare -> always true. Result = ConstantBool::True; } else { // We're performing an unsigned comp with a sign extended value. // This is true if the input is >= 0. [aka >s -1] Constant *NegOne = ConstantIntegral::getAllOnesValue(SrcTy); Result = InsertNewInstBefore(BinaryOperator::createSetGT(LHSCIOp, NegOne, SCI.getName()), SCI); } } // Finally, return the value computed. if (SCI.getOpcode() == Instruction::SetLT) { return ReplaceInstUsesWith(SCI, Result); } else { assert(SCI.getOpcode()==Instruction::SetGT &&"SetCC should be folded!"); if (Constant *CI = dyn_cast(Result)) return ReplaceInstUsesWith(SCI, ConstantExpr::getNot(CI)); else return BinaryOperator::createNot(Result); } } } else { return 0; } // Okay, just insert a compare of the reduced operands now! return BinaryOperator::create(SCI.getOpcode(), LHSCIOp, RHSCIOp); } Instruction *InstCombiner::visitShiftInst(ShiftInst &I) { assert(I.getOperand(1)->getType() == Type::UByteTy); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); bool isLeftShift = I.getOpcode() == Instruction::Shl; // shl X, 0 == X and shr X, 0 == X // shl 0, X == 0 and shr 0, X == 0 if (Op1 == Constant::getNullValue(Type::UByteTy) || Op0 == Constant::getNullValue(Op0->getType())) return ReplaceInstUsesWith(I, Op0); if (isa(Op0)) { // undef >>s X -> undef if (!isLeftShift && I.getType()->isSigned()) return ReplaceInstUsesWith(I, Op0); else // undef << X -> 0 AND undef >>u X -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); } if (isa(Op1)) { if (isLeftShift || I.getType()->isUnsigned())// X << undef, X >>u undef -> 0 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); else return ReplaceInstUsesWith(I, Op0); // X >>s undef -> X } // shr int -1, X = -1 (for any arithmetic shift rights of ~0) if (!isLeftShift) if (ConstantSInt *CSI = dyn_cast(Op0)) if (CSI->isAllOnesValue()) return ReplaceInstUsesWith(I, CSI); // Try to fold constant and into select arguments. if (isa(Op0)) if (SelectInst *SI = dyn_cast(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; // See if we can turn a signed shr into an unsigned shr. if (!isLeftShift && I.getType()->isSigned()) { if (MaskedValueIsZero(Op0, 1ULL << (I.getType()->getPrimitiveSizeInBits()-1))) { Value *V = InsertCastBefore(Op0, I.getType()->getUnsignedVersion(), I); V = InsertNewInstBefore(new ShiftInst(Instruction::Shr, V, Op1, I.getName()), I); return new CastInst(V, I.getType()); } } if (ConstantUInt *CUI = dyn_cast(Op1)) if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) return Res; return 0; } Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantUInt *Op1, ShiftInst &I) { bool isLeftShift = I.getOpcode() == Instruction::Shl; bool isSignedShift = Op0->getType()->isSigned(); bool isUnsignedShift = !isSignedShift; // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint64_t KnownZero, KnownOne; if (SimplifyDemandedBits(&I, I.getType()->getIntegralTypeMask(), KnownZero, KnownOne)) return &I; // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr // of a signed value. // unsigned TypeBits = Op0->getType()->getPrimitiveSizeInBits(); if (Op1->getValue() >= TypeBits) { if (isUnsignedShift || isLeftShift) return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); else { I.setOperand(1, ConstantUInt::get(Type::UByteTy, TypeBits-1)); return &I; } } // ((X*C1) << C2) == (X * (C1 << C2)) if (BinaryOperator *BO = dyn_cast(Op0)) if (BO->getOpcode() == Instruction::Mul && isLeftShift) if (Constant *BOOp = dyn_cast(BO->getOperand(1))) return BinaryOperator::createMul(BO->getOperand(0), ConstantExpr::getShl(BOOp, Op1)); // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI, this)) return R; if (isa(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; if (Op0->hasOneUse()) { if (BinaryOperator *Op0BO = dyn_cast(Op0)) { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) Value *V1, *V2; ConstantInt *CC; switch (Op0BO->getOpcode()) { default: break; case Instruction::Add: case Instruction::And: case Instruction::Or: case Instruction::Xor: // These operators commute. // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) { Instruction *YS = new ShiftInst(Instruction::Shl, Op0BO->getOperand(0), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *X = BinaryOperator::create(Op0BO->getOpcode(), YS, V1, Op0BO->getOperand(1)->getName()); InsertNewInstBefore(X, I); // (X + (Y << C)) Constant *C2 = ConstantInt::getAllOnesValue(X->getType()); C2 = ConstantExpr::getShl(C2, Op1); return BinaryOperator::createAnd(X, C2); } // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && match(Op0BO->getOperand(1), m_And(m_Shr(m_Value(V1), m_Value(V2)), m_ConstantInt(CC))) && V2 == Op1 && cast(Op0BO->getOperand(1))->getOperand(0)->hasOneUse()) { Instruction *YS = new ShiftInst(Instruction::Shl, Op0BO->getOperand(0), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *XM = BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); InsertNewInstBefore(XM, I); // X & (CC << C) return BinaryOperator::create(Op0BO->getOpcode(), YS, XM); } // FALL THROUGH. case Instruction::Sub: // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) { Instruction *YS = new ShiftInst(Instruction::Shl, Op0BO->getOperand(1), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *X = BinaryOperator::create(Op0BO->getOpcode(), YS, V1, Op0BO->getOperand(0)->getName()); InsertNewInstBefore(X, I); // (X + (Y << C)) Constant *C2 = ConstantInt::getAllOnesValue(X->getType()); C2 = ConstantExpr::getShl(C2, Op1); return BinaryOperator::createAnd(X, C2); } if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_And(m_Shr(m_Value(V1), m_Value(V2)), m_ConstantInt(CC))) && V2 == Op1 && cast(Op0BO->getOperand(0)) ->getOperand(0)->hasOneUse()) { Instruction *YS = new ShiftInst(Instruction::Shl, Op0BO->getOperand(1), Op1, Op0BO->getName()); InsertNewInstBefore(YS, I); // (Y << C) Instruction *XM = BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); InsertNewInstBefore(XM, I); // X & (CC << C) return BinaryOperator::create(Op0BO->getOpcode(), YS, XM); } break; } // If the operand is an bitwise operator with a constant RHS, and the // shift is the only use, we can pull it out of the shift. if (ConstantInt *Op0C = dyn_cast(Op0BO->getOperand(1))) { bool isValid = true; // Valid only for And, Or, Xor bool highBitSet = false; // Transform if high bit of constant set? switch (Op0BO->getOpcode()) { default: isValid = false; break; // Do not perform transform! case Instruction::Add: isValid = isLeftShift; break; case Instruction::Or: case Instruction::Xor: highBitSet = false; break; case Instruction::And: highBitSet = true; break; } // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. // if (isValid && !isLeftShift && isSignedShift) { uint64_t Val = Op0C->getRawValue(); isValid = ((Val & (1 << (TypeBits-1))) != 0) == highBitSet; } if (isValid) { Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); Instruction *NewShift = new ShiftInst(I.getOpcode(), Op0BO->getOperand(0), Op1, Op0BO->getName()); Op0BO->setName(""); InsertNewInstBefore(NewShift, I); return BinaryOperator::create(Op0BO->getOpcode(), NewShift, NewRHS); } } } } // Find out if this is a shift of a shift by a constant. ShiftInst *ShiftOp = 0; if (ShiftInst *Op0SI = dyn_cast(Op0)) ShiftOp = Op0SI; else if (CastInst *CI = dyn_cast(Op0)) { // If this is a noop-integer case of a shift instruction, use the shift. if (CI->getOperand(0)->getType()->isInteger() && CI->getOperand(0)->getType()->getPrimitiveSizeInBits() == CI->getType()->getPrimitiveSizeInBits() && isa(CI->getOperand(0))) { ShiftOp = cast(CI->getOperand(0)); } } if (ShiftOp && isa(ShiftOp->getOperand(1))) { // Find the operands and properties of the input shift. Note that the // signedness of the input shift may differ from the current shift if there // is a noop cast between the two. bool isShiftOfLeftShift = ShiftOp->getOpcode() == Instruction::Shl; bool isShiftOfSignedShift = ShiftOp->getType()->isSigned(); bool isShiftOfUnsignedShift = !isShiftOfSignedShift; ConstantUInt *ShiftAmt1C = cast(ShiftOp->getOperand(1)); unsigned ShiftAmt1 = (unsigned)ShiftAmt1C->getValue(); unsigned ShiftAmt2 = (unsigned)Op1->getValue(); // Check for (A << c1) << c2 and (A >> c1) >> c2. if (isLeftShift == isShiftOfLeftShift) { // Do not fold these shifts if the first one is signed and the second one // is unsigned and this is a right shift. Further, don't do any folding // on them. if (isShiftOfSignedShift && isUnsignedShift && !isLeftShift) return 0; unsigned Amt = ShiftAmt1+ShiftAmt2; // Fold into one big shift. if (Amt > Op0->getType()->getPrimitiveSizeInBits()) Amt = Op0->getType()->getPrimitiveSizeInBits(); Value *Op = ShiftOp->getOperand(0); if (isShiftOfSignedShift != isSignedShift) Op = InsertNewInstBefore(new CastInst(Op, I.getType(), "tmp"), I); return new ShiftInst(I.getOpcode(), Op, ConstantUInt::get(Type::UByteTy, Amt)); } // Check for (A << c1) >> c2 or (A >> c1) << c2. If we are dealing with // signed types, we can only support the (A >> c1) << c2 configuration, // because it can not turn an arbitrary bit of A into a sign bit. if (isUnsignedShift || isLeftShift) { // Calculate bitmask for what gets shifted off the edge. Constant *C = ConstantIntegral::getAllOnesValue(I.getType()); if (isLeftShift) C = ConstantExpr::getShl(C, ShiftAmt1C); else C = ConstantExpr::getUShr(C, ShiftAmt1C); Value *Op = ShiftOp->getOperand(0); if (isShiftOfSignedShift != isSignedShift) Op = InsertNewInstBefore(new CastInst(Op, I.getType(),Op->getName()),I); Instruction *Mask = BinaryOperator::createAnd(Op, C, Op->getName()+".mask"); InsertNewInstBefore(Mask, I); // Figure out what flavor of shift we should use... if (ShiftAmt1 == ShiftAmt2) { return ReplaceInstUsesWith(I, Mask); // (A << c) >> c === A & c2 } else if (ShiftAmt1 < ShiftAmt2) { return new ShiftInst(I.getOpcode(), Mask, ConstantUInt::get(Type::UByteTy, ShiftAmt2-ShiftAmt1)); } else if (isShiftOfUnsignedShift || isShiftOfLeftShift) { if (isShiftOfUnsignedShift && !isShiftOfLeftShift && isSignedShift) { // Make sure to emit an unsigned shift right, not a signed one. Mask = InsertNewInstBefore(new CastInst(Mask, Mask->getType()->getUnsignedVersion(), Op->getName()), I); Mask = new ShiftInst(Instruction::Shr, Mask, ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2)); InsertNewInstBefore(Mask, I); return new CastInst(Mask, I.getType()); } else { return new ShiftInst(ShiftOp->getOpcode(), Mask, ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2)); } } else { // (X >>s C1) << C2 where C1 > C2 === (X >>s (C1-C2)) & mask Op = InsertNewInstBefore(new CastInst(Mask, I.getType()->getSignedVersion(), Mask->getName()), I); Instruction *Shift = new ShiftInst(ShiftOp->getOpcode(), Op, ConstantUInt::get(Type::UByteTy, ShiftAmt1-ShiftAmt2)); InsertNewInstBefore(Shift, I); C = ConstantIntegral::getAllOnesValue(Shift->getType()); C = ConstantExpr::getShl(C, Op1); Mask = BinaryOperator::createAnd(Shift, C, Op->getName()+".mask"); InsertNewInstBefore(Mask, I); return new CastInst(Mask, I.getType()); } } else { // We can handle signed (X << C1) >>s C2 if it's a sign extend. In // this case, C1 == C2 and C1 is 8, 16, or 32. if (ShiftAmt1 == ShiftAmt2) { const Type *SExtType = 0; switch (ShiftAmt1) { case 8 : SExtType = Type::SByteTy; break; case 16: SExtType = Type::ShortTy; break; case 32: SExtType = Type::IntTy; break; } if (SExtType) { Instruction *NewTrunc = new CastInst(ShiftOp->getOperand(0), SExtType, "sext"); InsertNewInstBefore(NewTrunc, I); return new CastInst(NewTrunc, I.getType()); } } } } return 0; } enum CastType { Noop = 0, Truncate = 1, Signext = 2, Zeroext = 3 }; /// getCastType - In the future, we will split the cast instruction into these /// various types. Until then, we have to do the analysis here. static CastType getCastType(const Type *Src, const Type *Dest) { assert(Src->isIntegral() && Dest->isIntegral() && "Only works on integral types!"); unsigned SrcSize = Src->getPrimitiveSizeInBits(); unsigned DestSize = Dest->getPrimitiveSizeInBits(); if (SrcSize == DestSize) return Noop; if (SrcSize > DestSize) return Truncate; if (Src->isSigned()) return Signext; return Zeroext; } // isEliminableCastOfCast - Return true if it is valid to eliminate the CI // instruction. // static bool isEliminableCastOfCast(const Type *SrcTy, const Type *MidTy, const Type *DstTy, TargetData *TD) { // It is legal to eliminate the instruction if casting A->B->A if the sizes // are identical and the bits don't get reinterpreted (for example // int->float->int would not be allowed). if (SrcTy == DstTy && SrcTy->isLosslesslyConvertibleTo(MidTy)) return true; // If we are casting between pointer and integer types, treat pointers as // integers of the appropriate size for the code below. if (isa(SrcTy)) SrcTy = TD->getIntPtrType(); if (isa(MidTy)) MidTy = TD->getIntPtrType(); if (isa(DstTy)) DstTy = TD->getIntPtrType(); // Allow free casting and conversion of sizes as long as the sign doesn't // change... if (SrcTy->isIntegral() && MidTy->isIntegral() && DstTy->isIntegral()) { CastType FirstCast = getCastType(SrcTy, MidTy); CastType SecondCast = getCastType(MidTy, DstTy); // Capture the effect of these two casts. If the result is a legal cast, // the CastType is stored here, otherwise a special code is used. static const unsigned CastResult[] = { // First cast is noop 0, 1, 2, 3, // First cast is a truncate 1, 1, 4, 4, // trunc->extend is not safe to eliminate // First cast is a sign ext 2, 5, 2, 4, // signext->zeroext never ok // First cast is a zero ext 3, 5, 3, 3, }; unsigned Result = CastResult[FirstCast*4+SecondCast]; switch (Result) { default: assert(0 && "Illegal table value!"); case 0: case 1: case 2: case 3: // FIXME: in the future, when LLVM has explicit sign/zeroextends and // truncates, we could eliminate more casts. return (unsigned)getCastType(SrcTy, DstTy) == Result; case 4: return false; // Not possible to eliminate this here. case 5: // Sign or zero extend followed by truncate is always ok if the result // is a truncate or noop. CastType ResultCast = getCastType(SrcTy, DstTy); if (ResultCast == Noop || ResultCast == Truncate) return true; // Otherwise we are still growing the value, we are only safe if the // result will match the sign/zeroextendness of the result. return ResultCast == FirstCast; } } // If this is a cast from 'float -> double -> integer', cast from // 'float -> integer' directly, as the value isn't changed by the // float->double conversion. if (SrcTy->isFloatingPoint() && MidTy->isFloatingPoint() && DstTy->isIntegral() && SrcTy->getPrimitiveSize() < MidTy->getPrimitiveSize()) return true; return false; } static bool ValueRequiresCast(const Value *V, const Type *Ty, TargetData *TD) { if (V->getType() == Ty || isa(V)) return false; if (const CastInst *CI = dyn_cast(V)) if (isEliminableCastOfCast(CI->getOperand(0)->getType(), CI->getType(), Ty, TD)) return false; return true; } /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the /// InsertBefore instruction. This is specialized a bit to avoid inserting /// casts that are known to not do anything... /// Value *InstCombiner::InsertOperandCastBefore(Value *V, const Type *DestTy, Instruction *InsertBefore) { if (V->getType() == DestTy) return V; if (Constant *C = dyn_cast(V)) return ConstantExpr::getCast(C, DestTy); CastInst *CI = new CastInst(V, DestTy, V->getName()); InsertNewInstBefore(CI, *InsertBefore); return CI; } /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear /// expression. If so, decompose it, returning some value X, such that Val is /// X*Scale+Offset. /// static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, unsigned &Offset) { assert(Val->getType() == Type::UIntTy && "Unexpected allocation size type!"); if (ConstantUInt *CI = dyn_cast(Val)) { Offset = CI->getValue(); Scale = 1; return ConstantUInt::get(Type::UIntTy, 0); } else if (Instruction *I = dyn_cast(Val)) { if (I->getNumOperands() == 2) { if (ConstantUInt *CUI = dyn_cast(I->getOperand(1))) { if (I->getOpcode() == Instruction::Shl) { // This is a value scaled by '1 << the shift amt'. Scale = 1U << CUI->getValue(); Offset = 0; return I->getOperand(0); } else if (I->getOpcode() == Instruction::Mul) { // This value is scaled by 'CUI'. Scale = CUI->getValue(); Offset = 0; return I->getOperand(0); } else if (I->getOpcode() == Instruction::Add) { // We have X+C. Check to see if we really have (X*C2)+C1, where C1 is // divisible by C2. unsigned SubScale; Value *SubVal = DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); Offset += CUI->getValue(); if (SubScale > 1 && (Offset % SubScale == 0)) { Scale = SubScale; return SubVal; } } } } } // Otherwise, we can't look past this. Scale = 1; Offset = 0; return Val; } /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, /// try to eliminate the cast by moving the type information into the alloc. Instruction *InstCombiner::PromoteCastOfAllocation(CastInst &CI, AllocationInst &AI) { const PointerType *PTy = dyn_cast(CI.getType()); if (!PTy) return 0; // Not casting the allocation to a pointer type. // Remove any uses of AI that are dead. assert(!CI.use_empty() && "Dead instructions should be removed earlier!"); std::vector DeadUsers; for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) { Instruction *User = cast(*UI++); if (isInstructionTriviallyDead(User)) { while (UI != E && *UI == User) ++UI; // If this instruction uses AI more than once, don't break UI. // Add operands to the worklist. AddUsesToWorkList(*User); ++NumDeadInst; DEBUG(std::cerr << "IC: DCE: " << *User); User->eraseFromParent(); removeFromWorkList(User); } } // Get the type really allocated and the type casted to. const Type *AllocElTy = AI.getAllocatedType(); const Type *CastElTy = PTy->getElementType(); if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; unsigned AllocElTyAlign = TD->getTypeSize(AllocElTy); unsigned CastElTyAlign = TD->getTypeSize(CastElTy); if (CastElTyAlign < AllocElTyAlign) return 0; // If the allocation has multiple uses, only promote it if we are strictly // increasing the alignment of the resultant allocation. If we keep it the // same, we open the door to infinite loops of various kinds. if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; uint64_t AllocElTySize = TD->getTypeSize(AllocElTy); uint64_t CastElTySize = TD->getTypeSize(CastElTy); if (CastElTySize == 0 || AllocElTySize == 0) return 0; // See if we can satisfy the modulus by pulling a scale out of the array // size argument. unsigned ArraySizeScale, ArrayOffset; Value *NumElements = // See if the array size is a decomposable linear expr. DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); // If we can now satisfy the modulus, by using a non-1 scale, we really can // do the xform. if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; Value *Amt = 0; if (Scale == 1) { Amt = NumElements; } else { Amt = ConstantUInt::get(Type::UIntTy, Scale); if (ConstantUInt *CI = dyn_cast(NumElements)) Amt = ConstantExpr::getMul(CI, cast(Amt)); else if (Scale != 1) { Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp"); Amt = InsertNewInstBefore(Tmp, AI); } } if (unsigned Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { Value *Off = ConstantUInt::get(Type::UIntTy, Offset); Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp"); Amt = InsertNewInstBefore(Tmp, AI); } std::string Name = AI.getName(); AI.setName(""); AllocationInst *New; if (isa(AI)) New = new MallocInst(CastElTy, Amt, AI.getAlignment(), Name); else New = new AllocaInst(CastElTy, Amt, AI.getAlignment(), Name); InsertNewInstBefore(New, AI); // If the allocation has multiple uses, insert a cast and change all things // that used it to use the new cast. This will also hack on CI, but it will // die soon. if (!AI.hasOneUse()) { AddUsesToWorkList(AI); CastInst *NewCast = new CastInst(New, AI.getType(), "tmpcast"); InsertNewInstBefore(NewCast, AI); AI.replaceAllUsesWith(NewCast); } return ReplaceInstUsesWith(CI, New); } // CastInst simplification // Instruction *InstCombiner::visitCastInst(CastInst &CI) { Value *Src = CI.getOperand(0); // If the user is casting a value to the same type, eliminate this cast // instruction... if (CI.getType() == Src->getType()) return ReplaceInstUsesWith(CI, Src); if (isa(Src)) // cast undef -> undef return ReplaceInstUsesWith(CI, UndefValue::get(CI.getType())); // If casting the result of another cast instruction, try to eliminate this // one! // if (CastInst *CSrc = dyn_cast(Src)) { // A->B->C cast Value *A = CSrc->getOperand(0); if (isEliminableCastOfCast(A->getType(), CSrc->getType(), CI.getType(), TD)) { // This instruction now refers directly to the cast's src operand. This // has a good chance of making CSrc dead. CI.setOperand(0, CSrc->getOperand(0)); return &CI; } // If this is an A->B->A cast, and we are dealing with integral types, try // to convert this into a logical 'and' instruction. // if (A->getType()->isInteger() && CI.getType()->isInteger() && CSrc->getType()->isInteger() && CSrc->getType()->isUnsigned() && // B->A cast must zero extend CSrc->getType()->getPrimitiveSizeInBits() < CI.getType()->getPrimitiveSizeInBits()&& A->getType()->getPrimitiveSizeInBits() == CI.getType()->getPrimitiveSizeInBits()) { assert(CSrc->getType() != Type::ULongTy && "Cannot have type bigger than ulong!"); uint64_t AndValue = CSrc->getType()->getIntegralTypeMask(); Constant *AndOp = ConstantUInt::get(A->getType()->getUnsignedVersion(), AndValue); AndOp = ConstantExpr::getCast(AndOp, A->getType()); Instruction *And = BinaryOperator::createAnd(CSrc->getOperand(0), AndOp); if (And->getType() != CI.getType()) { And->setName(CSrc->getName()+".mask"); InsertNewInstBefore(And, CI); And = new CastInst(And, CI.getType()); } return And; } } // If this is a cast to bool, turn it into the appropriate setne instruction. if (CI.getType() == Type::BoolTy) return BinaryOperator::createSetNE(CI.getOperand(0), Constant::getNullValue(CI.getOperand(0)->getType())); // See if we can simplify any instructions used by the LHS whose sole // purpose is to compute bits we don't care about. if (CI.getType()->isInteger() && CI.getOperand(0)->getType()->isIntegral()) { uint64_t KnownZero, KnownOne; if (SimplifyDemandedBits(&CI, CI.getType()->getIntegralTypeMask(), KnownZero, KnownOne)) return &CI; } // If casting the result of a getelementptr instruction with no offset, turn // this into a cast of the original pointer! // if (GetElementPtrInst *GEP = dyn_cast(Src)) { bool AllZeroOperands = true; for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i) if (!isa(GEP->getOperand(i)) || !cast(GEP->getOperand(i))->isNullValue()) { AllZeroOperands = false; break; } if (AllZeroOperands) { CI.setOperand(0, GEP->getOperand(0)); return &CI; } } // If we are casting a malloc or alloca to a pointer to a type of the same // size, rewrite the allocation instruction to allocate the "right" type. // if (AllocationInst *AI = dyn_cast(Src)) if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) return V; if (SelectInst *SI = dyn_cast(Src)) if (Instruction *NV = FoldOpIntoSelect(CI, SI, this)) return NV; if (isa(Src)) if (Instruction *NV = FoldOpIntoPhi(CI)) return NV; // If the source value is an instruction with only this use, we can attempt to // propagate the cast into the instruction. Also, only handle integral types // for now. if (Instruction *SrcI = dyn_cast(Src)) if (SrcI->hasOneUse() && Src->getType()->isIntegral() && CI.getType()->isInteger()) { // Don't mess with casts to bool here const Type *DestTy = CI.getType(); unsigned SrcBitSize = Src->getType()->getPrimitiveSizeInBits(); unsigned DestBitSize = DestTy->getPrimitiveSizeInBits(); Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0; Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0; switch (SrcI->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: // If we are discarding information, or just changing the sign, rewrite. if (DestBitSize <= SrcBitSize && DestBitSize != 1) { // Don't insert two casts if they cannot be eliminated. We allow two // casts to be inserted if the sizes are the same. This could only be // converting signedness, which is a noop. if (DestBitSize == SrcBitSize || !ValueRequiresCast(Op1, DestTy,TD) || !ValueRequiresCast(Op0, DestTy, TD)) { Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI); Value *Op1c = InsertOperandCastBefore(Op1, DestTy, SrcI); return BinaryOperator::create(cast(SrcI) ->getOpcode(), Op0c, Op1c); } } // cast (xor bool X, true) to int --> xor (cast bool X to int), 1 if (SrcBitSize == 1 && SrcI->getOpcode() == Instruction::Xor && Op1 == ConstantBool::True && (!Op0->hasOneUse() || !isa(Op0))) { Value *New = InsertOperandCastBefore(Op0, DestTy, &CI); return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1)); } break; case Instruction::Shl: // Allow changing the sign of the source operand. Do not allow changing // the size of the shift, UNLESS the shift amount is a constant. We // mush not change variable sized shifts to a smaller size, because it // is undefined to shift more bits out than exist in the value. if (DestBitSize == SrcBitSize || (DestBitSize < SrcBitSize && isa(Op1))) { Value *Op0c = InsertOperandCastBefore(Op0, DestTy, SrcI); return new ShiftInst(Instruction::Shl, Op0c, Op1); } break; case Instruction::Shr: // If this is a signed shr, and if all bits shifted in are about to be // truncated off, turn it into an unsigned shr to allow greater // simplifications. if (DestBitSize < SrcBitSize && Src->getType()->isSigned() && isa(Op1)) { unsigned ShiftAmt = cast(Op1)->getValue(); if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) { // Convert to unsigned. Value *N1 = InsertOperandCastBefore(Op0, Op0->getType()->getUnsignedVersion(), &CI); // Insert the new shift, which is now unsigned. N1 = InsertNewInstBefore(new ShiftInst(Instruction::Shr, N1, Op1, Src->getName()), CI); return new CastInst(N1, CI.getType()); } } break; case Instruction::SetEQ: case Instruction::SetNE: // We if we are just checking for a seteq of a single bit and casting it // to an integer. If so, shift the bit to the appropriate place then // cast to integer to avoid the comparison. if (ConstantInt *Op1C = dyn_cast(Op1)) { uint64_t Op1CV = Op1C->getZExtValue(); // cast (X == 0) to int --> X^1 iff X has only the low bit set. // cast (X == 0) to int --> (X>>1)^1 iff X has only the 2nd bit set. // cast (X == 1) to int --> X iff X has only the low bit set. // cast (X == 2) to int --> X>>1 iff X has only the 2nd bit set. // cast (X != 0) to int --> X iff X has only the low bit set. // cast (X != 0) to int --> X>>1 iff X has only the 2nd bit set. // cast (X != 1) to int --> X^1 iff X has only the low bit set. // cast (X != 2) to int --> (X>>1)^1 iff X has only the 2nd bit set. if (Op1CV == 0 || isPowerOf2_64(Op1CV)) { // If Op1C some other power of two, convert: uint64_t KnownZero, KnownOne; uint64_t TypeMask = Op1->getType()->getIntegralTypeMask(); ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne); if (isPowerOf2_64(KnownZero^TypeMask)) { // Exactly one possible 1? bool isSetNE = SrcI->getOpcode() == Instruction::SetNE; if (Op1CV && (Op1CV != (KnownZero^TypeMask))) { // (X&4) == 2 --> false // (X&4) != 2 --> true Constant *Res = ConstantBool::get(isSetNE); Res = ConstantExpr::getCast(Res, CI.getType()); return ReplaceInstUsesWith(CI, Res); } unsigned ShiftAmt = Log2_64(KnownZero^TypeMask); Value *In = Op0; if (ShiftAmt) { // Perform an unsigned shr by shiftamt. Convert input to // unsigned if it is signed. if (In->getType()->isSigned()) In = InsertNewInstBefore(new CastInst(In, In->getType()->getUnsignedVersion(), In->getName()),CI); // Insert the shift to put the result in the low bit. In = InsertNewInstBefore(new ShiftInst(Instruction::Shr, In, ConstantInt::get(Type::UByteTy, ShiftAmt), In->getName()+".lobit"), CI); } if ((Op1CV != 0) == isSetNE) { // Toggle the low bit. Constant *One = ConstantInt::get(In->getType(), 1); In = BinaryOperator::createXor(In, One, "tmp"); InsertNewInstBefore(cast(In), CI); } if (CI.getType() == In->getType()) return ReplaceInstUsesWith(CI, In); else return new CastInst(In, CI.getType()); } } } break; } } return 0; } /// GetSelectFoldableOperands - We want to turn code that looks like this: /// %C = or %A, %B /// %D = select %cond, %C, %A /// into: /// %C = select %cond, %B, 0 /// %D = or %A, %C /// /// Assuming that the specified instruction is an operand to the select, return /// a bitmask indicating which operands of this instruction are foldable if they /// equal the other incoming value of the select. /// static unsigned GetSelectFoldableOperands(Instruction *I) { switch (I->getOpcode()) { case Instruction::Add: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: return 3; // Can fold through either operand. case Instruction::Sub: // Can only fold on the amount subtracted. case Instruction::Shl: // Can only fold on the shift amount. case Instruction::Shr: return 1; default: return 0; // Cannot fold } } /// GetSelectFoldableConstant - For the same transformation as the previous /// function, return the identity constant that goes into the select. static Constant *GetSelectFoldableConstant(Instruction *I) { switch (I->getOpcode()) { default: assert(0 && "This cannot happen!"); abort(); case Instruction::Add: case Instruction::Sub: case Instruction::Or: case Instruction::Xor: return Constant::getNullValue(I->getType()); case Instruction::Shl: case Instruction::Shr: return Constant::getNullValue(Type::UByteTy); case Instruction::And: return ConstantInt::getAllOnesValue(I->getType()); case Instruction::Mul: return ConstantInt::get(I->getType(), 1); } } /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI /// have the same opcode and only one use each. Try to simplify this. Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI) { if (TI->getNumOperands() == 1) { // If this is a non-volatile load or a cast from the same type, // merge. if (TI->getOpcode() == Instruction::Cast) { if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType()) return 0; } else { return 0; // unknown unary op. } // Fold this by inserting a select from the input values. SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0), FI->getOperand(0), SI.getName()+".v"); InsertNewInstBefore(NewSI, SI); return new CastInst(NewSI, TI->getType()); } // Only handle binary operators here. if (!isa(TI) && !isa(TI)) return 0; // Figure out if the operations have any operands in common. Value *MatchOp, *OtherOpT, *OtherOpF; bool MatchIsOpZero; if (TI->getOperand(0) == FI->getOperand(0)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(1)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(0); MatchIsOpZero = false; } else if (!TI->isCommutative()) { return 0; } else if (TI->getOperand(0) == FI->getOperand(1)) { MatchOp = TI->getOperand(0); OtherOpT = TI->getOperand(1); OtherOpF = FI->getOperand(0); MatchIsOpZero = true; } else if (TI->getOperand(1) == FI->getOperand(0)) { MatchOp = TI->getOperand(1); OtherOpT = TI->getOperand(0); OtherOpF = FI->getOperand(1); MatchIsOpZero = true; } else { return 0; } // If we reach here, they do have operations in common. SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT, OtherOpF, SI.getName()+".v"); InsertNewInstBefore(NewSI, SI); if (BinaryOperator *BO = dyn_cast(TI)) { if (MatchIsOpZero) return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI); else return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp); } else { if (MatchIsOpZero) return new ShiftInst(cast(TI)->getOpcode(), MatchOp, NewSI); else return new ShiftInst(cast(TI)->getOpcode(), NewSI, MatchOp); } } Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { Value *CondVal = SI.getCondition(); Value *TrueVal = SI.getTrueValue(); Value *FalseVal = SI.getFalseValue(); // select true, X, Y -> X // select false, X, Y -> Y if (ConstantBool *C = dyn_cast(CondVal)) if (C == ConstantBool::True) return ReplaceInstUsesWith(SI, TrueVal); else { assert(C == ConstantBool::False); return ReplaceInstUsesWith(SI, FalseVal); } // select C, X, X -> X if (TrueVal == FalseVal) return ReplaceInstUsesWith(SI, TrueVal); if (isa(TrueVal)) // select C, undef, X -> X return ReplaceInstUsesWith(SI, FalseVal); if (isa(FalseVal)) // select C, X, undef -> X return ReplaceInstUsesWith(SI, TrueVal); if (isa(CondVal)) { // select undef, X, Y -> X or Y if (isa(TrueVal)) return ReplaceInstUsesWith(SI, TrueVal); else return ReplaceInstUsesWith(SI, FalseVal); } if (SI.getType() == Type::BoolTy) if (ConstantBool *C = dyn_cast(TrueVal)) { if (C == ConstantBool::True) { // Change: A = select B, true, C --> A = or B, C return BinaryOperator::createOr(CondVal, FalseVal); } else { // Change: A = select B, false, C --> A = and !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::createAnd(NotCond, FalseVal); } } else if (ConstantBool *C = dyn_cast(FalseVal)) { if (C == ConstantBool::False) { // Change: A = select B, C, false --> A = and B, C return BinaryOperator::createAnd(CondVal, TrueVal); } else { // Change: A = select B, C, true --> A = or !B, C Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return BinaryOperator::createOr(NotCond, TrueVal); } } // Selecting between two integer constants? if (ConstantInt *TrueValC = dyn_cast(TrueVal)) if (ConstantInt *FalseValC = dyn_cast(FalseVal)) { // select C, 1, 0 -> cast C to int if (FalseValC->isNullValue() && TrueValC->getRawValue() == 1) { return new CastInst(CondVal, SI.getType()); } else if (TrueValC->isNullValue() && FalseValC->getRawValue() == 1) { // select C, 0, 1 -> cast !C to int Value *NotCond = InsertNewInstBefore(BinaryOperator::createNot(CondVal, "not."+CondVal->getName()), SI); return new CastInst(NotCond, SI.getType()); } // If one of the constants is zero (we know they can't both be) and we // have a setcc instruction with zero, and we have an 'and' with the // non-constant value, eliminate this whole mess. This corresponds to // cases like this: ((X & 27) ? 27 : 0) if (TrueValC->isNullValue() || FalseValC->isNullValue()) if (Instruction *IC = dyn_cast(SI.getCondition())) if ((IC->getOpcode() == Instruction::SetEQ || IC->getOpcode() == Instruction::SetNE) && isa(IC->getOperand(1)) && cast(IC->getOperand(1))->isNullValue()) if (Instruction *ICA = dyn_cast(IC->getOperand(0))) if (ICA->getOpcode() == Instruction::And && isa(ICA->getOperand(1)) && (ICA->getOperand(1) == TrueValC || ICA->getOperand(1) == FalseValC) && isOneBitSet(cast(ICA->getOperand(1)))) { // Okay, now we know that everything is set up, we just don't // know whether we have a setne or seteq and whether the true or // false val is the zero. bool ShouldNotVal = !TrueValC->isNullValue(); ShouldNotVal ^= IC->getOpcode() == Instruction::SetNE; Value *V = ICA; if (ShouldNotVal) V = InsertNewInstBefore(BinaryOperator::create( Instruction::Xor, V, ICA->getOperand(1)), SI); return ReplaceInstUsesWith(SI, V); } } // See if we are selecting two values based on a comparison of the two values. if (SetCondInst *SCI = dyn_cast(CondVal)) { if (SCI->getOperand(0) == TrueVal && SCI->getOperand(1) == FalseVal) { // Transform (X == Y) ? X : Y -> Y if (SCI->getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? X : Y -> X if (SCI->getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } else if (SCI->getOperand(0) == FalseVal && SCI->getOperand(1) == TrueVal){ // Transform (X == Y) ? Y : X -> X if (SCI->getOpcode() == Instruction::SetEQ) return ReplaceInstUsesWith(SI, FalseVal); // Transform (X != Y) ? Y : X -> Y if (SCI->getOpcode() == Instruction::SetNE) return ReplaceInstUsesWith(SI, TrueVal); // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc. } } if (Instruction *TI = dyn_cast(TrueVal)) if (Instruction *FI = dyn_cast(FalseVal)) if (TI->hasOneUse() && FI->hasOneUse()) { bool isInverse = false; Instruction *AddOp = 0, *SubOp = 0; // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) if (TI->getOpcode() == FI->getOpcode()) if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) return IV; // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is // even legal for FP. if (TI->getOpcode() == Instruction::Sub && FI->getOpcode() == Instruction::Add) { AddOp = FI; SubOp = TI; } else if (FI->getOpcode() == Instruction::Sub && TI->getOpcode() == Instruction::Add) { AddOp = TI; SubOp = FI; } if (AddOp) { Value *OtherAddOp = 0; if (SubOp->getOperand(0) == AddOp->getOperand(0)) { OtherAddOp = AddOp->getOperand(1); } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { OtherAddOp = AddOp->getOperand(0); } if (OtherAddOp) { // So at this point we know we have (Y -> OtherAddOp): // select C, (add X, Y), (sub X, Z) Value *NegVal; // Compute -Z if (Constant *C = dyn_cast(SubOp->getOperand(1))) { NegVal = ConstantExpr::getNeg(C); } else { NegVal = InsertNewInstBefore( BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI); } Value *NewTrueOp = OtherAddOp; Value *NewFalseOp = NegVal; if (AddOp != TI) std::swap(NewTrueOp, NewFalseOp); Instruction *NewSel = new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p"); NewSel = InsertNewInstBefore(NewSel, SI); return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel); } } } // See if we can fold the select into one of our operands. if (SI.getType()->isInteger()) { // See the comment above GetSelectFoldableOperands for a description of the // transformation we are doing here. if (Instruction *TVI = dyn_cast(TrueVal)) if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && !isa(FalseVal)) if (unsigned SFO = GetSelectFoldableOperands(TVI)) { unsigned OpToFold = 0; if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(TVI); std::string Name = TVI->getName(); TVI->setName(""); Instruction *NewSel = new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C, Name); InsertNewInstBefore(NewSel, SI); if (BinaryOperator *BO = dyn_cast(TVI)) return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel); else if (ShiftInst *SI = dyn_cast(TVI)) return new ShiftInst(SI->getOpcode(), FalseVal, NewSel); else { assert(0 && "Unknown instruction!!"); } } } if (Instruction *FVI = dyn_cast(FalseVal)) if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && !isa(TrueVal)) if (unsigned SFO = GetSelectFoldableOperands(FVI)) { unsigned OpToFold = 0; if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { OpToFold = 1; } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { OpToFold = 2; } if (OpToFold) { Constant *C = GetSelectFoldableConstant(FVI); std::string Name = FVI->getName(); FVI->setName(""); Instruction *NewSel = new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold), Name); InsertNewInstBefore(NewSel, SI); if (BinaryOperator *BO = dyn_cast(FVI)) return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel); else if (ShiftInst *SI = dyn_cast(FVI)) return new ShiftInst(SI->getOpcode(), TrueVal, NewSel); else { assert(0 && "Unknown instruction!!"); } } } } if (BinaryOperator::isNot(CondVal)) { SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); SI.setOperand(1, FalseVal); SI.setOperand(2, TrueVal); return &SI; } return 0; } /// visitCallInst - CallInst simplification. This mostly only handles folding /// of intrinsic instructions. For normal calls, it allows visitCallSite to do /// the heavy lifting. /// Instruction *InstCombiner::visitCallInst(CallInst &CI) { IntrinsicInst *II = dyn_cast(&CI); if (!II) return visitCallSite(&CI); // Intrinsics cannot occur in an invoke, so handle them here instead of in // visitCallSite. if (MemIntrinsic *MI = dyn_cast(II)) { bool Changed = false; // memmove/cpy/set of zero bytes is a noop. if (Constant *NumBytes = dyn_cast(MI->getLength())) { if (NumBytes->isNullValue()) return EraseInstFromFunction(CI); // FIXME: Increase alignment here. if (ConstantInt *CI = dyn_cast(NumBytes)) if (CI->getRawValue() == 1) { // Replace the instruction with just byte operations. We would // transform other cases to loads/stores, but we don't know if // alignment is sufficient. } } // If we have a memmove and the source operation is a constant global, // then the source and dest pointers can't alias, so we can change this // into a call to memcpy. if (MemMoveInst *MMI = dyn_cast(II)) if (GlobalVariable *GVSrc = dyn_cast(MMI->getSource())) if (GVSrc->isConstant()) { Module *M = CI.getParent()->getParent()->getParent(); const char *Name; if (CI.getCalledFunction()->getFunctionType()->getParamType(3) == Type::UIntTy) Name = "llvm.memcpy.i32"; else Name = "llvm.memcpy.i64"; Function *MemCpy = M->getOrInsertFunction(Name, CI.getCalledFunction()->getFunctionType()); CI.setOperand(0, MemCpy); Changed = true; } if (Changed) return II; } else if (DbgStopPointInst *SPI = dyn_cast(II)) { // If this stoppoint is at the same source location as the previous // stoppoint in the chain, it is not needed. if (DbgStopPointInst *PrevSPI = dyn_cast(SPI->getChain())) if (SPI->getLineNo() == PrevSPI->getLineNo() && SPI->getColNo() == PrevSPI->getColNo()) { SPI->replaceAllUsesWith(PrevSPI); return EraseInstFromFunction(CI); } } else { switch (II->getIntrinsicID()) { default: break; case Intrinsic::stackrestore: { // If the save is right next to the restore, remove the restore. This can // happen when variable allocas are DCE'd. if (IntrinsicInst *SS = dyn_cast(II->getOperand(1))) { if (SS->getIntrinsicID() == Intrinsic::stacksave) { BasicBlock::iterator BI = SS; if (&*++BI == II) return EraseInstFromFunction(CI); } } // If the stack restore is in a return/unwind block and if there are no // allocas or calls between the restore and the return, nuke the restore. TerminatorInst *TI = II->getParent()->getTerminator(); if (isa(TI) || isa(TI)) { BasicBlock::iterator BI = II; bool CannotRemove = false; for (++BI; &*BI != TI; ++BI) { if (isa(BI) || (isa(BI) && !isa(BI))) { CannotRemove = true; break; } } if (!CannotRemove) return EraseInstFromFunction(CI); } break; } } } return visitCallSite(II); } // InvokeInst simplification // Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) { return visitCallSite(&II); } // visitCallSite - Improvements for call and invoke instructions. // Instruction *InstCombiner::visitCallSite(CallSite CS) { bool Changed = false; // If the callee is a constexpr cast of a function, attempt to move the cast // to the arguments of the call/invoke. if (transformConstExprCastCall(CS)) return 0; Value *Callee = CS.getCalledValue(); if (Function *CalleeF = dyn_cast(Callee)) if (CalleeF->getCallingConv() != CS.getCallingConv()) { Instruction *OldCall = CS.getInstruction(); // If the call and callee calling conventions don't match, this call must // be unreachable, as the call is undefined. new StoreInst(ConstantBool::True, UndefValue::get(PointerType::get(Type::BoolTy)), OldCall); if (!OldCall->use_empty()) OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType())); if (isa(OldCall)) // Not worth removing an invoke here. return EraseInstFromFunction(*OldCall); return 0; } if (isa(Callee) || isa(Callee)) { // This instruction is not reachable, just remove it. We insert a store to // undef so that we know that this code is not reachable, despite the fact // that we can't modify the CFG here. new StoreInst(ConstantBool::True, UndefValue::get(PointerType::get(Type::BoolTy)), CS.getInstruction()); if (!CS.getInstruction()->use_empty()) CS.getInstruction()-> replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType())); if (InvokeInst *II = dyn_cast(CS.getInstruction())) { // Don't break the CFG, insert a dummy cond branch. new BranchInst(II->getNormalDest(), II->getUnwindDest(), ConstantBool::True, II); } return EraseInstFromFunction(*CS.getInstruction()); } const PointerType *PTy = cast(Callee->getType()); const FunctionType *FTy = cast(PTy->getElementType()); if (FTy->isVarArg()) { // See if we can optimize any arguments passed through the varargs area of // the call. for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(), E = CS.arg_end(); I != E; ++I) if (CastInst *CI = dyn_cast(*I)) { // If this cast does not effect the value passed through the varargs // area, we can eliminate the use of the cast. Value *Op = CI->getOperand(0); if (CI->getType()->isLosslesslyConvertibleTo(Op->getType())) { *I = Op; Changed = true; } } } return Changed ? CS.getInstruction() : 0; } // transformConstExprCastCall - If the callee is a constexpr cast of a function, // attempt to move the cast to the arguments of the call/invoke. // bool InstCombiner::transformConstExprCastCall(CallSite CS) { if (!isa(CS.getCalledValue())) return false; ConstantExpr *CE = cast(CS.getCalledValue()); if (CE->getOpcode() != Instruction::Cast || !isa(CE->getOperand(0))) return false; Function *Callee = cast(CE->getOperand(0)); Instruction *Caller = CS.getInstruction(); // Okay, this is a cast from a function to a different type. Unless doing so // would cause a type conversion of one of our arguments, change this call to // be a direct call with arguments casted to the appropriate types. // const FunctionType *FT = Callee->getFunctionType(); const Type *OldRetTy = Caller->getType(); // Check to see if we are changing the return type... if (OldRetTy != FT->getReturnType()) { if (Callee->isExternal() && !OldRetTy->isLosslesslyConvertibleTo(FT->getReturnType()) && !Caller->use_empty()) return false; // Cannot transform this return value... // If the callsite is an invoke instruction, and the return value is used by // a PHI node in a successor, we cannot change the return type of the call // because there is no place to put the cast instruction (without breaking // the critical edge). Bail out in this case. if (!Caller->use_empty()) if (InvokeInst *II = dyn_cast(Caller)) for (Value::use_iterator UI = II->use_begin(), E = II->use_end(); UI != E; ++UI) if (PHINode *PN = dyn_cast(*UI)) if (PN->getParent() == II->getNormalDest() || PN->getParent() == II->getUnwindDest()) return false; } unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs); CallSite::arg_iterator AI = CS.arg_begin(); for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); bool isConvertible = (*AI)->getType()->isLosslesslyConvertibleTo(ParamTy); if (Callee->isExternal() && !isConvertible) return false; } if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() && Callee->isExternal()) return false; // Do not delete arguments unless we have a function body... // Okay, we decided that this is a safe thing to do: go ahead and start // inserting cast instructions as necessary... std::vector Args; Args.reserve(NumActualArgs); AI = CS.arg_begin(); for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) { const Type *ParamTy = FT->getParamType(i); if ((*AI)->getType() == ParamTy) { Args.push_back(*AI); } else { Args.push_back(InsertNewInstBefore(new CastInst(*AI, ParamTy, "tmp"), *Caller)); } } // If the function takes more arguments than the call was taking, add them // now... for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) Args.push_back(Constant::getNullValue(FT->getParamType(i))); // If we are removing arguments to the function, emit an obnoxious warning... if (FT->getNumParams() < NumActualArgs) if (!FT->isVarArg()) { std::cerr << "WARNING: While resolving call to function '" << Callee->getName() << "' arguments were dropped!\n"; } else { // Add all of the arguments in their promoted form to the arg list... for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) { const Type *PTy = getPromotedType((*AI)->getType()); if (PTy != (*AI)->getType()) { // Must promote to pass through va_arg area! Instruction *Cast = new CastInst(*AI, PTy, "tmp"); InsertNewInstBefore(Cast, *Caller); Args.push_back(Cast); } else { Args.push_back(*AI); } } } if (FT->getReturnType() == Type::VoidTy) Caller->setName(""); // Void type should not have a name... Instruction *NC; if (InvokeInst *II = dyn_cast(Caller)) { NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(), Args, Caller->getName(), Caller); cast(II)->setCallingConv(II->getCallingConv()); } else { NC = new CallInst(Callee, Args, Caller->getName(), Caller); if (cast(Caller)->isTailCall()) cast(NC)->setTailCall(); cast(NC)->setCallingConv(cast(Caller)->getCallingConv()); } // Insert a cast of the return type as necessary... Value *NV = NC; if (Caller->getType() != NV->getType() && !Caller->use_empty()) { if (NV->getType() != Type::VoidTy) { NV = NC = new CastInst(NC, Caller->getType(), "tmp"); // If this is an invoke instruction, we should insert it after the first // non-phi, instruction in the normal successor block. if (InvokeInst *II = dyn_cast(Caller)) { BasicBlock::iterator I = II->getNormalDest()->begin(); while (isa(I)) ++I; InsertNewInstBefore(NC, *I); } else { // Otherwise, it's a call, just insert cast right after the call instr InsertNewInstBefore(NC, *Caller); } AddUsersToWorkList(*Caller); } else { NV = UndefValue::get(Caller->getType()); } } if (Caller->getType() != Type::VoidTy && !Caller->use_empty()) Caller->replaceAllUsesWith(NV); Caller->getParent()->getInstList().erase(Caller); removeFromWorkList(Caller); return true; } // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" // operator and they all are only used by the PHI, PHI together their // inputs, and do the operation once, to the result of the PHI. Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { Instruction *FirstInst = cast(PN.getIncomingValue(0)); // Scan the instruction, looking for input operations that can be folded away. // If all input operands to the phi are the same instruction (e.g. a cast from // the same type or "+42") we can pull the operation through the PHI, reducing // code size and simplifying code. Constant *ConstantOp = 0; const Type *CastSrcTy = 0; if (isa(FirstInst)) { CastSrcTy = FirstInst->getOperand(0)->getType(); } else if (isa(FirstInst) || isa(FirstInst)) { // Can fold binop or shift if the RHS is a constant. ConstantOp = dyn_cast(FirstInst->getOperand(1)); if (ConstantOp == 0) return 0; } else { return 0; // Cannot fold this operation. } // Check to see if all arguments are the same operation. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { if (!isa(PN.getIncomingValue(i))) return 0; Instruction *I = cast(PN.getIncomingValue(i)); if (!I->hasOneUse() || I->getOpcode() != FirstInst->getOpcode()) return 0; if (CastSrcTy) { if (I->getOperand(0)->getType() != CastSrcTy) return 0; // Cast operation must match. } else if (I->getOperand(1) != ConstantOp) { return 0; } } // Okay, they are all the same operation. Create a new PHI node of the // correct type, and PHI together all of the LHS's of the instructions. PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(), PN.getName()+".in"); NewPN->reserveOperandSpace(PN.getNumOperands()/2); Value *InVal = FirstInst->getOperand(0); NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); // Add all operands to the new PHI. for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { Value *NewInVal = cast(PN.getIncomingValue(i))->getOperand(0); if (NewInVal != InVal) InVal = 0; NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); } Value *PhiVal; if (InVal) { // The new PHI unions all of the same values together. This is really // common, so we handle it intelligently here for compile-time speed. PhiVal = InVal; delete NewPN; } else { InsertNewInstBefore(NewPN, PN); PhiVal = NewPN; } // Insert and return the new operation. if (isa(FirstInst)) return new CastInst(PhiVal, PN.getType()); else if (BinaryOperator *BinOp = dyn_cast(FirstInst)) return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp); else return new ShiftInst(cast(FirstInst)->getOpcode(), PhiVal, ConstantOp); } /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle /// that is dead. static bool DeadPHICycle(PHINode *PN, std::set &PotentiallyDeadPHIs) { if (PN->use_empty()) return true; if (!PN->hasOneUse()) return false; // Remember this node, and if we find the cycle, return. if (!PotentiallyDeadPHIs.insert(PN).second) return true; if (PHINode *PU = dyn_cast(PN->use_back())) return DeadPHICycle(PU, PotentiallyDeadPHIs); return false; } // PHINode simplification // Instruction *InstCombiner::visitPHINode(PHINode &PN) { if (Value *V = PN.hasConstantValue()) return ReplaceInstUsesWith(PN, V); // If the only user of this instruction is a cast instruction, and all of the // incoming values are constants, change this PHI to merge together the casted // constants. if (PN.hasOneUse()) if (CastInst *CI = dyn_cast(PN.use_back())) if (CI->getType() != PN.getType()) { // noop casts will be folded bool AllConstant = true; for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) if (!isa(PN.getIncomingValue(i))) { AllConstant = false; break; } if (AllConstant) { // Make a new PHI with all casted values. PHINode *New = new PHINode(CI->getType(), PN.getName(), &PN); for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { Constant *OldArg = cast(PN.getIncomingValue(i)); New->addIncoming(ConstantExpr::getCast(OldArg, New->getType()), PN.getIncomingBlock(i)); } // Update the cast instruction. CI->setOperand(0, New); WorkList.push_back(CI); // revisit the cast instruction to fold. WorkList.push_back(New); // Make sure to revisit the new Phi return &PN; // PN is now dead! } } // If all PHI operands are the same operation, pull them through the PHI, // reducing code size. if (isa(PN.getIncomingValue(0)) && PN.getIncomingValue(0)->hasOneUse()) if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) return Result; // If this is a trivial cycle in the PHI node graph, remove it. Basically, if // this PHI only has a single use (a PHI), and if that PHI only has one use (a // PHI)... break the cycle. if (PN.hasOneUse()) if (PHINode *PU = dyn_cast(PN.use_back())) { std::set PotentiallyDeadPHIs; PotentiallyDeadPHIs.insert(&PN); if (DeadPHICycle(PU, PotentiallyDeadPHIs)) return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); } return 0; } static Value *InsertSignExtendToPtrTy(Value *V, const Type *DTy, Instruction *InsertPoint, InstCombiner *IC) { unsigned PS = IC->getTargetData().getPointerSize(); const Type *VTy = V->getType(); if (!VTy->isSigned() && VTy->getPrimitiveSize() < PS) // We must insert a cast to ensure we sign-extend. V = IC->InsertNewInstBefore(new CastInst(V, VTy->getSignedVersion(), V->getName()), *InsertPoint); return IC->InsertNewInstBefore(new CastInst(V, DTy, V->getName()), *InsertPoint); } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { Value *PtrOp = GEP.getOperand(0); // Is it 'getelementptr %P, long 0' or 'getelementptr %P' // If so, eliminate the noop. if (GEP.getNumOperands() == 1) return ReplaceInstUsesWith(GEP, PtrOp); if (isa(GEP.getOperand(0))) return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); bool HasZeroPointerIndex = false; if (Constant *C = dyn_cast(GEP.getOperand(1))) HasZeroPointerIndex = C->isNullValue(); if (GEP.getNumOperands() == 2 && HasZeroPointerIndex) return ReplaceInstUsesWith(GEP, PtrOp); // Eliminate unneeded casts for indices. bool MadeChange = false; gep_type_iterator GTI = gep_type_begin(GEP); for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) if (isa(*GTI)) { if (CastInst *CI = dyn_cast(GEP.getOperand(i))) { Value *Src = CI->getOperand(0); const Type *SrcTy = Src->getType(); const Type *DestTy = CI->getType(); if (Src->getType()->isInteger()) { if (SrcTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) { // We can always eliminate a cast from ulong or long to the other. // We can always eliminate a cast from uint to int or the other on // 32-bit pointer platforms. if (DestTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()){ MadeChange = true; GEP.setOperand(i, Src); } } else if (SrcTy->getPrimitiveSize() < DestTy->getPrimitiveSize() && SrcTy->getPrimitiveSize() == 4) { // We can always eliminate a cast from int to [u]long. We can // eliminate a cast from uint to [u]long iff the target is a 32-bit // pointer target. if (SrcTy->isSigned() || SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) { MadeChange = true; GEP.setOperand(i, Src); } } } } // If we are using a wider index than needed for this platform, shrink it // to what we need. If the incoming value needs a cast instruction, // insert it. This explicit cast can make subsequent optimizations more // obvious. Value *Op = GEP.getOperand(i); if (Op->getType()->getPrimitiveSize() > TD->getPointerSize()) if (Constant *C = dyn_cast(Op)) { GEP.setOperand(i, ConstantExpr::getCast(C, TD->getIntPtrType()->getSignedVersion())); MadeChange = true; } else { Op = InsertNewInstBefore(new CastInst(Op, TD->getIntPtrType(), Op->getName()), GEP); GEP.setOperand(i, Op); MadeChange = true; } // If this is a constant idx, make sure to canonicalize it to be a signed // operand, otherwise CSE and other optimizations are pessimized. if (ConstantUInt *CUI = dyn_cast(Op)) { GEP.setOperand(i, ConstantExpr::getCast(CUI, CUI->getType()->getSignedVersion())); MadeChange = true; } } if (MadeChange) return &GEP; // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction, combine the indices of the two // getelementptr instructions into a single instruction. // std::vector SrcGEPOperands; if (User *Src = dyn_castGetElementPtr(PtrOp)) SrcGEPOperands.assign(Src->op_begin(), Src->op_end()); if (!SrcGEPOperands.empty()) { // Note that if our source is a gep chain itself that we wait for that // chain to be resolved before we perform this transformation. This // avoids us creating a TON of code in some cases. // if (isa(SrcGEPOperands[0]) && cast(SrcGEPOperands[0])->getNumOperands() == 2) return 0; // Wait until our source is folded to completion. std::vector Indices; // Find out whether the last index in the source GEP is a sequential idx. bool EndsWithSequential = false; for (gep_type_iterator I = gep_type_begin(*cast(PtrOp)), E = gep_type_end(*cast(PtrOp)); I != E; ++I) EndsWithSequential = !isa(*I); // Can we combine the two pointer arithmetics offsets? if (EndsWithSequential) { // Replace: gep (gep %P, long B), long A, ... // With: T = long A+B; gep %P, T, ... // Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1); if (SO1 == Constant::getNullValue(SO1->getType())) { Sum = GO1; } else if (GO1 == Constant::getNullValue(GO1->getType())) { Sum = SO1; } else { // If they aren't the same type, convert both to an integer of the // target's pointer size. if (SO1->getType() != GO1->getType()) { if (Constant *SO1C = dyn_cast(SO1)) { SO1 = ConstantExpr::getCast(SO1C, GO1->getType()); } else if (Constant *GO1C = dyn_cast(GO1)) { GO1 = ConstantExpr::getCast(GO1C, SO1->getType()); } else { unsigned PS = TD->getPointerSize(); if (SO1->getType()->getPrimitiveSize() == PS) { // Convert GO1 to SO1's type. GO1 = InsertSignExtendToPtrTy(GO1, SO1->getType(), &GEP, this); } else if (GO1->getType()->getPrimitiveSize() == PS) { // Convert SO1 to GO1's type. SO1 = InsertSignExtendToPtrTy(SO1, GO1->getType(), &GEP, this); } else { const Type *PT = TD->getIntPtrType(); SO1 = InsertSignExtendToPtrTy(SO1, PT, &GEP, this); GO1 = InsertSignExtendToPtrTy(GO1, PT, &GEP, this); } } } if (isa(SO1) && isa(GO1)) Sum = ConstantExpr::getAdd(cast(SO1), cast(GO1)); else { Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum"); InsertNewInstBefore(cast(Sum), GEP); } } // Recycle the GEP we already have if possible. if (SrcGEPOperands.size() == 2) { GEP.setOperand(0, SrcGEPOperands[0]); GEP.setOperand(1, Sum); return &GEP; } else { Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()-1); Indices.push_back(Sum); Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end()); } } else if (isa(*GEP.idx_begin()) && cast(*GEP.idx_begin())->isNullValue() && SrcGEPOperands.size() != 1) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.insert(Indices.end(), SrcGEPOperands.begin()+1, SrcGEPOperands.end()); Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return new GetElementPtrInst(SrcGEPOperands[0], Indices, GEP.getName()); } else if (GlobalValue *GV = dyn_cast(PtrOp)) { // GEP of global variable. If all of the indices for this GEP are // constants, we can promote this to a constexpr instead of an instruction. // Scan for nonconstants... std::vector Indices; User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); for (; I != E && isa(*I); ++I) Indices.push_back(cast(*I)); if (I == E) { // If they are all constants... Constant *CE = ConstantExpr::getGetElementPtr(GV, Indices); // Replace all uses of the GEP with the new constexpr... return ReplaceInstUsesWith(GEP, CE); } } else if (Value *X = isCast(PtrOp)) { // Is the operand a cast? if (!isa(X->getType())) { // Not interesting. Source pointer must be a cast from pointer. } else if (HasZeroPointerIndex) { // transform: GEP (cast [10 x ubyte]* X to [0 x ubyte]*), long 0, ... // into : GEP [10 x ubyte]* X, long 0, ... // // This occurs when the program declares an array extern like "int X[];" // const PointerType *CPTy = cast(PtrOp->getType()); const PointerType *XTy = cast(X->getType()); if (const ArrayType *XATy = dyn_cast(XTy->getElementType())) if (const ArrayType *CATy = dyn_cast(CPTy->getElementType())) if (CATy->getElementType() == XATy->getElementType()) { // At this point, we know that the cast source type is a pointer // to an array of the same type as the destination pointer // array. Because the array type is never stepped over (there // is a leading zero) we can fold the cast into this GEP. GEP.setOperand(0, X); return &GEP; } } else if (GEP.getNumOperands() == 2) { // Transform things like: // %t = getelementptr ubyte* cast ([2 x int]* %str to uint*), uint %V // into: %t1 = getelementptr [2 x int*]* %str, int 0, uint %V; cast const Type *SrcElTy = cast(X->getType())->getElementType(); const Type *ResElTy=cast(PtrOp->getType())->getElementType(); if (isa(SrcElTy) && TD->getTypeSize(cast(SrcElTy)->getElementType()) == TD->getTypeSize(ResElTy)) { Value *V = InsertNewInstBefore( new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy), GEP.getOperand(1), GEP.getName()), GEP); return new CastInst(V, GEP.getType()); } // Transform things like: // getelementptr sbyte* cast ([100 x double]* X to sbyte*), int %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, int 0, int %tmp.2 if (isa(SrcElTy) && (ResElTy == Type::SByteTy || ResElTy == Type::UByteTy)) { uint64_t ArrayEltSize = TD->getTypeSize(cast(SrcElTy)->getElementType()); // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We // allow either a mul, shift, or constant here. Value *NewIdx = 0; ConstantInt *Scale = 0; if (ArrayEltSize == 1) { NewIdx = GEP.getOperand(1); Scale = ConstantInt::get(NewIdx->getType(), 1); } else if (ConstantInt *CI = dyn_cast(GEP.getOperand(1))) { NewIdx = ConstantInt::get(CI->getType(), 1); Scale = CI; } else if (Instruction *Inst =dyn_cast(GEP.getOperand(1))){ if (Inst->getOpcode() == Instruction::Shl && isa(Inst->getOperand(1))) { unsigned ShAmt =cast(Inst->getOperand(1))->getValue(); if (Inst->getType()->isSigned()) Scale = ConstantSInt::get(Inst->getType(), 1ULL << ShAmt); else Scale = ConstantUInt::get(Inst->getType(), 1ULL << ShAmt); NewIdx = Inst->getOperand(0); } else if (Inst->getOpcode() == Instruction::Mul && isa(Inst->getOperand(1))) { Scale = cast(Inst->getOperand(1)); NewIdx = Inst->getOperand(0); } } // If the index will be to exactly the right offset with the scale taken // out, perform the transformation. if (Scale && Scale->getRawValue() % ArrayEltSize == 0) { if (ConstantSInt *C = dyn_cast(Scale)) Scale = ConstantSInt::get(C->getType(), (int64_t)C->getRawValue() / (int64_t)ArrayEltSize); else Scale = ConstantUInt::get(Scale->getType(), Scale->getRawValue() / ArrayEltSize); if (Scale->getRawValue() != 1) { Constant *C = ConstantExpr::getCast(Scale, NewIdx->getType()); Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale"); NewIdx = InsertNewInstBefore(Sc, GEP); } // Insert the new GEP instruction. Instruction *Idx = new GetElementPtrInst(X, Constant::getNullValue(Type::IntTy), NewIdx, GEP.getName()); Idx = InsertNewInstBefore(Idx, GEP); return new CastInst(Idx, GEP.getType()); } } } } return 0; } Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) { // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1 if (AI.isArrayAllocation()) // Check C != 1 if (const ConstantUInt *C = dyn_cast(AI.getArraySize())) { const Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getValue()); AllocationInst *New = 0; // Create and insert the replacement instruction... if (isa(AI)) New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName()); else { assert(isa(AI) && "Unknown type of allocation inst!"); New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName()); } InsertNewInstBefore(New, AI); // Scan to the end of the allocation instructions, to skip over a block of // allocas if possible... // BasicBlock::iterator It = New; while (isa(*It)) ++It; // Now that I is pointing to the first non-allocation-inst in the block, // insert our getelementptr instruction... // Value *NullIdx = Constant::getNullValue(Type::IntTy); Value *V = new GetElementPtrInst(New, NullIdx, NullIdx, New->getName()+".sub", It); // Now make everything use the getelementptr instead of the original // allocation. return ReplaceInstUsesWith(AI, V); } else if (isa(AI.getArraySize())) { return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); } // If alloca'ing a zero byte object, replace the alloca with a null pointer. // Note that we only do this for alloca's, because malloc should allocate and // return a unique pointer, even for a zero byte allocation. if (isa(AI) && AI.getAllocatedType()->isSized() && TD->getTypeSize(AI.getAllocatedType()) == 0) return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); return 0; } Instruction *InstCombiner::visitFreeInst(FreeInst &FI) { Value *Op = FI.getOperand(0); // Change free * (cast * X to *) into free * X if (CastInst *CI = dyn_cast(Op)) if (isa(CI->getOperand(0)->getType())) { FI.setOperand(0, CI->getOperand(0)); return &FI; } // free undef -> unreachable. if (isa(Op)) { // Insert a new store to null because we cannot modify the CFG here. new StoreInst(ConstantBool::True, UndefValue::get(PointerType::get(Type::BoolTy)), &FI); return EraseInstFromFunction(FI); } // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa(Op)) return EraseInstFromFunction(FI); return 0; } /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI) { User *CI = cast(LI.getOperand(0)); Value *CastOp = CI->getOperand(0); const Type *DestPTy = cast(CI->getType())->getElementType(); if (const PointerType *SrcTy = dyn_cast(CastOp->getType())) { const Type *SrcPTy = SrcTy->getElementType(); if (DestPTy->isInteger() || isa(DestPTy)) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (const ArrayType *ASrcTy = dyn_cast(SrcPTy)) if (Constant *CSrc = dyn_cast(CastOp)) if (ASrcTy->getNumElements() != 0) { std::vector Idxs(2, Constant::getNullValue(Type::IntTy)); CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs); SrcTy = cast(CastOp->getType()); SrcPTy = SrcTy->getElementType(); } if ((SrcPTy->isInteger() || isa(SrcPTy)) && // Do not allow turning this into a load of an integer, which is then // casted to a pointer, this pessimizes pointer analysis a lot. (isa(SrcPTy) == isa(LI.getType())) && IC.getTargetData().getTypeSize(SrcPTy) == IC.getTargetData().getTypeSize(DestPTy)) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the load, cast // the result of the loaded value. Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp, CI->getName(), LI.isVolatile()),LI); // Now cast the result of the load. return new CastInst(NewLoad, LI.getType()); } } } return 0; } /// isSafeToLoadUnconditionally - Return true if we know that executing a load /// from this value cannot trap. If it is not obviously safe to load from the /// specified pointer, we do a quick local scan of the basic block containing /// ScanFrom, to determine if the address is already accessed. static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) { // If it is an alloca or global variable, it is always safe to load from. if (isa(V) || isa(V)) return true; // Otherwise, be a little bit agressive by scanning the local block where we // want to check to see if the pointer is already being loaded or stored // from/to. If so, the previous load or store would have already trapped, // so there is no harm doing an extra load (also, CSE will later eliminate // the load entirely). BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin(); while (BBI != E) { --BBI; if (LoadInst *LI = dyn_cast(BBI)) { if (LI->getOperand(0) == V) return true; } else if (StoreInst *SI = dyn_cast(BBI)) if (SI->getOperand(1) == V) return true; } return false; } Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { Value *Op = LI.getOperand(0); // load (cast X) --> cast (load X) iff safe if (CastInst *CI = dyn_cast(Op)) if (Instruction *Res = InstCombineLoadCast(*this, LI)) return Res; // None of the following transforms are legal for volatile loads. if (LI.isVolatile()) return 0; if (&LI.getParent()->front() != &LI) { BasicBlock::iterator BBI = &LI; --BBI; // If the instruction immediately before this is a store to the same // address, do a simple form of store->load forwarding. if (StoreInst *SI = dyn_cast(BBI)) if (SI->getOperand(1) == LI.getOperand(0)) return ReplaceInstUsesWith(LI, SI->getOperand(0)); if (LoadInst *LIB = dyn_cast(BBI)) if (LIB->getOperand(0) == LI.getOperand(0)) return ReplaceInstUsesWith(LI, LIB); } if (GetElementPtrInst *GEPI = dyn_cast(Op)) if (isa(GEPI->getOperand(0)) || isa(GEPI->getOperand(0))) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } if (Constant *C = dyn_cast(Op)) { // load null/undef -> undef if ((C->isNullValue() || isa(C))) { // Insert a new store to null instruction before the load to indicate that // this code is not reachable. We do this instead of inserting an // unreachable instruction directly because we cannot modify the CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } // Instcombine load (constant global) into the value loaded. if (GlobalVariable *GV = dyn_cast(Op)) if (GV->isConstant() && !GV->isExternal()) return ReplaceInstUsesWith(LI, GV->getInitializer()); // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded. if (ConstantExpr *CE = dyn_cast(Op)) if (CE->getOpcode() == Instruction::GetElementPtr) { if (GlobalVariable *GV = dyn_cast(CE->getOperand(0))) if (GV->isConstant() && !GV->isExternal()) if (Constant *V = ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) return ReplaceInstUsesWith(LI, V); if (CE->getOperand(0)->isNullValue()) { // Insert a new store to null instruction before the load to indicate // that this code is not reachable. We do this instead of inserting // an unreachable instruction directly because we cannot modify the // CFG. new StoreInst(UndefValue::get(LI.getType()), Constant::getNullValue(Op->getType()), &LI); return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); } } else if (CE->getOpcode() == Instruction::Cast) { if (Instruction *Res = InstCombineLoadCast(*this, LI)) return Res; } } if (Op->hasOneUse()) { // Change select and PHI nodes to select values instead of addresses: this // helps alias analysis out a lot, allows many others simplifications, and // exposes redundancy in the code. // // Note that we cannot do the transformation unless we know that the // introduced loads cannot trap! Something like this is valid as long as // the condition is always false: load (select bool %C, int* null, int* %G), // but it would not be valid if we transformed it to load from null // unconditionally. // if (SelectInst *SI = dyn_cast(Op)) { // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1), SI->getOperand(1)->getName()+".val"), LI); Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2), SI->getOperand(2)->getName()+".val"), LI); return new SelectInst(SI->getCondition(), V1, V2); } // load (select (cond, null, P)) -> load P if (Constant *C = dyn_cast(SI->getOperand(1))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(2)); return &LI; } // load (select (cond, P, null)) -> load P if (Constant *C = dyn_cast(SI->getOperand(2))) if (C->isNullValue()) { LI.setOperand(0, SI->getOperand(1)); return &LI; } } else if (PHINode *PN = dyn_cast(Op)) { // load (phi (&V1, &V2, &V3)) --> phi(load &V1, load &V2, load &V3) bool Safe = PN->getParent() == LI.getParent(); // Scan all of the instructions between the PHI and the load to make // sure there are no instructions that might possibly alter the value // loaded from the PHI. if (Safe) { BasicBlock::iterator I = &LI; for (--I; !isa(I); --I) if (isa(I) || isa(I)) { Safe = false; break; } } for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e && Safe; ++i) if (!isSafeToLoadUnconditionally(PN->getIncomingValue(i), PN->getIncomingBlock(i)->getTerminator())) Safe = false; if (Safe) { // Create the PHI. PHINode *NewPN = new PHINode(LI.getType(), PN->getName()); InsertNewInstBefore(NewPN, *PN); std::map LoadMap; // Don't insert duplicate loads for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *BB = PN->getIncomingBlock(i); Value *&TheLoad = LoadMap[BB]; if (TheLoad == 0) { Value *InVal = PN->getIncomingValue(i); TheLoad = InsertNewInstBefore(new LoadInst(InVal, InVal->getName()+".val"), *BB->getTerminator()); } NewPN->addIncoming(TheLoad, BB); } return ReplaceInstUsesWith(LI, NewPN); } } } return 0; } /// InstCombineStoreToCast - Fold 'store V, (cast P)' -> store (cast V), P' /// when possible. static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { User *CI = cast(SI.getOperand(1)); Value *CastOp = CI->getOperand(0); const Type *DestPTy = cast(CI->getType())->getElementType(); if (const PointerType *SrcTy = dyn_cast(CastOp->getType())) { const Type *SrcPTy = SrcTy->getElementType(); if (DestPTy->isInteger() || isa(DestPTy)) { // If the source is an array, the code below will not succeed. Check to // see if a trivial 'gep P, 0, 0' will help matters. Only do this for // constants. if (const ArrayType *ASrcTy = dyn_cast(SrcPTy)) if (Constant *CSrc = dyn_cast(CastOp)) if (ASrcTy->getNumElements() != 0) { std::vector Idxs(2, Constant::getNullValue(Type::IntTy)); CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs); SrcTy = cast(CastOp->getType()); SrcPTy = SrcTy->getElementType(); } if ((SrcPTy->isInteger() || isa(SrcPTy)) && IC.getTargetData().getTypeSize(SrcPTy) == IC.getTargetData().getTypeSize(DestPTy)) { // Okay, we are casting from one integer or pointer type to another of // the same size. Instead of casting the pointer before the store, cast // the value to be stored. Value *NewCast; if (Constant *C = dyn_cast(SI.getOperand(0))) NewCast = ConstantExpr::getCast(C, SrcPTy); else NewCast = IC.InsertNewInstBefore(new CastInst(SI.getOperand(0), SrcPTy, SI.getOperand(0)->getName()+".c"), SI); return new StoreInst(NewCast, CastOp); } } } return 0; } Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { Value *Val = SI.getOperand(0); Value *Ptr = SI.getOperand(1); if (isa(Ptr)) { // store X, undef -> noop (even if volatile) EraseInstFromFunction(SI); ++NumCombined; return 0; } // Do really simple DSE, to catch cases where there are several consequtive // stores to the same location, separated by a few arithmetic operations. This // situation often occurs with bitfield accesses. BasicBlock::iterator BBI = &SI; for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; --ScanInsts) { --BBI; if (StoreInst *PrevSI = dyn_cast(BBI)) { // Prev store isn't volatile, and stores to the same location? if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) { ++NumDeadStore; ++BBI; EraseInstFromFunction(*PrevSI); continue; } break; } // Don't skip over loads or things that can modify memory. if (BBI->mayWriteToMemory() || isa(BBI)) break; } if (SI.isVolatile()) return 0; // Don't hack volatile stores. // store X, null -> turns into 'unreachable' in SimplifyCFG if (isa(Ptr)) { if (!isa(Val)) { SI.setOperand(0, UndefValue::get(Val->getType())); if (Instruction *U = dyn_cast(Val)) WorkList.push_back(U); // Dropped a use. ++NumCombined; } return 0; // Do not modify these! } // store undef, Ptr -> noop if (isa(Val)) { EraseInstFromFunction(SI); ++NumCombined; return 0; } // If the pointer destination is a cast, see if we can fold the cast into the // source instead. if (CastInst *CI = dyn_cast(Ptr)) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; if (ConstantExpr *CE = dyn_cast(Ptr)) if (CE->getOpcode() == Instruction::Cast) if (Instruction *Res = InstCombineStoreToCast(*this, SI)) return Res; // If this store is the last instruction in the basic block, and if the block // ends with an unconditional branch, try to move it to the successor block. BBI = &SI; ++BBI; if (BranchInst *BI = dyn_cast(BBI)) if (BI->isUnconditional()) { // Check to see if the successor block has exactly two incoming edges. If // so, see if the other predecessor contains a store to the same location. // if so, insert a PHI node (if needed) and move the stores down. BasicBlock *Dest = BI->getSuccessor(0); pred_iterator PI = pred_begin(Dest); BasicBlock *Other = 0; if (*PI != BI->getParent()) Other = *PI; ++PI; if (PI != pred_end(Dest)) { if (*PI != BI->getParent()) if (Other) Other = 0; else Other = *PI; if (++PI != pred_end(Dest)) Other = 0; } if (Other) { // If only one other pred... BBI = Other->getTerminator(); // Make sure this other block ends in an unconditional branch and that // there is an instruction before the branch. if (isa(BBI) && cast(BBI)->isUnconditional() && BBI != Other->begin()) { --BBI; StoreInst *OtherStore = dyn_cast(BBI); // If this instruction is a store to the same location. if (OtherStore && OtherStore->getOperand(1) == SI.getOperand(1)) { // Okay, we know we can perform this transformation. Insert a PHI // node now if we need it. Value *MergedVal = OtherStore->getOperand(0); if (MergedVal != SI.getOperand(0)) { PHINode *PN = new PHINode(MergedVal->getType(), "storemerge"); PN->reserveOperandSpace(2); PN->addIncoming(SI.getOperand(0), SI.getParent()); PN->addIncoming(OtherStore->getOperand(0), Other); MergedVal = InsertNewInstBefore(PN, Dest->front()); } // Advance to a place where it is safe to insert the new store and // insert it. BBI = Dest->begin(); while (isa(BBI)) ++BBI; InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), OtherStore->isVolatile()), *BBI); // Nuke the old stores. EraseInstFromFunction(SI); EraseInstFromFunction(*OtherStore); ++NumCombined; return 0; } } } } return 0; } Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { // Change br (not X), label True, label False to: br X, label False, True Value *X = 0; BasicBlock *TrueDest; BasicBlock *FalseDest; if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && !isa(X)) { // Swap Destinations and condition... BI.setCondition(X); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); return &BI; } // Cannonicalize setne -> seteq Instruction::BinaryOps Op; Value *Y; if (match(&BI, m_Br(m_SetCond(Op, m_Value(X), m_Value(Y)), TrueDest, FalseDest))) if ((Op == Instruction::SetNE || Op == Instruction::SetLE || Op == Instruction::SetGE) && BI.getCondition()->hasOneUse()) { SetCondInst *I = cast(BI.getCondition()); std::string Name = I->getName(); I->setName(""); Instruction::BinaryOps NewOpcode = SetCondInst::getInverseCondition(Op); Value *NewSCC = BinaryOperator::create(NewOpcode, X, Y, Name, I); // Swap Destinations and condition... BI.setCondition(NewSCC); BI.setSuccessor(0, FalseDest); BI.setSuccessor(1, TrueDest); removeFromWorkList(I); I->getParent()->getInstList().erase(I); WorkList.push_back(cast(NewSCC)); return &BI; } return 0; } Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); if (Instruction *I = dyn_cast(Cond)) { if (I->getOpcode() == Instruction::Add) if (ConstantInt *AddRHS = dyn_cast(I->getOperand(1))) { // change 'switch (X+4) case 1:' into 'switch (X) case -3' for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) SI.setOperand(i,ConstantExpr::getSub(cast(SI.getOperand(i)), AddRHS)); SI.setOperand(0, I->getOperand(0)); WorkList.push_back(I); return &SI; } } return 0; } Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) { if (ConstantAggregateZero *C = dyn_cast(EI.getOperand(0))) { // If packed val is constant 0, replace extract with scalar 0 const Type *Ty = cast(C->getType())->getElementType(); EI.replaceAllUsesWith(Constant::getNullValue(Ty)); return ReplaceInstUsesWith(EI, Constant::getNullValue(Ty)); } if (ConstantPacked *C = dyn_cast(EI.getOperand(0))) { // If packed val is constant with uniform operands, replace EI // with that operand Constant *op0 = cast(C->getOperand(0)); for (unsigned i = 1; i < C->getNumOperands(); ++i) if (C->getOperand(i) != op0) return 0; return ReplaceInstUsesWith(EI, op0); } if (Instruction *I = dyn_cast(EI.getOperand(0))) if (I->hasOneUse()) { // Push extractelement into predecessor operation if legal and // profitable to do so if (BinaryOperator *BO = dyn_cast(I)) { if (!isa(BO->getOperand(0)) && !isa(BO->getOperand(1))) return 0; ExtractElementInst *newEI0 = new ExtractElementInst(BO->getOperand(0), EI.getOperand(1), EI.getName()); ExtractElementInst *newEI1 = new ExtractElementInst(BO->getOperand(1), EI.getOperand(1), EI.getName()); InsertNewInstBefore(newEI0, EI); InsertNewInstBefore(newEI1, EI); return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1); } switch(I->getOpcode()) { case Instruction::Load: { Value *Ptr = InsertCastBefore(I->getOperand(0), PointerType::get(EI.getType()), EI); GetElementPtrInst *GEP = new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep"); InsertNewInstBefore(GEP, EI); return new LoadInst(GEP); } default: return 0; } } return 0; } void InstCombiner::removeFromWorkList(Instruction *I) { WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), I), WorkList.end()); } /// TryToSinkInstruction - Try to move the specified instruction from its /// current block into the beginning of DestBlock, which can only happen if it's /// safe to move the instruction past all of the instructions between it and the /// end of its block. static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { assert(I->hasOneUse() && "Invariants didn't hold!"); // Cannot move control-flow-involving, volatile loads, vaarg, etc. if (isa(I) || I->mayWriteToMemory()) return false; // Do not sink alloca instructions out of the entry block. if (isa(I) && I->getParent() == &DestBlock->getParent()->front()) return false; // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (LoadInst *LI = dyn_cast(I)) { for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end(); Scan != E; ++Scan) if (Scan->mayWriteToMemory()) return false; } BasicBlock::iterator InsertPos = DestBlock->begin(); while (isa(InsertPos)) ++InsertPos; I->moveBefore(InsertPos); ++NumSunkInst; return true; } bool InstCombiner::runOnFunction(Function &F) { bool Changed = false; TD = &getAnalysis(); { // Populate the worklist with the reachable instructions. std::set Visited; for (df_ext_iterator BB = df_ext_begin(&F.front(), Visited), E = df_ext_end(&F.front(), Visited); BB != E; ++BB) for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) WorkList.push_back(I); // Do a quick scan over the function. If we find any blocks that are // unreachable, remove any instructions inside of them. This prevents // the instcombine code from having to deal with some bad special cases. for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (!Visited.count(BB)) { Instruction *Term = BB->getTerminator(); while (Term != BB->begin()) { // Remove instrs bottom-up BasicBlock::iterator I = Term; --I; DEBUG(std::cerr << "IC: DCE: " << *I); ++NumDeadInst; if (!I->use_empty()) I->replaceAllUsesWith(UndefValue::get(I->getType())); I->eraseFromParent(); } } } while (!WorkList.empty()) { Instruction *I = WorkList.back(); // Get an instruction from the worklist WorkList.pop_back(); // Check to see if we can DCE or ConstantPropagate the instruction... // Check to see if we can DIE the instruction... if (isInstructionTriviallyDead(I)) { // Add operands to the worklist... if (I->getNumOperands() < 4) AddUsesToWorkList(*I); ++NumDeadInst; DEBUG(std::cerr << "IC: DCE: " << *I); I->eraseFromParent(); removeFromWorkList(I); continue; } // Instruction isn't dead, see if we can constant propagate it... if (Constant *C = ConstantFoldInstruction(I)) { Value* Ptr = I->getOperand(0); if (isa(I) && cast(Ptr)->isNullValue() && !isa(C) && cast(Ptr->getType())->getElementType()->isSized()) { // If this is a constant expr gep that is effectively computing an // "offsetof", fold it into 'cast int X to T*' instead of 'gep 0, 0, 12' bool isFoldableGEP = true; for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i) if (!isa(I->getOperand(i))) isFoldableGEP = false; if (isFoldableGEP) { uint64_t Offset = TD->getIndexedOffset(Ptr->getType(), std::vector(I->op_begin()+1, I->op_end())); C = ConstantUInt::get(Type::ULongTy, Offset); C = ConstantExpr::getCast(C, TD->getIntPtrType()); C = ConstantExpr::getCast(C, I->getType()); } } DEBUG(std::cerr << "IC: ConstFold to: " << *C << " from: " << *I); // Add operands to the worklist... AddUsesToWorkList(*I); ReplaceInstUsesWith(*I, C); ++NumConstProp; I->getParent()->getInstList().erase(I); removeFromWorkList(I); continue; } // See if we can trivially sink this instruction to a successor basic block. if (I->hasOneUse()) { BasicBlock *BB = I->getParent(); BasicBlock *UserParent = cast(I->use_back())->getParent(); if (UserParent != BB) { bool UserIsSuccessor = false; // See if the user is one of our successors. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) if (*SI == UserParent) { UserIsSuccessor = true; break; } // If the user is one of our immediate successors, and if that successor // only has us as a predecessors (we'd have to split the critical edge // otherwise), we can keep going. if (UserIsSuccessor && !isa(I->use_back()) && next(pred_begin(UserParent)) == pred_end(UserParent)) // Okay, the CFG is simple enough, try to sink this instruction. Changed |= TryToSinkInstruction(I, UserParent); } } // Now that we have an instruction, try combining it to simplify it... if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { DEBUG(std::cerr << "IC: Old = " << *I << " New = " << *Result); // Everything uses the new instruction now. I->replaceAllUsesWith(Result); // Push the new instruction and any users onto the worklist. WorkList.push_back(Result); AddUsersToWorkList(*Result); // Move the name to the new instruction first... std::string OldName = I->getName(); I->setName(""); Result->setName(OldName); // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); BasicBlock::iterator InsertPos = I; if (!isa(Result)) // If combining a PHI, don't insert while (isa(InsertPos)) // middle of a block of PHIs. ++InsertPos; InstParent->getInstList().insert(InsertPos, Result); // Make sure that we reprocess all operands now that we reduced their // use counts. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *OpI = dyn_cast(I->getOperand(i))) WorkList.push_back(OpI); // Instructions can end up on the worklist more than once. Make sure // we do not process an instruction that has been deleted. removeFromWorkList(I); // Erase the old instruction. InstParent->getInstList().erase(I); } else { DEBUG(std::cerr << "IC: MOD = " << *I); // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (isInstructionTriviallyDead(I)) { // Make sure we process all operands now that we are reducing their // use counts. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) if (Instruction *OpI = dyn_cast(I->getOperand(i))) WorkList.push_back(OpI); // Instructions may end up in the worklist more than once. Erase all // occurrences of this instruction. removeFromWorkList(I); I->eraseFromParent(); } else { WorkList.push_back(Result); AddUsersToWorkList(*Result); } } Changed = true; } } return Changed; } FunctionPass *llvm::createInstructionCombiningPass() { return new InstCombiner(); }