//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the interfaces that Mips uses to lower LLVM code into a // selection DAG. // //===----------------------------------------------------------------------===// #include "MipsISelLowering.h" #include "InstPrinter/MipsInstPrinter.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "MipsMachineFunction.h" #include "MipsSubtarget.h" #include "MipsTargetMachine.h" #include "MipsTargetObjectFile.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; #define DEBUG_TYPE "mips-lower" STATISTIC(NumTailCalls, "Number of tail calls"); static cl::opt LargeGOT("mxgot", cl::Hidden, cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false)); static cl::opt NoZeroDivCheck("mno-check-zero-division", cl::Hidden, cl::desc("MIPS: Don't trap on integer division by zero."), cl::init(false)); cl::opt EnableMipsFastISel("mips-fast-isel", cl::Hidden, cl::desc("Allow mips-fast-isel to be used"), cl::init(false)); static const MCPhysReg O32IntRegs[4] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; static const MCPhysReg Mips64IntRegs[8] = { Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64, Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64 }; static const MCPhysReg Mips64DPRegs[8] = { Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64 }; // If I is a shifted mask, set the size (Size) and the first bit of the // mask (Pos), and return true. // For example, if I is 0x003ff800, (Pos, Size) = (11, 11). static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { if (!isShiftedMask_64(I)) return false; Size = CountPopulation_64(I); Pos = countTrailingZeros(I); return true; } SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const { MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo(); return DAG.getRegister(FI->getGlobalBaseReg(), Ty); } SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag); } SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag); } SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); } SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); } SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG, unsigned Flag) const { return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(), N->getOffset(), Flag); } const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { case MipsISD::JmpLink: return "MipsISD::JmpLink"; case MipsISD::TailCall: return "MipsISD::TailCall"; case MipsISD::Hi: return "MipsISD::Hi"; case MipsISD::Lo: return "MipsISD::Lo"; case MipsISD::GPRel: return "MipsISD::GPRel"; case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; case MipsISD::Ret: return "MipsISD::Ret"; case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN"; case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; case MipsISD::FPCmp: return "MipsISD::FPCmp"; case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP"; case MipsISD::MFHI: return "MipsISD::MFHI"; case MipsISD::MFLO: return "MipsISD::MFLO"; case MipsISD::MTLOHI: return "MipsISD::MTLOHI"; case MipsISD::Mult: return "MipsISD::Mult"; case MipsISD::Multu: return "MipsISD::Multu"; case MipsISD::MAdd: return "MipsISD::MAdd"; case MipsISD::MAddu: return "MipsISD::MAddu"; case MipsISD::MSub: return "MipsISD::MSub"; case MipsISD::MSubu: return "MipsISD::MSubu"; case MipsISD::DivRem: return "MipsISD::DivRem"; case MipsISD::DivRemU: return "MipsISD::DivRemU"; case MipsISD::DivRem16: return "MipsISD::DivRem16"; case MipsISD::DivRemU16: return "MipsISD::DivRemU16"; case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; case MipsISD::Wrapper: return "MipsISD::Wrapper"; case MipsISD::Sync: return "MipsISD::Sync"; case MipsISD::Ext: return "MipsISD::Ext"; case MipsISD::Ins: return "MipsISD::Ins"; case MipsISD::LWL: return "MipsISD::LWL"; case MipsISD::LWR: return "MipsISD::LWR"; case MipsISD::SWL: return "MipsISD::SWL"; case MipsISD::SWR: return "MipsISD::SWR"; case MipsISD::LDL: return "MipsISD::LDL"; case MipsISD::LDR: return "MipsISD::LDR"; case MipsISD::SDL: return "MipsISD::SDL"; case MipsISD::SDR: return "MipsISD::SDR"; case MipsISD::EXTP: return "MipsISD::EXTP"; case MipsISD::EXTPDP: return "MipsISD::EXTPDP"; case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H"; case MipsISD::EXTR_W: return "MipsISD::EXTR_W"; case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W"; case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W"; case MipsISD::SHILO: return "MipsISD::SHILO"; case MipsISD::MTHLIP: return "MipsISD::MTHLIP"; case MipsISD::MULT: return "MipsISD::MULT"; case MipsISD::MULTU: return "MipsISD::MULTU"; case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP"; case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP"; case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP"; case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP"; case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP"; case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP"; case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP"; case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP"; case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP"; case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO"; case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO"; case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO"; case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO"; case MipsISD::VCEQ: return "MipsISD::VCEQ"; case MipsISD::VCLE_S: return "MipsISD::VCLE_S"; case MipsISD::VCLE_U: return "MipsISD::VCLE_U"; case MipsISD::VCLT_S: return "MipsISD::VCLT_S"; case MipsISD::VCLT_U: return "MipsISD::VCLT_U"; case MipsISD::VSMAX: return "MipsISD::VSMAX"; case MipsISD::VSMIN: return "MipsISD::VSMIN"; case MipsISD::VUMAX: return "MipsISD::VUMAX"; case MipsISD::VUMIN: return "MipsISD::VUMIN"; case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT"; case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT"; case MipsISD::VNOR: return "MipsISD::VNOR"; case MipsISD::VSHF: return "MipsISD::VSHF"; case MipsISD::SHF: return "MipsISD::SHF"; case MipsISD::ILVEV: return "MipsISD::ILVEV"; case MipsISD::ILVOD: return "MipsISD::ILVOD"; case MipsISD::ILVL: return "MipsISD::ILVL"; case MipsISD::ILVR: return "MipsISD::ILVR"; case MipsISD::PCKEV: return "MipsISD::PCKEV"; case MipsISD::PCKOD: return "MipsISD::PCKOD"; case MipsISD::INSVE: return "MipsISD::INSVE"; default: return nullptr; } } MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM, const MipsSubtarget &STI) : TargetLowering(TM, new MipsTargetObjectFile()), Subtarget(STI) { // Mips does not have i1 type, so use i32 for // setcc operations results (slt, sgt, ...). setBooleanContents(ZeroOrOneBooleanContent); setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA // does. Integer booleans still use 0 and 1. if (Subtarget.hasMips32r6()) setBooleanContents(ZeroOrOneBooleanContent, ZeroOrNegativeOneBooleanContent); // Load extented operations for i1 types must be promoted setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); // MIPS doesn't have extending float->double load/store setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Used by legalize types to correctly generate the setcc result. // Without this, every float setcc comes with a AND/OR with the result, // we don't want this, since the fpcmp result goes to a flag register, // which is used implicitly by brcond and select operations. AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); // Mips Custom Operations setOperationAction(ISD::BR_JT, MVT::Other, Custom); setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); setOperationAction(ISD::SETCC, MVT::f32, Custom); setOperationAction(ISD::SETCC, MVT::f64, Custom); setOperationAction(ISD::BRCOND, MVT::Other, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); if (Subtarget.isGP64bit()) { setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::BlockAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::SELECT, MVT::i64, Custom); setOperationAction(ISD::LOAD, MVT::i64, Custom); setOperationAction(ISD::STORE, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); } if (!Subtarget.isGP64bit()) { setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); } setOperationAction(ISD::ADD, MVT::i32, Custom); if (Subtarget.isGP64bit()) setOperationAction(ISD::ADD, MVT::i64, Custom); setOperationAction(ISD::SDIV, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UDIV, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SDIV, MVT::i64, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UDIV, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); // Operations not directly supported by Mips. setOperationAction(ISD::BR_CC, MVT::f32, Expand); setOperationAction(ISD::BR_CC, MVT::f64, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::BR_CC, MVT::i64, Expand); setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (Subtarget.hasCnMips()) { setOperationAction(ISD::CTPOP, MVT::i32, Legal); setOperationAction(ISD::CTPOP, MVT::i64, Legal); } else { setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i64, Expand); } setOperationAction(ISD::CTTZ, MVT::i32, Expand); setOperationAction(ISD::CTTZ, MVT::i64, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::ROTL, MVT::i32, Expand); setOperationAction(ISD::ROTL, MVT::i64, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); if (!Subtarget.hasMips32r2()) setOperationAction(ISD::ROTR, MVT::i32, Expand); if (!Subtarget.hasMips64r2()) setOperationAction(ISD::ROTR, MVT::i64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); setOperationAction(ISD::FCOS, MVT::f32, Expand); setOperationAction(ISD::FCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FPOWI, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f32, Expand); setOperationAction(ISD::FPOW, MVT::f64, Expand); setOperationAction(ISD::FLOG, MVT::f32, Expand); setOperationAction(ISD::FLOG2, MVT::f32, Expand); setOperationAction(ISD::FLOG10, MVT::f32, Expand); setOperationAction(ISD::FEXP, MVT::f32, Expand); setOperationAction(ISD::FMA, MVT::f32, Expand); setOperationAction(ISD::FMA, MVT::f64, Expand); setOperationAction(ISD::FREM, MVT::f32, Expand); setOperationAction(ISD::FREM, MVT::f64, Expand); setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); setOperationAction(ISD::VASTART, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VACOPY, MVT::Other, Expand); setOperationAction(ISD::VAEND, MVT::Other, Expand); // Use the default for now setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); setInsertFencesForAtomic(true); if (!Subtarget.hasMips32r2()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); } // MIPS16 lacks MIPS32's clz and clo instructions. if (!Subtarget.hasMips32() || Subtarget.inMips16Mode()) setOperationAction(ISD::CTLZ, MVT::i32, Expand); if (!Subtarget.hasMips64()) setOperationAction(ISD::CTLZ, MVT::i64, Expand); if (!Subtarget.hasMips32r2()) setOperationAction(ISD::BSWAP, MVT::i32, Expand); if (!Subtarget.hasMips64r2()) setOperationAction(ISD::BSWAP, MVT::i64, Expand); if (Subtarget.isGP64bit()) { setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom); setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom); setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom); setTruncStoreAction(MVT::i64, MVT::i32, Custom); } setOperationAction(ISD::TRAP, MVT::Other, Legal); setTargetDAGCombine(ISD::SDIVREM); setTargetDAGCombine(ISD::UDIVREM); setTargetDAGCombine(ISD::SELECT); setTargetDAGCombine(ISD::AND); setTargetDAGCombine(ISD::OR); setTargetDAGCombine(ISD::ADD); setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2); // The arguments on the stack are defined in terms of 4-byte slots on O32 // and 8-byte slots on N32/N64. setMinStackArgumentAlignment( (Subtarget.isABI_N32() || Subtarget.isABI_N64()) ? 8 : 4); setStackPointerRegisterToSaveRestore(Subtarget.isABI_N64() ? Mips::SP_64 : Mips::SP); setExceptionPointerRegister(Subtarget.isABI_N64() ? Mips::A0_64 : Mips::A0); setExceptionSelectorRegister(Subtarget.isABI_N64() ? Mips::A1_64 : Mips::A1); MaxStoresPerMemcpy = 16; isMicroMips = Subtarget.inMicroMipsMode(); } const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM, const MipsSubtarget &STI) { if (STI.inMips16Mode()) return llvm::createMips16TargetLowering(TM, STI); return llvm::createMipsSETargetLowering(TM, STI); } // Create a fast isel object. FastISel * MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const { if (!EnableMipsFastISel) return TargetLowering::createFastISel(funcInfo, libInfo); return Mips::createFastISel(funcInfo, libInfo); } EVT MipsTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { if (!VT.isVector()) return MVT::i32; return VT.changeVectorElementTypeToInteger(); } static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); EVT Ty = N->getValueType(0); unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64; unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64; unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 : MipsISD::DivRemU16; SDLoc DL(N); SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue, N->getOperand(0), N->getOperand(1)); SDValue InChain = DAG.getEntryNode(); SDValue InGlue = DivRem; // insert MFLO if (N->hasAnyUseOfValue(0)) { SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty, InGlue); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); InChain = CopyFromLo.getValue(1); InGlue = CopyFromLo.getValue(2); } // insert MFHI if (N->hasAnyUseOfValue(1)) { SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL, HI, Ty, InGlue); DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); } return SDValue(); } static Mips::CondCode condCodeToFCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unknown fp condition code!"); case ISD::SETEQ: case ISD::SETOEQ: return Mips::FCOND_OEQ; case ISD::SETUNE: return Mips::FCOND_UNE; case ISD::SETLT: case ISD::SETOLT: return Mips::FCOND_OLT; case ISD::SETGT: case ISD::SETOGT: return Mips::FCOND_OGT; case ISD::SETLE: case ISD::SETOLE: return Mips::FCOND_OLE; case ISD::SETGE: case ISD::SETOGE: return Mips::FCOND_OGE; case ISD::SETULT: return Mips::FCOND_ULT; case ISD::SETULE: return Mips::FCOND_ULE; case ISD::SETUGT: return Mips::FCOND_UGT; case ISD::SETUGE: return Mips::FCOND_UGE; case ISD::SETUO: return Mips::FCOND_UN; case ISD::SETO: return Mips::FCOND_OR; case ISD::SETNE: case ISD::SETONE: return Mips::FCOND_ONE; case ISD::SETUEQ: return Mips::FCOND_UEQ; } } /// This function returns true if the floating point conditional branches and /// conditional moves which use condition code CC should be inverted. static bool invertFPCondCodeUser(Mips::CondCode CC) { if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) return false; assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && "Illegal Condition Code"); return true; } // Creates and returns an FPCmp node from a setcc node. // Returns Op if setcc is not a floating point comparison. static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) { // must be a SETCC node if (Op.getOpcode() != ISD::SETCC) return Op; SDValue LHS = Op.getOperand(0); if (!LHS.getValueType().isFloatingPoint()) return Op; SDValue RHS = Op.getOperand(1); SDLoc DL(Op); // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of // node if necessary. ISD::CondCode CC = cast(Op.getOperand(2))->get(); return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS, DAG.getConstant(condCodeToFCC(CC), MVT::i32)); } // Creates and returns a CMovFPT/F node. static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True, SDValue False, SDLoc DL) { ConstantSDNode *CC = cast(Cond.getOperand(2)); bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue()); SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, True.getValueType(), True, FCC0, False, Cond); } static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue SetCC = N->getOperand(0); if ((SetCC.getOpcode() != ISD::SETCC) || !SetCC.getOperand(0).getValueType().isInteger()) return SDValue(); SDValue False = N->getOperand(2); EVT FalseTy = False.getValueType(); if (!FalseTy.isInteger()) return SDValue(); ConstantSDNode *FalseC = dyn_cast(False); // If the RHS (False) is 0, we swap the order of the operands // of ISD::SELECT (obviously also inverting the condition) so that we can // take advantage of conditional moves using the $0 register. // Example: // return (a != 0) ? x : 0; // load $reg, x // movz $reg, $0, a if (!FalseC) return SDValue(); const SDLoc DL(N); if (!FalseC->getZExtValue()) { ISD::CondCode CC = cast(SetCC.getOperand(2))->get(); SDValue True = N->getOperand(1); SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); } // If both operands are integer constants there's a possibility that we // can do some interesting optimizations. SDValue True = N->getOperand(1); ConstantSDNode *TrueC = dyn_cast(True); if (!TrueC || !True.getValueType().isInteger()) return SDValue(); // We'll also ignore MVT::i64 operands as this optimizations proves // to be ineffective because of the required sign extensions as the result // of a SETCC operator is always MVT::i32 for non-vector types. if (True.getValueType() == MVT::i64) return SDValue(); int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue(); // 1) (a < x) ? y : y-1 // slti $reg1, a, x // addiu $reg2, $reg1, y-1 if (Diff == 1) return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False); // 2) (a < x) ? y-1 : y // slti $reg1, a, x // xor $reg1, $reg1, 1 // addiu $reg2, $reg1, y-1 if (Diff == -1) { ISD::CondCode CC = cast(SetCC.getOperand(2))->get(); SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True); } // Couldn't optimize. return SDValue(); } static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { // Pattern match EXT. // $dst = and ((sra or srl) $src , pos), (2**size - 1) // => ext $dst, $src, size, pos if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) return SDValue(); SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1); unsigned ShiftRightOpc = ShiftRight.getOpcode(); // Op's first operand must be a shift right. if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL) return SDValue(); // The second operand of the shift must be an immediate. ConstantSDNode *CN; if (!(CN = dyn_cast(ShiftRight.getOperand(1)))) return SDValue(); uint64_t Pos = CN->getZExtValue(); uint64_t SMPos, SMSize; // Op's second operand must be a shifted mask. if (!(CN = dyn_cast(Mask)) || !isShiftedMask(CN->getZExtValue(), SMPos, SMSize)) return SDValue(); // Return if the shifted mask does not start at bit 0 or the sum of its size // and Pos exceeds the word's size. EVT ValTy = N->getValueType(0); if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) return SDValue(); return DAG.getNode(MipsISD::Ext, SDLoc(N), ValTy, ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32), DAG.getConstant(SMSize, MVT::i32)); } static SDValue performORCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { // Pattern match INS. // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 // => ins $dst, $src, size, pos, $src1 if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert()) return SDValue(); SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); uint64_t SMPos0, SMSize0, SMPos1, SMSize1; ConstantSDNode *CN; // See if Op's first operand matches (and $src1 , mask0). if (And0.getOpcode() != ISD::AND) return SDValue(); if (!(CN = dyn_cast(And0.getOperand(1))) || !isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) return SDValue(); // See if Op's second operand matches (and (shl $src, pos), mask1). if (And1.getOpcode() != ISD::AND) return SDValue(); if (!(CN = dyn_cast(And1.getOperand(1))) || !isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) return SDValue(); // The shift masks must have the same position and size. if (SMPos0 != SMPos1 || SMSize0 != SMSize1) return SDValue(); SDValue Shl = And1.getOperand(0); if (Shl.getOpcode() != ISD::SHL) return SDValue(); if (!(CN = dyn_cast(Shl.getOperand(1)))) return SDValue(); unsigned Shamt = CN->getZExtValue(); // Return if the shift amount and the first bit position of mask are not the // same. EVT ValTy = N->getValueType(0); if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) return SDValue(); return DAG.getNode(MipsISD::Ins, SDLoc(N), ValTy, Shl.getOperand(0), DAG.getConstant(SMPos0, MVT::i32), DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0)); } static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const MipsSubtarget &Subtarget) { // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt)) if (DCI.isBeforeLegalizeOps()) return SDValue(); SDValue Add = N->getOperand(1); if (Add.getOpcode() != ISD::ADD) return SDValue(); SDValue Lo = Add.getOperand(1); if ((Lo.getOpcode() != MipsISD::Lo) || (Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable)) return SDValue(); EVT ValTy = N->getValueType(0); SDLoc DL(N); SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0), Add.getOperand(0)); return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo); } SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; unsigned Opc = N->getOpcode(); switch (Opc) { default: break; case ISD::SDIVREM: case ISD::UDIVREM: return performDivRemCombine(N, DAG, DCI, Subtarget); case ISD::SELECT: return performSELECTCombine(N, DAG, DCI, Subtarget); case ISD::AND: return performANDCombine(N, DAG, DCI, Subtarget); case ISD::OR: return performORCombine(N, DAG, DCI, Subtarget); case ISD::ADD: return performADDCombine(N, DAG, DCI, Subtarget); } return SDValue(); } void MipsTargetLowering::LowerOperationWrapper(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { SDValue Res = LowerOperation(SDValue(N, 0), DAG); for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I) Results.push_back(Res.getValue(I)); } void MipsTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl &Results, SelectionDAG &DAG) const { return LowerOperationWrapper(N, Results, DAG); } SDValue MipsTargetLowering:: LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { case ISD::BR_JT: return lowerBR_JT(Op, DAG); case ISD::BRCOND: return lowerBRCOND(Op, DAG); case ISD::ConstantPool: return lowerConstantPool(Op, DAG); case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG); case ISD::BlockAddress: return lowerBlockAddress(Op, DAG); case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return lowerJumpTable(Op, DAG); case ISD::SELECT: return lowerSELECT(Op, DAG); case ISD::SELECT_CC: return lowerSELECT_CC(Op, DAG); case ISD::SETCC: return lowerSETCC(Op, DAG); case ISD::VASTART: return lowerVASTART(Op, DAG); case ISD::VAARG: return lowerVAARG(Op, DAG); case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG); case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG); case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG); case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG); case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG); case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG); case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true); case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false); case ISD::LOAD: return lowerLOAD(Op, DAG); case ISD::STORE: return lowerSTORE(Op, DAG); case ISD::ADD: return lowerADD(Op, DAG); case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG); } return SDValue(); } //===----------------------------------------------------------------------===// // Lower helper functions //===----------------------------------------------------------------------===// // addLiveIn - This helper function adds the specified physical register to the // MachineFunction as a live in value. It also creates a corresponding // virtual register for it. static unsigned addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) { unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); MF.getRegInfo().addLiveIn(PReg, VReg); return VReg; } static MachineBasicBlock *insertDivByZeroTrap(MachineInstr *MI, MachineBasicBlock &MBB, const TargetInstrInfo &TII, bool Is64Bit) { if (NoZeroDivCheck) return &MBB; // Insert instruction "teq $divisor_reg, $zero, 7". MachineBasicBlock::iterator I(MI); MachineInstrBuilder MIB; MachineOperand &Divisor = MI->getOperand(2); MIB = BuildMI(MBB, std::next(I), MI->getDebugLoc(), TII.get(Mips::TEQ)) .addReg(Divisor.getReg(), getKillRegState(Divisor.isKill())) .addReg(Mips::ZERO).addImm(7); // Use the 32-bit sub-register if this is a 64-bit division. if (Is64Bit) MIB->getOperand(0).setSubReg(Mips::sub_32); // Clear Divisor's kill flag. Divisor.setIsKill(false); // We would normally delete the original instruction here but in this case // we only needed to inject an additional instruction rather than replace it. return &MBB; } MachineBasicBlock * MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { default: llvm_unreachable("Unexpected instr type to insert"); case Mips::ATOMIC_LOAD_ADD_I8: return emitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu); case Mips::ATOMIC_LOAD_ADD_I16: return emitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu); case Mips::ATOMIC_LOAD_ADD_I32: return emitAtomicBinary(MI, BB, 4, Mips::ADDu); case Mips::ATOMIC_LOAD_ADD_I64: return emitAtomicBinary(MI, BB, 8, Mips::DADDu); case Mips::ATOMIC_LOAD_AND_I8: return emitAtomicBinaryPartword(MI, BB, 1, Mips::AND); case Mips::ATOMIC_LOAD_AND_I16: return emitAtomicBinaryPartword(MI, BB, 2, Mips::AND); case Mips::ATOMIC_LOAD_AND_I32: return emitAtomicBinary(MI, BB, 4, Mips::AND); case Mips::ATOMIC_LOAD_AND_I64: return emitAtomicBinary(MI, BB, 8, Mips::AND64); case Mips::ATOMIC_LOAD_OR_I8: return emitAtomicBinaryPartword(MI, BB, 1, Mips::OR); case Mips::ATOMIC_LOAD_OR_I16: return emitAtomicBinaryPartword(MI, BB, 2, Mips::OR); case Mips::ATOMIC_LOAD_OR_I32: return emitAtomicBinary(MI, BB, 4, Mips::OR); case Mips::ATOMIC_LOAD_OR_I64: return emitAtomicBinary(MI, BB, 8, Mips::OR64); case Mips::ATOMIC_LOAD_XOR_I8: return emitAtomicBinaryPartword(MI, BB, 1, Mips::XOR); case Mips::ATOMIC_LOAD_XOR_I16: return emitAtomicBinaryPartword(MI, BB, 2, Mips::XOR); case Mips::ATOMIC_LOAD_XOR_I32: return emitAtomicBinary(MI, BB, 4, Mips::XOR); case Mips::ATOMIC_LOAD_XOR_I64: return emitAtomicBinary(MI, BB, 8, Mips::XOR64); case Mips::ATOMIC_LOAD_NAND_I8: return emitAtomicBinaryPartword(MI, BB, 1, 0, true); case Mips::ATOMIC_LOAD_NAND_I16: return emitAtomicBinaryPartword(MI, BB, 2, 0, true); case Mips::ATOMIC_LOAD_NAND_I32: return emitAtomicBinary(MI, BB, 4, 0, true); case Mips::ATOMIC_LOAD_NAND_I64: return emitAtomicBinary(MI, BB, 8, 0, true); case Mips::ATOMIC_LOAD_SUB_I8: return emitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu); case Mips::ATOMIC_LOAD_SUB_I16: return emitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu); case Mips::ATOMIC_LOAD_SUB_I32: return emitAtomicBinary(MI, BB, 4, Mips::SUBu); case Mips::ATOMIC_LOAD_SUB_I64: return emitAtomicBinary(MI, BB, 8, Mips::DSUBu); case Mips::ATOMIC_SWAP_I8: return emitAtomicBinaryPartword(MI, BB, 1, 0); case Mips::ATOMIC_SWAP_I16: return emitAtomicBinaryPartword(MI, BB, 2, 0); case Mips::ATOMIC_SWAP_I32: return emitAtomicBinary(MI, BB, 4, 0); case Mips::ATOMIC_SWAP_I64: return emitAtomicBinary(MI, BB, 8, 0); case Mips::ATOMIC_CMP_SWAP_I8: return emitAtomicCmpSwapPartword(MI, BB, 1); case Mips::ATOMIC_CMP_SWAP_I16: return emitAtomicCmpSwapPartword(MI, BB, 2); case Mips::ATOMIC_CMP_SWAP_I32: return emitAtomicCmpSwap(MI, BB, 4); case Mips::ATOMIC_CMP_SWAP_I64: return emitAtomicCmpSwap(MI, BB, 8); case Mips::PseudoSDIV: case Mips::PseudoUDIV: case Mips::DIV: case Mips::DIVU: case Mips::MOD: case Mips::MODU: return insertDivByZeroTrap( MI, *BB, *getTargetMachine().getSubtargetImpl()->getInstrInfo(), false); case Mips::PseudoDSDIV: case Mips::PseudoDUDIV: case Mips::DDIV: case Mips::DDIVU: case Mips::DMOD: case Mips::DMODU: return insertDivByZeroTrap( MI, *BB, *getTargetMachine().getSubtargetImpl()->getInstrInfo(), true); case Mips::SEL_D: return emitSEL_D(MI, BB); } } // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) MachineBasicBlock * MipsTargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, bool Nand) const { assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary."); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); const TargetInstrInfo *TII = getTargetMachine().getSubtargetImpl()->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned LL, SC, AND, NOR, ZERO, BEQ; if (Size == 4) { if (isMicroMips) { LL = Mips::LL_MM; SC = Mips::SC_MM; } else { LL = Subtarget.hasMips32r6() ? Mips::LL_R6 : Mips::LL; SC = Subtarget.hasMips32r6() ? Mips::SC_R6 : Mips::SC; } AND = Mips::AND; NOR = Mips::NOR; ZERO = Mips::ZERO; BEQ = Mips::BEQ; } else { LL = Subtarget.hasMips64r6() ? Mips::LLD_R6 : Mips::LLD; SC = Subtarget.hasMips64r6() ? Mips::SCD_R6 : Mips::SCD; AND = Mips::AND64; NOR = Mips::NOR64; ZERO = Mips::ZERO_64; BEQ = Mips::BEQ64; } unsigned OldVal = MI->getOperand(0).getReg(); unsigned Ptr = MI->getOperand(1).getReg(); unsigned Incr = MI->getOperand(2).getReg(); unsigned StoreVal = RegInfo.createVirtualRegister(RC); unsigned AndRes = RegInfo.createVirtualRegister(RC); unsigned Success = RegInfo.createVirtualRegister(RC); // insert new blocks after the current block const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = BB; ++It; MF->insert(It, loopMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); loopMBB->addSuccessor(loopMBB); loopMBB->addSuccessor(exitMBB); // loopMBB: // ll oldval, 0(ptr) // storeval, oldval, incr // sc success, storeval, 0(ptr) // beq success, $0, loopMBB BB = loopMBB; BuildMI(BB, DL, TII->get(LL), OldVal).addReg(Ptr).addImm(0); if (Nand) { // and andres, oldval, incr // nor storeval, $0, andres BuildMI(BB, DL, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr); BuildMI(BB, DL, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes); } else if (BinOpcode) { // storeval, oldval, incr BuildMI(BB, DL, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr); } else { StoreVal = Incr; } BuildMI(BB, DL, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0); BuildMI(BB, DL, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB); MI->eraseFromParent(); // The instruction is gone now. return exitMBB; } MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg( MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg, unsigned SrcReg) const { const TargetInstrInfo *TII = getTargetMachine().getSubtargetImpl()->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); if (Subtarget.hasMips32r2() && Size == 1) { BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg); return BB; } if (Subtarget.hasMips32r2() && Size == 2) { BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg); return BB; } MachineFunction *MF = BB->getParent(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *RC = getRegClassFor(MVT::i32); unsigned ScrReg = RegInfo.createVirtualRegister(RC); assert(Size < 32); int64_t ShiftImm = 32 - (Size * 8); BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm); BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm); return BB; } MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword( MachineInstr *MI, MachineBasicBlock *BB, unsigned Size, unsigned BinOpcode, bool Nand) const { assert((Size == 1 || Size == 2) && "Unsupported size for EmitAtomicBinaryPartial."); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *RC = getRegClassFor(MVT::i32); const TargetInstrInfo *TII = getTargetMachine().getSubtargetImpl()->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned Dest = MI->getOperand(0).getReg(); unsigned Ptr = MI->getOperand(1).getReg(); unsigned Incr = MI->getOperand(2).getReg(); unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); unsigned Mask = RegInfo.createVirtualRegister(RC); unsigned Mask2 = RegInfo.createVirtualRegister(RC); unsigned NewVal = RegInfo.createVirtualRegister(RC); unsigned OldVal = RegInfo.createVirtualRegister(RC); unsigned Incr2 = RegInfo.createVirtualRegister(RC); unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); unsigned MaskUpper = RegInfo.createVirtualRegister(RC); unsigned AndRes = RegInfo.createVirtualRegister(RC); unsigned BinOpRes = RegInfo.createVirtualRegister(RC); unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); unsigned StoreVal = RegInfo.createVirtualRegister(RC); unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); unsigned SrlRes = RegInfo.createVirtualRegister(RC); unsigned Success = RegInfo.createVirtualRegister(RC); // insert new blocks after the current block const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = BB; ++It; MF->insert(It, loopMBB); MF->insert(It, sinkMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(loopMBB); loopMBB->addSuccessor(loopMBB); loopMBB->addSuccessor(sinkMBB); sinkMBB->addSuccessor(exitMBB); // thisMBB: // addiu masklsb2,$0,-4 # 0xfffffffc // and alignedaddr,ptr,masklsb2 // andi ptrlsb2,ptr,3 // sll shiftamt,ptrlsb2,3 // ori maskupper,$0,255 # 0xff // sll mask,maskupper,shiftamt // nor mask2,$0,mask // sll incr2,incr,shiftamt int64_t MaskImm = (Size == 1) ? 255 : 65535; BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2) .addReg(Mips::ZERO).addImm(-4); BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr) .addReg(Ptr).addReg(MaskLSB2); BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); if (Subtarget.isLittle()) { BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); } else { unsigned Off = RegInfo.createVirtualRegister(RC); BuildMI(BB, DL, TII->get(Mips::XORi), Off) .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); } BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) .addReg(Mips::ZERO).addImm(MaskImm); BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) .addReg(MaskUpper).addReg(ShiftAmt); BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt); // atomic.load.binop // loopMBB: // ll oldval,0(alignedaddr) // binop binopres,oldval,incr2 // and newval,binopres,mask // and maskedoldval0,oldval,mask2 // or storeval,maskedoldval0,newval // sc success,storeval,0(alignedaddr) // beq success,$0,loopMBB // atomic.swap // loopMBB: // ll oldval,0(alignedaddr) // and newval,incr2,mask // and maskedoldval0,oldval,mask2 // or storeval,maskedoldval0,newval // sc success,storeval,0(alignedaddr) // beq success,$0,loopMBB BB = loopMBB; BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0); if (Nand) { // and andres, oldval, incr2 // nor binopres, $0, andres // and newval, binopres, mask BuildMI(BB, DL, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2); BuildMI(BB, DL, TII->get(Mips::NOR), BinOpRes) .addReg(Mips::ZERO).addReg(AndRes); BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); } else if (BinOpcode) { // binopres, oldval, incr2 // and newval, binopres, mask BuildMI(BB, DL, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2); BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); } else { // atomic.swap // and newval, incr2, mask BuildMI(BB, DL, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask); } BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) .addReg(OldVal).addReg(Mask2); BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) .addReg(MaskedOldVal0).addReg(NewVal); BuildMI(BB, DL, TII->get(Mips::SC), Success) .addReg(StoreVal).addReg(AlignedAddr).addImm(0); BuildMI(BB, DL, TII->get(Mips::BEQ)) .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); // sinkMBB: // and maskedoldval1,oldval,mask // srl srlres,maskedoldval1,shiftamt // sign_extend dest,srlres BB = sinkMBB; BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) .addReg(OldVal).addReg(Mask); BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) .addReg(MaskedOldVal1).addReg(ShiftAmt); BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); MI->eraseFromParent(); // The instruction is gone now. return exitMBB; } MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwap(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const { assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap."); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); const TargetInstrInfo *TII = getTargetMachine().getSubtargetImpl()->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned LL, SC, ZERO, BNE, BEQ; if (Size == 4) { LL = isMicroMips ? Mips::LL_MM : Mips::LL; SC = isMicroMips ? Mips::SC_MM : Mips::SC; ZERO = Mips::ZERO; BNE = Mips::BNE; BEQ = Mips::BEQ; } else { LL = Mips::LLD; SC = Mips::SCD; ZERO = Mips::ZERO_64; BNE = Mips::BNE64; BEQ = Mips::BEQ64; } unsigned Dest = MI->getOperand(0).getReg(); unsigned Ptr = MI->getOperand(1).getReg(); unsigned OldVal = MI->getOperand(2).getReg(); unsigned NewVal = MI->getOperand(3).getReg(); unsigned Success = RegInfo.createVirtualRegister(RC); // insert new blocks after the current block const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = BB; ++It; MF->insert(It, loop1MBB); MF->insert(It, loop2MBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // thisMBB: // ... // fallthrough --> loop1MBB BB->addSuccessor(loop1MBB); loop1MBB->addSuccessor(exitMBB); loop1MBB->addSuccessor(loop2MBB); loop2MBB->addSuccessor(loop1MBB); loop2MBB->addSuccessor(exitMBB); // loop1MBB: // ll dest, 0(ptr) // bne dest, oldval, exitMBB BB = loop1MBB; BuildMI(BB, DL, TII->get(LL), Dest).addReg(Ptr).addImm(0); BuildMI(BB, DL, TII->get(BNE)) .addReg(Dest).addReg(OldVal).addMBB(exitMBB); // loop2MBB: // sc success, newval, 0(ptr) // beq success, $0, loop1MBB BB = loop2MBB; BuildMI(BB, DL, TII->get(SC), Success) .addReg(NewVal).addReg(Ptr).addImm(0); BuildMI(BB, DL, TII->get(BEQ)) .addReg(Success).addReg(ZERO).addMBB(loop1MBB); MI->eraseFromParent(); // The instruction is gone now. return exitMBB; } MachineBasicBlock * MipsTargetLowering::emitAtomicCmpSwapPartword(MachineInstr *MI, MachineBasicBlock *BB, unsigned Size) const { assert((Size == 1 || Size == 2) && "Unsupported size for EmitAtomicCmpSwapPartial."); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); const TargetRegisterClass *RC = getRegClassFor(MVT::i32); const TargetInstrInfo *TII = getTargetMachine().getSubtargetImpl()->getInstrInfo(); DebugLoc DL = MI->getDebugLoc(); unsigned Dest = MI->getOperand(0).getReg(); unsigned Ptr = MI->getOperand(1).getReg(); unsigned CmpVal = MI->getOperand(2).getReg(); unsigned NewVal = MI->getOperand(3).getReg(); unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); unsigned Mask = RegInfo.createVirtualRegister(RC); unsigned Mask2 = RegInfo.createVirtualRegister(RC); unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); unsigned OldVal = RegInfo.createVirtualRegister(RC); unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); unsigned MaskUpper = RegInfo.createVirtualRegister(RC); unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); unsigned StoreVal = RegInfo.createVirtualRegister(RC); unsigned SrlRes = RegInfo.createVirtualRegister(RC); unsigned Success = RegInfo.createVirtualRegister(RC); // insert new blocks after the current block const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); MachineFunction::iterator It = BB; ++It; MF->insert(It, loop1MBB); MF->insert(It, loop2MBB); MF->insert(It, sinkMBB); MF->insert(It, exitMBB); // Transfer the remainder of BB and its successor edges to exitMBB. exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(loop1MBB); loop1MBB->addSuccessor(sinkMBB); loop1MBB->addSuccessor(loop2MBB); loop2MBB->addSuccessor(loop1MBB); loop2MBB->addSuccessor(sinkMBB); sinkMBB->addSuccessor(exitMBB); // FIXME: computation of newval2 can be moved to loop2MBB. // thisMBB: // addiu masklsb2,$0,-4 # 0xfffffffc // and alignedaddr,ptr,masklsb2 // andi ptrlsb2,ptr,3 // sll shiftamt,ptrlsb2,3 // ori maskupper,$0,255 # 0xff // sll mask,maskupper,shiftamt // nor mask2,$0,mask // andi maskedcmpval,cmpval,255 // sll shiftedcmpval,maskedcmpval,shiftamt // andi maskednewval,newval,255 // sll shiftednewval,maskednewval,shiftamt int64_t MaskImm = (Size == 1) ? 255 : 65535; BuildMI(BB, DL, TII->get(Mips::ADDiu), MaskLSB2) .addReg(Mips::ZERO).addImm(-4); BuildMI(BB, DL, TII->get(Mips::AND), AlignedAddr) .addReg(Ptr).addReg(MaskLSB2); BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); if (Subtarget.isLittle()) { BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); } else { unsigned Off = RegInfo.createVirtualRegister(RC); BuildMI(BB, DL, TII->get(Mips::XORi), Off) .addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2); BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3); } BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper) .addReg(Mips::ZERO).addImm(MaskImm); BuildMI(BB, DL, TII->get(Mips::SLLV), Mask) .addReg(MaskUpper).addReg(ShiftAmt); BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal) .addReg(CmpVal).addImm(MaskImm); BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal) .addReg(MaskedCmpVal).addReg(ShiftAmt); BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal) .addReg(NewVal).addImm(MaskImm); BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal) .addReg(MaskedNewVal).addReg(ShiftAmt); // loop1MBB: // ll oldval,0(alginedaddr) // and maskedoldval0,oldval,mask // bne maskedoldval0,shiftedcmpval,sinkMBB BB = loop1MBB; BuildMI(BB, DL, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0); BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal0) .addReg(OldVal).addReg(Mask); BuildMI(BB, DL, TII->get(Mips::BNE)) .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB); // loop2MBB: // and maskedoldval1,oldval,mask2 // or storeval,maskedoldval1,shiftednewval // sc success,storeval,0(alignedaddr) // beq success,$0,loop1MBB BB = loop2MBB; BuildMI(BB, DL, TII->get(Mips::AND), MaskedOldVal1) .addReg(OldVal).addReg(Mask2); BuildMI(BB, DL, TII->get(Mips::OR), StoreVal) .addReg(MaskedOldVal1).addReg(ShiftedNewVal); BuildMI(BB, DL, TII->get(Mips::SC), Success) .addReg(StoreVal).addReg(AlignedAddr).addImm(0); BuildMI(BB, DL, TII->get(Mips::BEQ)) .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); // sinkMBB: // srl srlres,maskedoldval0,shiftamt // sign_extend dest,srlres BB = sinkMBB; BuildMI(BB, DL, TII->get(Mips::SRLV), SrlRes) .addReg(MaskedOldVal0).addReg(ShiftAmt); BB = emitSignExtendToI32InReg(MI, BB, Size, Dest, SrlRes); MI->eraseFromParent(); // The instruction is gone now. return exitMBB; } MachineBasicBlock *MipsTargetLowering::emitSEL_D(MachineInstr *MI, MachineBasicBlock *BB) const { MachineFunction *MF = BB->getParent(); const TargetRegisterInfo *TRI = getTargetMachine().getSubtargetImpl()->getRegisterInfo(); const TargetInstrInfo *TII = getTargetMachine().getSubtargetImpl()->getInstrInfo(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); DebugLoc DL = MI->getDebugLoc(); MachineBasicBlock::iterator II(MI); unsigned Fc = MI->getOperand(1).getReg(); const auto &FGR64RegClass = TRI->getRegClass(Mips::FGR64RegClassID); unsigned Fc2 = RegInfo.createVirtualRegister(FGR64RegClass); BuildMI(*BB, II, DL, TII->get(Mips::SUBREG_TO_REG), Fc2) .addImm(0) .addReg(Fc) .addImm(Mips::sub_lo); // We don't erase the original instruction, we just replace the condition // register with the 64-bit super-register. MI->getOperand(1).setReg(Fc2); return BB; } //===----------------------------------------------------------------------===// // Misc Lower Operation implementation //===----------------------------------------------------------------------===// SDValue MipsTargetLowering::lowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); SDLoc DL(Op); EVT PTy = getPointerTy(); unsigned EntrySize = DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(*getDataLayout()); Index = DAG.getNode(ISD::MUL, DL, PTy, Index, DAG.getConstant(EntrySize, PTy)); SDValue Addr = DAG.getNode(ISD::ADD, DL, PTy, Index, Table); EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); Addr = DAG.getExtLoad(ISD::SEXTLOAD, DL, PTy, Chain, Addr, MachinePointerInfo::getJumpTable(), MemVT, false, false, false, 0); Chain = Addr.getValue(1); if ((getTargetMachine().getRelocationModel() == Reloc::PIC_) || Subtarget.isABI_N64()) { // For PIC, the sequence is: // BRIND(load(Jumptable + index) + RelocBase) // RelocBase can be JumpTable, GOT or some sort of global base. Addr = DAG.getNode(ISD::ADD, DL, PTy, Addr, getPICJumpTableRelocBase(Table, DAG)); } return DAG.getNode(ISD::BRIND, DL, MVT::Other, Chain, Addr); } SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const { // The first operand is the chain, the second is the condition, the third is // the block to branch to if the condition is true. SDValue Chain = Op.getOperand(0); SDValue Dest = Op.getOperand(2); SDLoc DL(Op); assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); SDValue CondRes = createFPCmp(DAG, Op.getOperand(1)); // Return if flag is not set by a floating point comparison. if (CondRes.getOpcode() != MipsISD::FPCmp) return Op; SDValue CCNode = CondRes.getOperand(2); Mips::CondCode CC = (Mips::CondCode)cast(CCNode)->getZExtValue(); unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T; SDValue BrCode = DAG.getConstant(Opc, MVT::i32); SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32); return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode, FCC0, Dest, CondRes); } SDValue MipsTargetLowering:: lowerSELECT(SDValue Op, SelectionDAG &DAG) const { assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); SDValue Cond = createFPCmp(DAG, Op.getOperand(0)); // Return if flag is not set by a floating point comparison. if (Cond.getOpcode() != MipsISD::FPCmp) return Op; return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), SDLoc(Op)); } SDValue MipsTargetLowering:: lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); EVT Ty = Op.getOperand(0).getValueType(); SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(*DAG.getContext(), Ty), Op.getOperand(0), Op.getOperand(1), Op.getOperand(4)); return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2), Op.getOperand(3)); } SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const { assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6()); SDValue Cond = createFPCmp(DAG, Op); assert(Cond.getOpcode() == MipsISD::FPCmp && "Floating point operand expected."); SDValue True = DAG.getConstant(1, MVT::i32); SDValue False = DAG.getConstant(0, MVT::i32); return createCMovFP(DAG, Cond, True, False, SDLoc(Op)); } SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { // FIXME there isn't actually debug info here SDLoc DL(Op); EVT Ty = Op.getValueType(); GlobalAddressSDNode *N = cast(Op); const GlobalValue *GV = N->getGlobal(); if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !Subtarget.isABI_N64()) { const MipsTargetObjectFile &TLOF = (const MipsTargetObjectFile&)getObjFileLowering(); // %gp_rel relocation if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0, MipsII::MO_GPREL); SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, DL, DAG.getVTList(MVT::i32), GA); SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32); return DAG.getNode(ISD::ADD, DL, MVT::i32, GPReg, GPRelNode); } // %hi/%lo relocation return getAddrNonPIC(N, Ty, DAG); } if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa(GV))) return getAddrLocal(N, Ty, DAG, Subtarget.isABI_N32() || Subtarget.isABI_N64()); if (LargeGOT) return getAddrGlobalLargeGOT(N, Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16, DAG.getEntryNode(), MachinePointerInfo::getGOT()); return getAddrGlobal(N, Ty, DAG, (Subtarget.isABI_N32() || Subtarget.isABI_N64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16, DAG.getEntryNode(), MachinePointerInfo::getGOT()); } SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { BlockAddressSDNode *N = cast(Op); EVT Ty = Op.getValueType(); if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !Subtarget.isABI_N64()) return getAddrNonPIC(N, Ty, DAG); return getAddrLocal(N, Ty, DAG, Subtarget.isABI_N32() || Subtarget.isABI_N64()); } SDValue MipsTargetLowering:: lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { // If the relocation model is PIC, use the General Dynamic TLS Model or // Local Dynamic TLS model, otherwise use the Initial Exec or // Local Exec TLS Model. GlobalAddressSDNode *GA = cast(Op); SDLoc DL(GA); const GlobalValue *GV = GA->getGlobal(); EVT PtrVT = getPointerTy(); TLSModel::Model model = getTargetMachine().getTLSModel(GV); if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) { // General Dynamic and Local Dynamic TLS Model. unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM : MipsII::MO_TLSGD; SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag); SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), TGA); unsigned PtrSize = PtrVT.getSizeInBits(); IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); ArgListTy Args; ArgListEntry Entry; Entry.Node = Argument; Entry.Ty = PtrTy; Args.push_back(Entry); TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(DL).setChain(DAG.getEntryNode()) .setCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args), 0); std::pair CallResult = LowerCallTo(CLI); SDValue Ret = CallResult.first; if (model != TLSModel::LocalDynamic) return Ret; SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, MipsII::MO_DTPREL_HI); SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, MipsII::MO_DTPREL_LO); SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret); return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo); } SDValue Offset; if (model == TLSModel::InitialExec) { // Initial Exec TLS Model SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, MipsII::MO_GOTTPREL); TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT), TGA); Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo(), false, false, false, 0); } else { // Local Exec TLS Model assert(model == TLSModel::LocalExec); SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, MipsII::MO_TPREL_HI); SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, MipsII::MO_TPREL_LO); SDValue Hi = DAG.getNode(MipsISD::Hi, DL, PtrVT, TGAHi); SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo); Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); } SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT); return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset); } SDValue MipsTargetLowering:: lowerJumpTable(SDValue Op, SelectionDAG &DAG) const { JumpTableSDNode *N = cast(Op); EVT Ty = Op.getValueType(); if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !Subtarget.isABI_N64()) return getAddrNonPIC(N, Ty, DAG); return getAddrLocal(N, Ty, DAG, Subtarget.isABI_N32() || Subtarget.isABI_N64()); } SDValue MipsTargetLowering:: lowerConstantPool(SDValue Op, SelectionDAG &DAG) const { // gp_rel relocation // FIXME: we should reference the constant pool using small data sections, // but the asm printer currently doesn't support this feature without // hacking it. This feature should come soon so we can uncomment the // stuff below. //if (IsInSmallSection(C->getType())) { // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP); // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode); ConstantPoolSDNode *N = cast(Op); EVT Ty = Op.getValueType(); if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !Subtarget.isABI_N64()) return getAddrNonPIC(N, Ty, DAG); return getAddrLocal(N, Ty, DAG, Subtarget.isABI_N32() || Subtarget.isABI_N64()); } SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MipsFunctionInfo *FuncInfo = MF.getInfo(); SDLoc DL(Op); SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), getPointerTy()); // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); EVT VT = Node->getValueType(0); SDValue Chain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); unsigned Align = Node->getConstantOperandVal(3); const Value *SV = cast(Node->getOperand(2))->getValue(); SDLoc DL(Node); unsigned ArgSlotSizeInBytes = (Subtarget.isABI_N32() || Subtarget.isABI_N64()) ? 8 : 4; SDValue VAListLoad = DAG.getLoad(getPointerTy(), DL, Chain, VAListPtr, MachinePointerInfo(SV), false, false, false, 0); SDValue VAList = VAListLoad; // Re-align the pointer if necessary. // It should only ever be necessary for 64-bit types on O32 since the minimum // argument alignment is the same as the maximum type alignment for N32/N64. // // FIXME: We currently align too often. The code generator doesn't notice // when the pointer is still aligned from the last va_arg (or pair of // va_args for the i64 on O32 case). if (Align > getMinStackArgumentAlignment()) { assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2"); VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, DAG.getConstant(Align - 1, VAList.getValueType())); VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList, DAG.getConstant(-(int64_t)Align, VAList.getValueType())); } // Increment the pointer, VAList, to the next vaarg. unsigned ArgSizeInBytes = getDataLayout()->getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())); SDValue Tmp3 = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList, DAG.getConstant(RoundUpToAlignment(ArgSizeInBytes, ArgSlotSizeInBytes), VAList.getValueType())); // Store the incremented VAList to the legalized pointer Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr, MachinePointerInfo(SV), false, false, 0); // In big-endian mode we must adjust the pointer when the load size is smaller // than the argument slot size. We must also reduce the known alignment to // match. For example in the N64 ABI, we must add 4 bytes to the offset to get // the correct half of the slot, and reduce the alignment from 8 (slot // alignment) down to 4 (type alignment). if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) { unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes; VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList, DAG.getIntPtrConstant(Adjustment)); } // Load the actual argument out of the pointer VAList return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo(), false, false, false, 0); } static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasExtractInsert) { EVT TyX = Op.getOperand(0).getValueType(); EVT TyY = Op.getOperand(1).getValueType(); SDValue Const1 = DAG.getConstant(1, MVT::i32); SDValue Const31 = DAG.getConstant(31, MVT::i32); SDLoc DL(Op); SDValue Res; // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it // to i32. SDValue X = (TyX == MVT::f32) ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), Const1); SDValue Y = (TyY == MVT::f32) ? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), Const1); if (HasExtractInsert) { // ext E, Y, 31, 1 ; extract bit31 of Y // ins X, E, 31, 1 ; insert extracted bit at bit31 of X SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); } else { // sll SllX, X, 1 // srl SrlX, SllX, 1 // srl SrlY, Y, 31 // sll SllY, SrlX, 31 // or Or, SrlX, SllY SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); } if (TyX == MVT::f32) return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), DAG.getConstant(0, MVT::i32)); return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); } static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasExtractInsert) { unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); SDValue Const1 = DAG.getConstant(1, MVT::i32); SDLoc DL(Op); // Bitcast to integer nodes. SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); if (HasExtractInsert) { // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, DAG.getConstant(WidthY - 1, MVT::i32), Const1); if (WidthX > WidthY) E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); else if (WidthY > WidthX) E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, DAG.getConstant(WidthX - 1, MVT::i32), Const1, X); return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); } // (d)sll SllX, X, 1 // (d)srl SrlX, SllX, 1 // (d)srl SrlY, Y, width(Y)-1 // (d)sll SllY, SrlX, width(Y)-1 // or Or, SrlX, SllY SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, DAG.getConstant(WidthY - 1, MVT::i32)); if (WidthX > WidthY) SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); else if (WidthY > WidthX) SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, DAG.getConstant(WidthX - 1, MVT::i32)); SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); } SDValue MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { if (Subtarget.isGP64bit()) return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert()); return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert()); } SDValue MipsTargetLowering:: lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { // check the depth assert((cast(Op.getOperand(0))->getZExtValue() == 0) && "Frame address can only be determined for current frame."); MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); SDLoc DL(Op); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Subtarget.isABI_N64() ? Mips::FP_64 : Mips::FP, VT); return FrameAddr; } SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); // check the depth assert((cast(Op.getOperand(0))->getZExtValue() == 0) && "Return address can be determined only for current frame."); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MVT VT = Op.getSimpleValueType(); unsigned RA = Subtarget.isABI_N64() ? Mips::RA_64 : Mips::RA; MFI->setReturnAddressIsTaken(true); // Return RA, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT)); return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT); } // An EH_RETURN is the result of lowering llvm.eh.return which in turn is // generated from __builtin_eh_return (offset, handler) // The effect of this is to adjust the stack pointer by "offset" // and then branch to "handler". SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MipsFunctionInfo *MipsFI = MF.getInfo(); MipsFI->setCallsEhReturn(); SDValue Chain = Op.getOperand(0); SDValue Offset = Op.getOperand(1); SDValue Handler = Op.getOperand(2); SDLoc DL(Op); EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32; // Store stack offset in V1, store jump target in V0. Glue CopyToReg and // EH_RETURN nodes, so that instructions are emitted back-to-back. unsigned OffsetReg = Subtarget.isABI_N64() ? Mips::V1_64 : Mips::V1; unsigned AddrReg = Subtarget.isABI_N64() ? Mips::V0_64 : Mips::V0; Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue()); Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1)); return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain, DAG.getRegister(OffsetReg, Ty), DAG.getRegister(AddrReg, getPointerTy()), Chain.getValue(1)); } SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { // FIXME: Need pseudo-fence for 'singlethread' fences // FIXME: Set SType for weaker fences where supported/appropriate. unsigned SType = 0; SDLoc DL(Op); return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0), DAG.getConstant(SType, MVT::i32)); } SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); SDValue Shamt = Op.getOperand(2); // if shamt < 32: // lo = (shl lo, shamt) // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt)) // else: // lo = 0 // hi = (shl lo, shamt[4:0]) SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, DAG.getConstant(-1, MVT::i32)); SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, DAG.getConstant(1, MVT::i32)); SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo, Not); SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt); SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo); SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt); SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, DAG.getConstant(0x20, MVT::i32)); Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, DAG.getConstant(0, MVT::i32), ShiftLeftLo); Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or); SDValue Ops[2] = {Lo, Hi}; return DAG.getMergeValues(Ops, DL); } SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, bool IsSRA) const { SDLoc DL(Op); SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1); SDValue Shamt = Op.getOperand(2); // if shamt < 32: // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt)) // if isSRA: // hi = (sra hi, shamt) // else: // hi = (srl hi, shamt) // else: // if isSRA: // lo = (sra hi, shamt[4:0]) // hi = (sra hi, 31) // else: // lo = (srl hi, shamt[4:0]) // hi = 0 SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt, DAG.getConstant(-1, MVT::i32)); SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, DAG.getConstant(1, MVT::i32)); SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not); SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt); SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo); SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32, Hi, Shamt); SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt, DAG.getConstant(0x20, MVT::i32)); SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi, DAG.getConstant(31, MVT::i32)); Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or); Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32), ShiftRightHi); SDValue Ops[2] = {Lo, Hi}; return DAG.getMergeValues(Ops, DL); } static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD, SDValue Chain, SDValue Src, unsigned Offset) { SDValue Ptr = LD->getBasePtr(); EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT(); EVT BasePtrVT = Ptr.getValueType(); SDLoc DL(LD); SDVTList VTList = DAG.getVTList(VT, MVT::Other); if (Offset) Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, DAG.getConstant(Offset, BasePtrVT)); SDValue Ops[] = { Chain, Ptr, Src }; return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, LD->getMemOperand()); } // Expand an unaligned 32 or 64-bit integer load node. SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const { LoadSDNode *LD = cast(Op); EVT MemVT = LD->getMemoryVT(); if (Subtarget.systemSupportsUnalignedAccess()) return Op; // Return if load is aligned or if MemVT is neither i32 nor i64. if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) || ((MemVT != MVT::i32) && (MemVT != MVT::i64))) return SDValue(); bool IsLittle = Subtarget.isLittle(); EVT VT = Op.getValueType(); ISD::LoadExtType ExtType = LD->getExtensionType(); SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT); assert((VT == MVT::i32) || (VT == MVT::i64)); // Expand // (set dst, (i64 (load baseptr))) // to // (set tmp, (ldl (add baseptr, 7), undef)) // (set dst, (ldr baseptr, tmp)) if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) { SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef, IsLittle ? 7 : 0); return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL, IsLittle ? 0 : 7); } SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef, IsLittle ? 3 : 0); SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL, IsLittle ? 0 : 3); // Expand // (set dst, (i32 (load baseptr))) or // (set dst, (i64 (sextload baseptr))) or // (set dst, (i64 (extload baseptr))) // to // (set tmp, (lwl (add baseptr, 3), undef)) // (set dst, (lwr baseptr, tmp)) if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) || (ExtType == ISD::EXTLOAD)) return LWR; assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD)); // Expand // (set dst, (i64 (zextload baseptr))) // to // (set tmp0, (lwl (add baseptr, 3), undef)) // (set tmp1, (lwr baseptr, tmp0)) // (set tmp2, (shl tmp1, 32)) // (set dst, (srl tmp2, 32)) SDLoc DL(LD); SDValue Const32 = DAG.getConstant(32, MVT::i32); SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32); SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32); SDValue Ops[] = { SRL, LWR.getValue(1) }; return DAG.getMergeValues(Ops, DL); } static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD, SDValue Chain, unsigned Offset) { SDValue Ptr = SD->getBasePtr(), Value = SD->getValue(); EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType(); SDLoc DL(SD); SDVTList VTList = DAG.getVTList(MVT::Other); if (Offset) Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr, DAG.getConstant(Offset, BasePtrVT)); SDValue Ops[] = { Chain, Value, Ptr }; return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT, SD->getMemOperand()); } // Expand an unaligned 32 or 64-bit integer store node. static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG, bool IsLittle) { SDValue Value = SD->getValue(), Chain = SD->getChain(); EVT VT = Value.getValueType(); // Expand // (store val, baseptr) or // (truncstore val, baseptr) // to // (swl val, (add baseptr, 3)) // (swr val, baseptr) if ((VT == MVT::i32) || SD->isTruncatingStore()) { SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain, IsLittle ? 3 : 0); return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3); } assert(VT == MVT::i64); // Expand // (store val, baseptr) // to // (sdl val, (add baseptr, 7)) // (sdr val, baseptr) SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0); return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7); } // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr). static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG) { SDValue Val = SD->getValue(); if (Val.getOpcode() != ISD::FP_TO_SINT) return SDValue(); EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits()); SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy, Val.getOperand(0)); return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(), SD->getPointerInfo(), SD->isVolatile(), SD->isNonTemporal(), SD->getAlignment()); } SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const { StoreSDNode *SD = cast(Op); EVT MemVT = SD->getMemoryVT(); // Lower unaligned integer stores. if (!Subtarget.systemSupportsUnalignedAccess() && (SD->getAlignment() < MemVT.getSizeInBits() / 8) && ((MemVT == MVT::i32) || (MemVT == MVT::i64))) return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle()); return lowerFP_TO_SINT_STORE(SD, DAG); } SDValue MipsTargetLowering::lowerADD(SDValue Op, SelectionDAG &DAG) const { if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR || cast (Op->getOperand(0).getOperand(0))->getZExtValue() != 0 || Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET) return SDValue(); // The pattern // (add (frameaddr 0), (frame_to_args_offset)) // results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to // (add FrameObject, 0) // where FrameObject is a fixed StackObject with offset 0 which points to // the old stack pointer. MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); EVT ValTy = Op->getValueType(0); int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false); SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy); return DAG.getNode(ISD::ADD, SDLoc(Op), ValTy, InArgsAddr, DAG.getConstant(0, ValTy)); } SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const { EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits()); SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy, Op.getOperand(0)); return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc); } //===----------------------------------------------------------------------===// // Calling Convention Implementation //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // TODO: Implement a generic logic using tblgen that can support this. // Mips O32 ABI rules: // --- // i32 - Passed in A0, A1, A2, A3 and stack // f32 - Only passed in f32 registers if no int reg has been used yet to hold // an argument. Otherwise, passed in A1, A2, A3 and stack. // f64 - Only passed in two aliased f32 registers if no int reg has been used // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is // not used, it must be shadowed. If only A3 is available, shadow it and // go to stack. // // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. //===----------------------------------------------------------------------===// static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State, const MCPhysReg *F64Regs) { static const unsigned IntRegsSize = 4, FloatRegsSize = 2; static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 }; static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 }; // Do not process byval args here. if (ArgFlags.isByVal()) return true; // Promote i8 and i16 if (LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } unsigned Reg; // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following // is true: function is vararg, argument is 3rd or higher, there is previous // argument which is not f32 or f64. bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo; unsigned OrigAlign = ArgFlags.getOrigAlign(); bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { Reg = State.AllocateReg(IntRegs, IntRegsSize); // If this is the first part of an i64 arg, // the allocated register must be either A0 or A2. if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) Reg = State.AllocateReg(IntRegs, IntRegsSize); LocVT = MVT::i32; } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { // Allocate int register and shadow next int register. If first // available register is Mips::A1 or Mips::A3, shadow it too. Reg = State.AllocateReg(IntRegs, IntRegsSize); if (Reg == Mips::A1 || Reg == Mips::A3) Reg = State.AllocateReg(IntRegs, IntRegsSize); State.AllocateReg(IntRegs, IntRegsSize); LocVT = MVT::i32; } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { // we are guaranteed to find an available float register if (ValVT == MVT::f32) { Reg = State.AllocateReg(F32Regs, FloatRegsSize); // Shadow int register State.AllocateReg(IntRegs, IntRegsSize); } else { Reg = State.AllocateReg(F64Regs, FloatRegsSize); // Shadow int registers unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize); if (Reg2 == Mips::A1 || Reg2 == Mips::A3) State.AllocateReg(IntRegs, IntRegsSize); State.AllocateReg(IntRegs, IntRegsSize); } } else llvm_unreachable("Cannot handle this ValVT."); if (!Reg) { unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3, OrigAlign); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); } else State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 }; return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); } static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 }; return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs); } static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode); #include "MipsGenCallingConv.inc" //===----------------------------------------------------------------------===// // Call Calling Convention Implementation //===----------------------------------------------------------------------===// // Return next O32 integer argument register. static unsigned getNextIntArgReg(unsigned Reg) { assert((Reg == Mips::A0) || (Reg == Mips::A2)); return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; } SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset, SDValue Chain, SDValue Arg, SDLoc DL, bool IsTailCall, SelectionDAG &DAG) const { if (!IsTailCall) { SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, DAG.getIntPtrConstant(Offset)); return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false, false, 0); } MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false); SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(), /*isVolatile=*/ true, false, 0); } void MipsTargetLowering:: getOpndList(SmallVectorImpl &Ops, std::deque< std::pair > &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const { // Insert node "GP copy globalreg" before call to function. // // R_MIPS_CALL* operators (emitted when non-internal functions are called // in PIC mode) allow symbols to be resolved via lazy binding. // The lazy binding stub requires GP to point to the GOT. if (IsPICCall && !InternalLinkage) { unsigned GPReg = Subtarget.isABI_N64() ? Mips::GP_64 : Mips::GP; EVT Ty = Subtarget.isABI_N64() ? MVT::i64 : MVT::i32; RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty))); } // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. SDValue InFlag; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = getTargetMachine().getSubtargetImpl()->getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(CLI.CallConv); assert(Mask && "Missing call preserved mask for calling convention"); if (Subtarget.inMips16HardFloat()) { if (GlobalAddressSDNode *G = dyn_cast(CLI.Callee)) { llvm::StringRef Sym = G->getGlobal()->getName(); Function *F = G->getGlobal()->getParent()->getFunction(Sym); if (F && F->hasFnAttribute("__Mips16RetHelper")) { Mask = MipsRegisterInfo::getMips16RetHelperMask(); } } } Ops.push_back(CLI.DAG.getRegisterMask(Mask)); if (InFlag.getNode()) Ops.push_back(InFlag); } /// LowerCall - functions arguments are copied from virtual regs to /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. SDValue MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc DL = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &IsTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool IsVarArg = CLI.IsVarArg; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); const TargetFrameLowering *TFL = MF.getSubtarget().getFrameLowering(); MipsFunctionInfo *FuncInfo = MF.getInfo(); bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; // Analyze operands of the call, assigning locations to each operand. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); MipsCC::SpecialCallingConvType SpecialCallingConv = getSpecialCallingConv(Callee); MipsCC MipsCCInfo(CallConv, Subtarget, CCInfo, SpecialCallingConv); MipsCCInfo.analyzeCallOperands(Outs, IsVarArg, Subtarget.abiUsesSoftFloat(), Callee.getNode(), CLI.getArgs()); // Get a count of how many bytes are to be pushed on the stack. unsigned NextStackOffset = CCInfo.getNextStackOffset(); // Check if it's really possible to do a tail call. if (IsTailCall) IsTailCall = isEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset, *MF.getInfo()); if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); if (IsTailCall) ++NumTailCalls; // Chain is the output chain of the last Load/Store or CopyToReg node. // ByValChain is the output chain of the last Memcpy node created for copying // byval arguments to the stack. unsigned StackAlignment = TFL->getStackAlignment(); NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment); SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true); if (!IsTailCall) Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal, DL); SDValue StackPtr = DAG.getCopyFromReg( Chain, DL, Subtarget.isABI_N64() ? Mips::SP_64 : Mips::SP, getPointerTy()); // With EABI is it possible to have 16 args on registers. std::deque< std::pair > RegsToPass; SmallVector MemOpChains; MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin(); // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { SDValue Arg = OutVals[i]; CCValAssign &VA = ArgLocs[i]; MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); ISD::ArgFlagsTy Flags = Outs[i].Flags; // ByVal Arg. if (Flags.isByVal()) { assert(Flags.getByValSize() && "ByVal args of size 0 should have been ignored by front-end."); assert(ByValArg != MipsCCInfo.byval_end()); assert(!IsTailCall && "Do not tail-call optimize if there is a byval argument."); passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg, MipsCCInfo, *ByValArg, Flags, Subtarget.isLittle()); ++ByValArg; continue; } // Promote the value if needed. switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: if (VA.isRegLoc()) { if ((ValVT == MVT::f32 && LocVT == MVT::i32) || (ValVT == MVT::f64 && LocVT == MVT::i64) || (ValVT == MVT::i64 && LocVT == MVT::f64)) Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg); else if (ValVT == MVT::f64 && LocVT == MVT::i32) { SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Arg, DAG.getConstant(0, MVT::i32)); SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Arg, DAG.getConstant(1, MVT::i32)); if (!Subtarget.isLittle()) std::swap(Lo, Hi); unsigned LocRegLo = VA.getLocReg(); unsigned LocRegHigh = getNextIntArgReg(LocRegLo); RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); continue; } } break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg); break; } // Arguments that can be passed on register must be kept at // RegsToPass vector if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } // Register can't get to this point... assert(VA.isMemLoc()); // emit ISD::STORE whichs stores the // parameter value to a stack Location MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(), Chain, Arg, DL, IsTailCall, DAG)); } // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. bool IsPICCall = (Subtarget.isABI_N64() || IsPIC); // true if calls are translated to // jalr $25 bool GlobalOrExternal = false, InternalLinkage = false; SDValue CalleeLo; EVT Ty = Callee.getValueType(); if (GlobalAddressSDNode *G = dyn_cast(Callee)) { if (IsPICCall) { const GlobalValue *Val = G->getGlobal(); InternalLinkage = Val->hasInternalLinkage(); if (InternalLinkage) Callee = getAddrLocal(G, Ty, DAG, Subtarget.isABI_N32() || Subtarget.isABI_N64()); else if (LargeGOT) Callee = getAddrGlobalLargeGOT(G, Ty, DAG, MipsII::MO_CALL_HI16, MipsII::MO_CALL_LO16, Chain, FuncInfo->callPtrInfo(Val)); else Callee = getAddrGlobal(G, Ty, DAG, MipsII::MO_GOT_CALL, Chain, FuncInfo->callPtrInfo(Val)); } else Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, getPointerTy(), 0, MipsII::MO_NO_FLAG); GlobalOrExternal = true; } else if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { const char *Sym = S->getSymbol(); if (!Subtarget.isABI_N64() && !IsPIC) // !N64 && static Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), MipsII::MO_NO_FLAG); else if (LargeGOT) Callee = getAddrGlobalLargeGOT(S, Ty, DAG, MipsII::MO_CALL_HI16, MipsII::MO_CALL_LO16, Chain, FuncInfo->callPtrInfo(Sym)); else // N64 || PIC Callee = getAddrGlobal(S, Ty, DAG, MipsII::MO_GOT_CALL, Chain, FuncInfo->callPtrInfo(Sym)); GlobalOrExternal = true; } SmallVector Ops(1, Chain); SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal, InternalLinkage, CLI, Callee, Chain); if (IsTailCall) return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops); Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops); SDValue InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal, DAG.getIntPtrConstant(0, true), InFlag, DL); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, InVals, CLI.Callee.getNode(), CLI.RetTy); } /// LowerCallResult - Lower the result values of a call into the /// appropriate copies out of appropriate physical registers. SDValue MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals, const SDNode *CallNode, const Type *RetTy) const { // Assign locations to each value returned by this call. SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); if (originalTypeIsF128(RetTy, CallNode)) CCInfo.AnalyzeCallResult(Ins, RetCC_F128); else CCInfo.AnalyzeCallResult(Ins, RetCC_Mips); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(), RVLocs[i].getLocVT(), InFlag); Chain = Val.getValue(1); InFlag = Val.getValue(2); if (RVLocs[i].getValVT() != RVLocs[i].getLocVT()) Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getValVT(), Val); InVals.push_back(Val); } return Chain; } //===----------------------------------------------------------------------===// // Formal Arguments Calling Convention Implementation //===----------------------------------------------------------------------===// /// LowerFormalArguments - transform physical registers into virtual registers /// and generate load operations for arguments places on the stack. SDValue MipsTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Ins, SDLoc DL, SelectionDAG &DAG, SmallVectorImpl &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MipsFunctionInfo *MipsFI = MF.getInfo(); MipsFI->setVarArgsFrameIndex(0); // Used with vargs to acumulate store chains. std::vector OutChains; // Assign locations to all of the incoming arguments. SmallVector ArgLocs; CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); MipsCC MipsCCInfo(CallConv, Subtarget, CCInfo); Function::const_arg_iterator FuncArg = DAG.getMachineFunction().getFunction()->arg_begin(); bool UseSoftFloat = Subtarget.abiUsesSoftFloat(); MipsCCInfo.analyzeFormalArguments(Ins, UseSoftFloat, FuncArg); MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(), MipsCCInfo.hasByValArg()); unsigned CurArgIdx = 0; MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx); CurArgIdx = Ins[i].OrigArgIndex; EVT ValVT = VA.getValVT(); ISD::ArgFlagsTy Flags = Ins[i].Flags; bool IsRegLoc = VA.isRegLoc(); if (Flags.isByVal()) { assert(Flags.getByValSize() && "ByVal args of size 0 should have been ignored by front-end."); assert(ByValArg != MipsCCInfo.byval_end()); copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg, MipsCCInfo, *ByValArg); ++ByValArg; continue; } // Arguments stored on registers if (IsRegLoc) { MVT RegVT = VA.getLocVT(); unsigned ArgReg = VA.getLocReg(); const TargetRegisterClass *RC = getRegClassFor(RegVT); // Transform the arguments stored on // physical registers into virtual ones unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); // If this is an 8 or 16-bit value, it has been passed promoted // to 32 bits. Insert an assert[sz]ext to capture this, then // truncate to the right size. if (VA.getLocInfo() != CCValAssign::Full) { unsigned Opcode = 0; if (VA.getLocInfo() == CCValAssign::SExt) Opcode = ISD::AssertSext; else if (VA.getLocInfo() == CCValAssign::ZExt) Opcode = ISD::AssertZext; if (Opcode) ArgValue = DAG.getNode(Opcode, DL, RegVT, ArgValue, DAG.getValueType(ValVT)); ArgValue = DAG.getNode(ISD::TRUNCATE, DL, ValVT, ArgValue); } // Handle floating point arguments passed in integer registers and // long double arguments passed in floating point registers. if ((RegVT == MVT::i32 && ValVT == MVT::f32) || (RegVT == MVT::i64 && ValVT == MVT::f64) || (RegVT == MVT::f64 && ValVT == MVT::i64)) ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue); else if (Subtarget.isABI_O32() && RegVT == MVT::i32 && ValVT == MVT::f64) { unsigned Reg2 = addLiveIn(DAG.getMachineFunction(), getNextIntArgReg(ArgReg), RC); SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT); if (!Subtarget.isLittle()) std::swap(ArgValue, ArgValue2); ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, ArgValue, ArgValue2); } InVals.push_back(ArgValue); } else { // VA.isRegLoc() // sanity check assert(VA.isMemLoc()); // The stack pointer offset is relative to the caller stack frame. int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, VA.getLocMemOffset(), true); // Create load nodes to retrieve arguments from the stack SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); SDValue Load = DAG.getLoad(ValVT, DL, Chain, FIN, MachinePointerInfo::getFixedStack(FI), false, false, false, 0); InVals.push_back(Load); OutChains.push_back(Load.getValue(1)); } } for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { // The mips ABIs for returning structs by value requires that we copy // the sret argument into $v0 for the return. Save the argument into // a virtual register so that we can access it from the return points. if (Ins[i].Flags.isSRet()) { unsigned Reg = MipsFI->getSRetReturnReg(); if (!Reg) { Reg = MF.getRegInfo().createVirtualRegister( getRegClassFor(Subtarget.isABI_N64() ? MVT::i64 : MVT::i32)); MipsFI->setSRetReturnReg(Reg); } SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); break; } } if (IsVarArg) writeVarArgRegs(OutChains, MipsCCInfo, Chain, DL, DAG); // All stores are grouped in one node to allow the matching between // the size of Ins and InVals. This only happens when on varg functions if (!OutChains.empty()) { OutChains.push_back(Chain); Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains); } return Chain; } //===----------------------------------------------------------------------===// // Return Value Calling Convention Implementation //===----------------------------------------------------------------------===// bool MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn(Outs, RetCC_Mips); } SDValue MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, SDLoc DL, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of // the return value to a location SmallVector RVLocs; MachineFunction &MF = DAG.getMachineFunction(); // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext()); MipsCC MipsCCInfo(CallConv, Subtarget, CCInfo); // Analyze return values. if (originalTypeIsF128(MF.getFunction()->getReturnType(), nullptr)) CCInfo.AnalyzeReturn(Outs, RetCC_F128); else CCInfo.AnalyzeReturn(Outs, RetCC_Mips); SDValue Flag; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { SDValue Val = OutVals[i]; CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); if (RVLocs[i].getValVT() != RVLocs[i].getLocVT()) Val = DAG.getNode(ISD::BITCAST, DL, RVLocs[i].getLocVT(), Val); Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag); // Guarantee that all emitted copies are stuck together with flags. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } // The mips ABIs for returning structs by value requires that we copy // the sret argument into $v0 for the return. We saved the argument into // a virtual register in the entry block, so now we copy the value out // and into $v0. if (MF.getFunction()->hasStructRetAttr()) { MipsFunctionInfo *MipsFI = MF.getInfo(); unsigned Reg = MipsFI->getSRetReturnReg(); if (!Reg) llvm_unreachable("sret virtual register not created in the entry block"); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy()); unsigned V0 = Subtarget.isABI_N64() ? Mips::V0_64 : Mips::V0; Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag); Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(V0, getPointerTy())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); // Return on Mips is always a "jr $ra" return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps); } //===----------------------------------------------------------------------===// // Mips Inline Assembly Support //===----------------------------------------------------------------------===// /// getConstraintType - Given a constraint letter, return the type of /// constraint it is for this target. MipsTargetLowering::ConstraintType MipsTargetLowering:: getConstraintType(const std::string &Constraint) const { // Mips specific constraints // GCC config/mips/constraints.md // // 'd' : An address register. Equivalent to r // unless generating MIPS16 code. // 'y' : Equivalent to r; retained for // backwards compatibility. // 'c' : A register suitable for use in an indirect // jump. This will always be $25 for -mabicalls. // 'l' : The lo register. 1 word storage. // 'x' : The hilo register pair. Double word storage. if (Constraint.size() == 1) { switch (Constraint[0]) { default : break; case 'd': case 'y': case 'f': case 'c': case 'l': case 'x': return C_RegisterClass; case 'R': return C_Memory; } } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight MipsTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'd': case 'y': if (type->isIntegerTy()) weight = CW_Register; break; case 'f': // FPU or MSA register if (Subtarget.hasMSA() && type->isVectorTy() && cast(type)->getBitWidth() == 128) weight = CW_Register; else if (type->isFloatTy()) weight = CW_Register; break; case 'c': // $25 for indirect jumps case 'l': // lo register case 'x': // hilo register pair if (type->isIntegerTy()) weight = CW_SpecificReg; break; case 'I': // signed 16 bit immediate case 'J': // integer zero case 'K': // unsigned 16 bit immediate case 'L': // signed 32 bit immediate where lower 16 bits are 0 case 'N': // immediate in the range of -65535 to -1 (inclusive) case 'O': // signed 15 bit immediate (+- 16383) case 'P': // immediate in the range of 65535 to 1 (inclusive) if (isa(CallOperandVal)) weight = CW_Constant; break; case 'R': weight = CW_Memory; break; } return weight; } /// This is a helper function to parse a physical register string and split it /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag /// that is returned indicates whether parsing was successful. The second flag /// is true if the numeric part exists. static std::pair parsePhysicalReg(StringRef C, std::string &Prefix, unsigned long long &Reg) { if (C.front() != '{' || C.back() != '}') return std::make_pair(false, false); // Search for the first numeric character. StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1; I = std::find_if(B, E, std::ptr_fun(isdigit)); Prefix.assign(B, I - B); // The second flag is set to false if no numeric characters were found. if (I == E) return std::make_pair(true, false); // Parse the numeric characters. return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg), true); } std::pair MipsTargetLowering:: parseRegForInlineAsmConstraint(StringRef C, MVT VT) const { const TargetRegisterInfo *TRI = getTargetMachine().getSubtargetImpl()->getRegisterInfo(); const TargetRegisterClass *RC; std::string Prefix; unsigned long long Reg; std::pair R = parsePhysicalReg(C, Prefix, Reg); if (!R.first) return std::make_pair(0U, nullptr); if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo. // No numeric characters follow "hi" or "lo". if (R.second) return std::make_pair(0U, nullptr); RC = TRI->getRegClass(Prefix == "hi" ? Mips::HI32RegClassID : Mips::LO32RegClassID); return std::make_pair(*(RC->begin()), RC); } else if (Prefix.compare(0, 4, "$msa") == 0) { // Parse $msa(ir|csr|access|save|modify|request|map|unmap) // No numeric characters follow the name. if (R.second) return std::make_pair(0U, nullptr); Reg = StringSwitch(Prefix) .Case("$msair", Mips::MSAIR) .Case("$msacsr", Mips::MSACSR) .Case("$msaaccess", Mips::MSAAccess) .Case("$msasave", Mips::MSASave) .Case("$msamodify", Mips::MSAModify) .Case("$msarequest", Mips::MSARequest) .Case("$msamap", Mips::MSAMap) .Case("$msaunmap", Mips::MSAUnmap) .Default(0); if (!Reg) return std::make_pair(0U, nullptr); RC = TRI->getRegClass(Mips::MSACtrlRegClassID); return std::make_pair(Reg, RC); } if (!R.second) return std::make_pair(0U, nullptr); if (Prefix == "$f") { // Parse $f0-$f31. // If the size of FP registers is 64-bit or Reg is an even number, select // the 64-bit register class. Otherwise, select the 32-bit register class. if (VT == MVT::Other) VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32; RC = getRegClassFor(VT); if (RC == &Mips::AFGR64RegClass) { assert(Reg % 2 == 0); Reg >>= 1; } } else if (Prefix == "$fcc") // Parse $fcc0-$fcc7. RC = TRI->getRegClass(Mips::FCCRegClassID); else if (Prefix == "$w") { // Parse $w0-$w31. RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT); } else { // Parse $0-$31. assert(Prefix == "$"); RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT); } assert(Reg < RC->getNumRegs()); return std::make_pair(*(RC->begin() + Reg), RC); } /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. std::pair MipsTargetLowering:: getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'd': // Address register. Same as 'r' unless generating MIPS16 code. case 'y': // Same as 'r'. Exists for compatibility. case 'r': if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { if (Subtarget.inMips16Mode()) return std::make_pair(0U, &Mips::CPU16RegsRegClass); return std::make_pair(0U, &Mips::GPR32RegClass); } if (VT == MVT::i64 && !Subtarget.isGP64bit()) return std::make_pair(0U, &Mips::GPR32RegClass); if (VT == MVT::i64 && Subtarget.isGP64bit()) return std::make_pair(0U, &Mips::GPR64RegClass); // This will generate an error message return std::make_pair(0U, nullptr); case 'f': // FPU or MSA register if (VT == MVT::v16i8) return std::make_pair(0U, &Mips::MSA128BRegClass); else if (VT == MVT::v8i16 || VT == MVT::v8f16) return std::make_pair(0U, &Mips::MSA128HRegClass); else if (VT == MVT::v4i32 || VT == MVT::v4f32) return std::make_pair(0U, &Mips::MSA128WRegClass); else if (VT == MVT::v2i64 || VT == MVT::v2f64) return std::make_pair(0U, &Mips::MSA128DRegClass); else if (VT == MVT::f32) return std::make_pair(0U, &Mips::FGR32RegClass); else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) { if (Subtarget.isFP64bit()) return std::make_pair(0U, &Mips::FGR64RegClass); return std::make_pair(0U, &Mips::AFGR64RegClass); } break; case 'c': // register suitable for indirect jump if (VT == MVT::i32) return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass); assert(VT == MVT::i64 && "Unexpected type."); return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass); case 'l': // register suitable for indirect jump if (VT == MVT::i32) return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass); return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass); case 'x': // register suitable for indirect jump // Fixme: Not triggering the use of both hi and low // This will generate an error message return std::make_pair(0U, nullptr); } } std::pair R; R = parseRegForInlineAsmConstraint(Constraint, VT); if (R.second) return R; return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector&Ops, SelectionDAG &DAG) const { SDValue Result; // Only support length 1 constraints for now. if (Constraint.length() > 1) return; char ConstraintLetter = Constraint[0]; switch (ConstraintLetter) { default: break; // This will fall through to the generic implementation case 'I': // Signed 16 bit constant // If this fails, the parent routine will give an error if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); int64_t Val = C->getSExtValue(); if (isInt<16>(Val)) { Result = DAG.getTargetConstant(Val, Type); break; } } return; case 'J': // integer zero if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); int64_t Val = C->getZExtValue(); if (Val == 0) { Result = DAG.getTargetConstant(0, Type); break; } } return; case 'K': // unsigned 16 bit immediate if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); uint64_t Val = (uint64_t)C->getZExtValue(); if (isUInt<16>(Val)) { Result = DAG.getTargetConstant(Val, Type); break; } } return; case 'L': // signed 32 bit immediate where lower 16 bits are 0 if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); int64_t Val = C->getSExtValue(); if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){ Result = DAG.getTargetConstant(Val, Type); break; } } return; case 'N': // immediate in the range of -65535 to -1 (inclusive) if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); int64_t Val = C->getSExtValue(); if ((Val >= -65535) && (Val <= -1)) { Result = DAG.getTargetConstant(Val, Type); break; } } return; case 'O': // signed 15 bit immediate if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); int64_t Val = C->getSExtValue(); if ((isInt<15>(Val))) { Result = DAG.getTargetConstant(Val, Type); break; } } return; case 'P': // immediate in the range of 1 to 65535 (inclusive) if (ConstantSDNode *C = dyn_cast(Op)) { EVT Type = Op.getValueType(); int64_t Val = C->getSExtValue(); if ((Val <= 65535) && (Val >= 1)) { Result = DAG.getTargetConstant(Val, Type); break; } } return; } if (Result.getNode()) { Ops.push_back(Result); return; } TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } bool MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // No global is ever allowed as a base. if (AM.BaseGV) return false; switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (!AM.HasBaseReg) // allow "r+i". break; return false; // disallow "r+r" or "r+r+i". default: return false; } return true; } bool MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The Mips target isn't yet aware of offsets. return false; } EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, MachineFunction &MF) const { if (Subtarget.hasMips64()) return MVT::i64; return MVT::i32; } bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { if (VT != MVT::f32 && VT != MVT::f64) return false; if (Imm.isNegZero()) return false; return Imm.isZero(); } unsigned MipsTargetLowering::getJumpTableEncoding() const { if (Subtarget.isABI_N64()) return MachineJumpTableInfo::EK_GPRel64BlockAddress; return TargetLowering::getJumpTableEncoding(); } /// This function returns true if CallSym is a long double emulation routine. static bool isF128SoftLibCall(const char *CallSym) { const char *const LibCalls[] = {"__addtf3", "__divtf3", "__eqtf2", "__extenddftf2", "__extendsftf2", "__fixtfdi", "__fixtfsi", "__fixtfti", "__fixunstfdi", "__fixunstfsi", "__fixunstfti", "__floatditf", "__floatsitf", "__floattitf", "__floatunditf", "__floatunsitf", "__floatuntitf", "__getf2", "__gttf2", "__letf2", "__lttf2", "__multf3", "__netf2", "__powitf2", "__subtf3", "__trunctfdf2", "__trunctfsf2", "__unordtf2", "ceill", "copysignl", "cosl", "exp2l", "expl", "floorl", "fmal", "fmodl", "log10l", "log2l", "logl", "nearbyintl", "powl", "rintl", "sinl", "sqrtl", "truncl"}; const char *const *End = LibCalls + array_lengthof(LibCalls); // Check that LibCalls is sorted alphabetically. MipsTargetLowering::LTStr Comp; #ifndef NDEBUG for (const char *const *I = LibCalls; I < End - 1; ++I) assert(Comp(*I, *(I + 1))); #endif return std::binary_search(LibCalls, End, CallSym, Comp); } /// This function returns true if Ty is fp128 or i128 which was originally a /// fp128. static bool originalTypeIsF128(const Type *Ty, const SDNode *CallNode) { if (Ty->isFP128Ty()) return true; const ExternalSymbolSDNode *ES = dyn_cast_or_null(CallNode); // If the Ty is i128 and the function being called is a long double emulation // routine, then the original type is f128. return (ES && Ty->isIntegerTy(128) && isF128SoftLibCall(ES->getSymbol())); } MipsTargetLowering::MipsCC::SpecialCallingConvType MipsTargetLowering::getSpecialCallingConv(SDValue Callee) const { MipsCC::SpecialCallingConvType SpecialCallingConv = MipsCC::NoSpecialCallingConv; if (Subtarget.inMips16HardFloat()) { if (GlobalAddressSDNode *G = dyn_cast(Callee)) { llvm::StringRef Sym = G->getGlobal()->getName(); Function *F = G->getGlobal()->getParent()->getFunction(Sym); if (F && F->hasFnAttribute("__Mips16RetHelper")) { SpecialCallingConv = MipsCC::Mips16RetHelperConv; } } } return SpecialCallingConv; } MipsTargetLowering::MipsCC::MipsCC( CallingConv::ID CC, const MipsSubtarget &Subtarget_, CCState &Info, MipsCC::SpecialCallingConvType SpecialCallingConv_) : CCInfo(Info), CallConv(CC), Subtarget(Subtarget_), SpecialCallingConv(SpecialCallingConv_) { // Pre-allocate reserved argument area. CCInfo.AllocateStack(reservedArgArea(), 1); } void MipsTargetLowering::MipsCC:: analyzeCallOperands(const SmallVectorImpl &Args, bool IsVarArg, bool IsSoftFloat, const SDNode *CallNode, std::vector &FuncArgs) { assert((CallConv != CallingConv::Fast || !IsVarArg) && "CallingConv::Fast shouldn't be used for vararg functions."); unsigned NumOpnds = Args.size(); llvm::CCAssignFn *FixedFn = fixedArgFn(), *VarFn = varArgFn(); for (unsigned I = 0; I != NumOpnds; ++I) { MVT ArgVT = Args[I].VT; ISD::ArgFlagsTy ArgFlags = Args[I].Flags; bool R; if (ArgFlags.isByVal()) { handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags); continue; } if (IsVarArg && !Args[I].IsFixed) R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); else { MVT RegVT = getRegVT(ArgVT, FuncArgs[Args[I].OrigArgIndex].Ty, CallNode, IsSoftFloat); R = FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo); } if (R) { #ifndef NDEBUG dbgs() << "Call operand #" << I << " has unhandled type " << EVT(ArgVT).getEVTString(); #endif llvm_unreachable(nullptr); } } } void MipsTargetLowering::MipsCC:: analyzeFormalArguments(const SmallVectorImpl &Args, bool IsSoftFloat, Function::const_arg_iterator FuncArg) { unsigned NumArgs = Args.size(); llvm::CCAssignFn *FixedFn = fixedArgFn(); unsigned CurArgIdx = 0; for (unsigned I = 0; I != NumArgs; ++I) { MVT ArgVT = Args[I].VT; ISD::ArgFlagsTy ArgFlags = Args[I].Flags; std::advance(FuncArg, Args[I].OrigArgIndex - CurArgIdx); CurArgIdx = Args[I].OrigArgIndex; if (ArgFlags.isByVal()) { handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags); continue; } MVT RegVT = getRegVT(ArgVT, FuncArg->getType(), nullptr, IsSoftFloat); if (!FixedFn(I, ArgVT, RegVT, CCValAssign::Full, ArgFlags, CCInfo)) continue; #ifndef NDEBUG dbgs() << "Formal Arg #" << I << " has unhandled type " << EVT(ArgVT).getEVTString(); #endif llvm_unreachable(nullptr); } } void MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags) { assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0."); struct ByValArgInfo ByVal; unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSizeInBytes); unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSizeInBytes), RegSizeInBytes * 2); if (useRegsForByval()) allocateRegs(ByVal, ByValSize, Align); // Allocate space on caller's stack. ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSizeInBytes * ByVal.NumRegs, Align); CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT, LocInfo)); ByValArgs.push_back(ByVal); } unsigned MipsTargetLowering::MipsCC::reservedArgArea() const { return (Subtarget.isABI_O32() && (CallConv != CallingConv::Fast)) ? 16 : 0; } const ArrayRef MipsTargetLowering::MipsCC::intArgRegs() const { if (Subtarget.isABI_O32()) return makeArrayRef(O32IntRegs); return makeArrayRef(Mips64IntRegs); } llvm::CCAssignFn *MipsTargetLowering::MipsCC::fixedArgFn() const { if (CallConv == CallingConv::Fast) return CC_Mips_FastCC; if (SpecialCallingConv == Mips16RetHelperConv) return CC_Mips16RetHelper; return Subtarget.isABI_O32() ? (Subtarget.isFP64bit() ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN; } llvm::CCAssignFn *MipsTargetLowering::MipsCC::varArgFn() const { return Subtarget.isABI_O32() ? (Subtarget.isFP64bit() ? CC_MipsO32_FP64 : CC_MipsO32_FP32) : CC_MipsN_VarArg; } const MCPhysReg *MipsTargetLowering::MipsCC::shadowRegs() const { return Subtarget.isABI_O32() ? O32IntRegs : Mips64DPRegs; } void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal, unsigned ByValSize, unsigned Align) { unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); const ArrayRef IntArgRegs = intArgRegs(); const MCPhysReg *ShadowRegs = shadowRegs(); assert(!(ByValSize % RegSizeInBytes) && !(Align % RegSizeInBytes) && "Byval argument's size and alignment should be a multiple of" "RegSizeInBytes."); ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs.data(), IntArgRegs.size()); // If Align > RegSizeInBytes, the first arg register must be even. if ((Align > RegSizeInBytes) && (ByVal.FirstIdx % 2)) { CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]); ++ByVal.FirstIdx; } // Mark the registers allocated. for (unsigned I = ByVal.FirstIdx; ByValSize && (I < IntArgRegs.size()); ByValSize -= RegSizeInBytes, ++I, ++ByVal.NumRegs) CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]); } MVT MipsTargetLowering::MipsCC::getRegVT(MVT VT, const Type *OrigTy, const SDNode *CallNode, bool IsSoftFloat) const { if (IsSoftFloat || Subtarget.isABI_O32()) return VT; // Check if the original type was fp128. if (originalTypeIsF128(OrigTy, CallNode)) { assert(VT == MVT::i64); return MVT::f64; } return VT; } void MipsTargetLowering:: copyByValRegs(SDValue Chain, SDLoc DL, std::vector &OutChains, SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags, SmallVectorImpl &InVals, const Argument *FuncArg, const MipsCC &CC, const ByValArgInfo &ByVal) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes(); unsigned RegAreaSize = ByVal.NumRegs * GPRSizeInBytes; unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize); int FrameObjOffset; if (RegAreaSize) FrameObjOffset = (int)CC.reservedArgArea() - (int)((CC.intArgRegs().size() - ByVal.FirstIdx) * GPRSizeInBytes); else FrameObjOffset = ByVal.Address; // Create frame object. EVT PtrTy = getPointerTy(); int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrTy); InVals.push_back(FIN); if (!ByVal.NumRegs) return; // Copy arg registers. MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8); const TargetRegisterClass *RC = getRegClassFor(RegTy); for (unsigned I = 0; I < ByVal.NumRegs; ++I) { unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I]; unsigned VReg = addLiveIn(MF, ArgReg, RC); unsigned Offset = I * GPRSizeInBytes; SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN, DAG.getConstant(Offset, PtrTy)); SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy), StorePtr, MachinePointerInfo(FuncArg, Offset), false, false, 0); OutChains.push_back(Store); } } // Copy byVal arg to registers and stack. void MipsTargetLowering:: passByValArg(SDValue Chain, SDLoc DL, std::deque< std::pair > &RegsToPass, SmallVectorImpl &MemOpChains, SDValue StackPtr, MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, const MipsCC &CC, const ByValArgInfo &ByVal, const ISD::ArgFlagsTy &Flags, bool isLittle) const { unsigned ByValSizeInBytes = Flags.getByValSize(); unsigned OffsetInBytes = 0; // From beginning of struct unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes); EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); if (ByVal.NumRegs) { const ArrayRef ArgRegs = CC.intArgRegs(); bool LeftoverBytes = (ByVal.NumRegs * RegSizeInBytes > ByValSizeInBytes); unsigned I = 0; // Copy words to registers. for (; I < ByVal.NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) { SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, DAG.getConstant(OffsetInBytes, PtrTy)); SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr, MachinePointerInfo(), false, false, false, Alignment); MemOpChains.push_back(LoadVal.getValue(1)); unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I]; RegsToPass.push_back(std::make_pair(ArgReg, LoadVal)); } // Return if the struct has been fully copied. if (ByValSizeInBytes == OffsetInBytes) return; // Copy the remainder of the byval argument with sub-word loads and shifts. if (LeftoverBytes) { assert((ByValSizeInBytes > OffsetInBytes) && (ByValSizeInBytes < OffsetInBytes + RegSizeInBytes) && "Size of the remainder should be smaller than RegSizeInBytes."); SDValue Val; for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0; OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) { unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes; if (RemainingSizeInBytes < LoadSizeInBytes) continue; // Load subword. SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, DAG.getConstant(OffsetInBytes, PtrTy)); SDValue LoadVal = DAG.getExtLoad( ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(), MVT::getIntegerVT(LoadSizeInBytes * 8), false, false, false, Alignment); MemOpChains.push_back(LoadVal.getValue(1)); // Shift the loaded value. unsigned Shamt; if (isLittle) Shamt = TotalBytesLoaded * 8; else Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8; SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal, DAG.getConstant(Shamt, MVT::i32)); if (Val.getNode()) Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift); else Val = Shift; OffsetInBytes += LoadSizeInBytes; TotalBytesLoaded += LoadSizeInBytes; Alignment = std::min(Alignment, LoadSizeInBytes); } unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I]; RegsToPass.push_back(std::make_pair(ArgReg, Val)); return; } } // Copy remainder of byval arg to it with memcpy. unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes; SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg, DAG.getConstant(OffsetInBytes, PtrTy)); SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr, DAG.getIntPtrConstant(ByVal.Address)); Chain = DAG.getMemcpy(Chain, DL, Dst, Src, DAG.getConstant(MemCpySize, PtrTy), Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false, MachinePointerInfo(), MachinePointerInfo()); MemOpChains.push_back(Chain); } void MipsTargetLowering::writeVarArgRegs(std::vector &OutChains, const MipsCC &CC, SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { const ArrayRef ArgRegs = CC.intArgRegs(); const CCState &CCInfo = CC.getCCInfo(); unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs.data(), ArgRegs.size()); unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes(); MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8); const TargetRegisterClass *RC = getRegClassFor(RegTy); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MipsFunctionInfo *MipsFI = MF.getInfo(); // Offset of the first variable argument from stack pointer. int VaArgOffset; if (ArgRegs.size() == Idx) VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSizeInBytes); else VaArgOffset = (int)CC.reservedArgArea() - (int)(RegSizeInBytes * (ArgRegs.size() - Idx)); // Record the frame index of the first variable argument // which is a value necessary to VASTART. int FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); MipsFI->setVarArgsFrameIndex(FI); // Copy the integer registers that have not been used for argument passing // to the argument register save area. For O32, the save area is allocated // in the caller's stack frame, while for N32/64, it is allocated in the // callee's stack frame. for (unsigned I = Idx; I < ArgRegs.size(); ++I, VaArgOffset += RegSizeInBytes) { unsigned Reg = addLiveIn(MF, ArgRegs[I], RC); SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy); FI = MFI->CreateFixedObject(RegSizeInBytes, VaArgOffset, true); SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy()); SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo(), false, false, 0); cast(Store.getNode())->getMemOperand()->setValue( (Value *)nullptr); OutChains.push_back(Store); } }