//===- TailDuplication.cpp - Simplify CFG through tail duplication --------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs a limited form of tail duplication, intended to simplify // CFGs by removing some unconditional branches. This pass is necessary to // straighten out loops created by the C front-end, but also is capable of // making other code nicer. After this pass is run, the CFG simplify pass // should be run to clean up the mess. // // This pass could be enhanced in the future to use profile information to be // more aggressive. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar.h" #include "llvm/Constant.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Pass.h" #include "llvm/Type.h" #include "llvm/Support/CFG.h" #include "llvm/Transforms/Utils/Local.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/Statistic.h" using namespace llvm; namespace { cl::opt Threshold("taildup-threshold", cl::desc("Max block size to tail duplicate"), cl::init(6), cl::Hidden); Statistic<> NumEliminated("tailduplicate", "Number of unconditional branches eliminated"); Statistic<> NumPHINodes("tailduplicate", "Number of phi nodes inserted"); class TailDup : public FunctionPass { bool runOnFunction(Function &F); private: inline bool shouldEliminateUnconditionalBranch(TerminatorInst *TI); inline void eliminateUnconditionalBranch(BranchInst *BI); }; RegisterOpt X("tailduplicate", "Tail Duplication"); } // Public interface to the Tail Duplication pass Pass *llvm::createTailDuplicationPass() { return new TailDup(); } /// runOnFunction - Top level algorithm - Loop over each unconditional branch in /// the function, eliminating it if it looks attractive enough. /// bool TailDup::runOnFunction(Function &F) { bool Changed = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ) if (shouldEliminateUnconditionalBranch(I->getTerminator())) { eliminateUnconditionalBranch(cast(I->getTerminator())); Changed = true; } else { ++I; } return Changed; } /// shouldEliminateUnconditionalBranch - Return true if this branch looks /// attractive to eliminate. We eliminate the branch if the destination basic /// block has <= 5 instructions in it, not counting PHI nodes. In practice, /// since one of these is a terminator instruction, this means that we will add /// up to 4 instructions to the new block. /// /// We don't count PHI nodes in the count since they will be removed when the /// contents of the block are copied over. /// bool TailDup::shouldEliminateUnconditionalBranch(TerminatorInst *TI) { BranchInst *BI = dyn_cast(TI); if (!BI || !BI->isUnconditional()) return false; // Not an uncond branch! BasicBlock *Dest = BI->getSuccessor(0); if (Dest == BI->getParent()) return false; // Do not loop infinitely! // Do not inline a block if we will just get another branch to the same block! TerminatorInst *DTI = Dest->getTerminator(); if (BranchInst *DBI = dyn_cast(DTI)) if (DBI->isUnconditional() && DBI->getSuccessor(0) == Dest) return false; // Do not loop infinitely! // FIXME: DemoteRegToStack cannot yet demote invoke instructions to the stack, // because doing so would require breaking critical edges. This should be // fixed eventually. if (!DTI->use_empty()) return false; // Do not bother working on dead blocks... pred_iterator PI = pred_begin(Dest), PE = pred_end(Dest); if (PI == PE && Dest != Dest->getParent()->begin()) return false; // It's just a dead block, ignore it... // Also, do not bother with blocks with only a single predecessor: simplify // CFG will fold these two blocks together! ++PI; if (PI == PE) return false; // Exactly one predecessor! BasicBlock::iterator I = Dest->begin(); while (isa(*I)) ++I; for (unsigned Size = 0; I != Dest->end(); ++Size, ++I) if (Size == Threshold) return false; // The block is too large... // Do not tail duplicate a block that has thousands of successors into a block // with a single successor if the block has many other predecessors. This can // cause an N^2 explosion in CFG edges (and PHI node entries), as seen in // cases that have a large number of indirect gotos. if (DTI->getNumSuccessors() > 8) if (std::distance(PI, PE) * DTI->getNumSuccessors() > 128) return false; return true; } /// eliminateUnconditionalBranch - Clone the instructions from the destination /// block into the source block, eliminating the specified unconditional branch. /// If the destination block defines values used by successors of the dest /// block, we may need to insert PHI nodes. /// void TailDup::eliminateUnconditionalBranch(BranchInst *Branch) { BasicBlock *SourceBlock = Branch->getParent(); BasicBlock *DestBlock = Branch->getSuccessor(0); assert(SourceBlock != DestBlock && "Our predicate is broken!"); DEBUG(std::cerr << "TailDuplication[" << SourceBlock->getParent()->getName() << "]: Eliminating branch: " << *Branch); // Tail duplication can not update SSA properties correctly if the values // defined in the duplicated tail are used outside of the tail itself. For // this reason, we spill all values that are used outside of the tail to the // stack. for (BasicBlock::iterator I = DestBlock->begin(); I != DestBlock->end(); ++I) for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { bool ShouldDemote = false; if (cast(*UI)->getParent() != DestBlock) { // We must allow our successors to use tail values in their PHI nodes // (if the incoming value corresponds to the tail block). if (PHINode *PN = dyn_cast(*UI)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == I && PN->getIncomingBlock(i) != DestBlock) { ShouldDemote = true; break; } } else { ShouldDemote = true; } } else if (PHINode *PN = dyn_cast(cast(*UI))) { // If the user of this instruction is a PHI node in the current block, // which has an entry from another block using the value, spill it. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == I && PN->getIncomingBlock(i) != DestBlock) { ShouldDemote = true; break; } } if (ShouldDemote) { // We found a use outside of the tail. Create a new stack slot to // break this inter-block usage pattern. DemoteRegToStack(*I); break; } } // We are going to have to map operands from the original block B to the new // copy of the block B'. If there are PHI nodes in the DestBlock, these PHI // nodes also define part of this mapping. Loop over these PHI nodes, adding // them to our mapping. // std::map ValueMapping; BasicBlock::iterator BI = DestBlock->begin(); bool HadPHINodes = isa(BI); for (; PHINode *PN = dyn_cast(BI); ++BI) ValueMapping[PN] = PN->getIncomingValueForBlock(SourceBlock); // Clone the non-phi instructions of the dest block into the source block, // keeping track of the mapping... // for (; BI != DestBlock->end(); ++BI) { Instruction *New = BI->clone(); New->setName(BI->getName()); SourceBlock->getInstList().push_back(New); ValueMapping[BI] = New; } // Now that we have built the mapping information and cloned all of the // instructions (giving us a new terminator, among other things), walk the new // instructions, rewriting references of old instructions to use new // instructions. // BI = Branch; ++BI; // Get an iterator to the first new instruction for (; BI != SourceBlock->end(); ++BI) for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) if (Value *Remapped = ValueMapping[BI->getOperand(i)]) BI->setOperand(i, Remapped); // Next we check to see if any of the successors of DestBlock had PHI nodes. // If so, we need to add entries to the PHI nodes for SourceBlock now. for (succ_iterator SI = succ_begin(DestBlock), SE = succ_end(DestBlock); SI != SE; ++SI) { BasicBlock *Succ = *SI; for (BasicBlock::iterator PNI = Succ->begin(); PHINode *PN = dyn_cast(PNI); ++PNI) { // Ok, we have a PHI node. Figure out what the incoming value was for the // DestBlock. Value *IV = PN->getIncomingValueForBlock(DestBlock); // Remap the value if necessary... if (Value *MappedIV = ValueMapping[IV]) IV = MappedIV; PN->addIncoming(IV, SourceBlock); } } // Next, remove the old branch instruction, and any PHI node entries that we // had. BI = Branch; ++BI; // Get an iterator to the first new instruction DestBlock->removePredecessor(SourceBlock); // Remove entries in PHI nodes... SourceBlock->getInstList().erase(Branch); // Destroy the uncond branch... // Final step: now that we have finished everything up, walk the cloned // instructions one last time, constant propagating and DCE'ing them, because // they may not be needed anymore. // if (HadPHINodes) while (BI != SourceBlock->end()) if (!dceInstruction(BI) && !doConstantPropagation(BI)) ++BI; ++NumEliminated; // We just killed a branch! }