//===-- PartialSpecialization.cpp - Specialize for common constants--------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass finds function arguments that are often a common constant and // specializes a version of the called function for that constant. // // This pass simply does the cloning for functions it specializes. It depends // on IPSCCP and DAE to clean up the results. // // The initial heuristic favors constant arguments that are used in control // flow. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "partialspecialization" #include "llvm/Transforms/IPO.h" #include "llvm/Constant.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/Pass.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/InlineCost.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Support/CallSite.h" #include "llvm/ADT/DenseSet.h" #include using namespace llvm; STATISTIC(numSpecialized, "Number of specialized functions created"); STATISTIC(numReplaced, "Number of callers replaced by specialization"); // Maximum number of arguments markable interested static const int MaxInterests = 6; namespace { typedef SmallVector InterestingArgVector; class PartSpec : public ModulePass { void scanForInterest(Function&, InterestingArgVector&); int scanDistribution(Function&, int, std::map&); InlineCostAnalyzer CA; public : static char ID; // Pass identification, replacement for typeid PartSpec() : ModulePass(ID) { initializePartSpecPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M); }; } char PartSpec::ID = 0; INITIALIZE_PASS(PartSpec, "partialspecialization", "Partial Specialization", false, false) // Specialize F by replacing the arguments (keys) in replacements with the // constants (values). Replace all calls to F with those constants with // a call to the specialized function. Returns the specialized function static Function* SpecializeFunction(Function* F, ValueToValueMapTy& replacements) { // arg numbers of deleted arguments DenseMap deleted; for (ValueToValueMapTy::iterator repb = replacements.begin(), repe = replacements.end(); repb != repe; ++repb) { Argument const *arg = cast(repb->first); deleted[arg->getArgNo()] = arg; } Function* NF = CloneFunction(F, replacements, /*ModuleLevelChanges=*/false); NF->setLinkage(GlobalValue::InternalLinkage); F->getParent()->getFunctionList().push_back(NF); // FIXME: Specialized versions getting the same constants should also get // the same name. That way, specializations for public functions can be // marked linkonce_odr and reused across modules. for (Value::use_iterator ii = F->use_begin(), ee = F->use_end(); ii != ee; ) { Value::use_iterator i = ii; ++ii; User *U = *i; CallSite CS(U); if (CS) { if (CS.getCalledFunction() == F) { SmallVector args; // Assemble the non-specialized arguments for the updated callsite. // In the process, make sure that the specialized arguments are // constant and match the specialization. If that's not the case, // this callsite needs to call the original or some other // specialization; don't change it here. CallSite::arg_iterator as = CS.arg_begin(), ae = CS.arg_end(); for (CallSite::arg_iterator ai = as; ai != ae; ++ai) { DenseMap::iterator delit = deleted.find( std::distance(as, ai)); if (delit == deleted.end()) args.push_back(cast(ai)); else { Constant *ci = dyn_cast(ai); if (!(ci && ci == replacements[delit->second])) goto next_use; } } Value* NCall; if (CallInst *CI = dyn_cast(U)) { NCall = CallInst::Create(NF, args.begin(), args.end(), CI->getName(), CI); cast(NCall)->setTailCall(CI->isTailCall()); cast(NCall)->setCallingConv(CI->getCallingConv()); } else { InvokeInst *II = cast(U); NCall = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), args.begin(), args.end(), II->getName(), II); cast(NCall)->setCallingConv(II->getCallingConv()); } CS.getInstruction()->replaceAllUsesWith(NCall); CS.getInstruction()->eraseFromParent(); ++numReplaced; } } next_use:; } return NF; } bool PartSpec::runOnModule(Module &M) { bool Changed = false; for (Module::iterator I = M.begin(); I != M.end(); ++I) { Function &F = *I; if (F.isDeclaration() || F.mayBeOverridden()) continue; InterestingArgVector interestingArgs; scanForInterest(F, interestingArgs); // Find the first interesting Argument that we can specialize on // If there are multiple interesting Arguments, then those will be found // when processing the cloned function. bool breakOuter = false; for (unsigned int x = 0; !breakOuter && x < interestingArgs.size(); ++x) { std::map distribution; scanDistribution(F, interestingArgs[x], distribution); for (std::map::iterator ii = distribution.begin(), ee = distribution.end(); ii != ee; ++ii) { // The distribution map might have an entry for NULL (i.e., one or more // callsites were passing a non-constant there). We allow that to // happen so that we can see whether any callsites pass a non-constant; // if none do and the function is internal, we might have an opportunity // to kill the original function. if (!ii->first) continue; int bonus = ii->second; SmallVector argnos; argnos.push_back(interestingArgs[x]); InlineCost cost = CA.getSpecializationCost(&F, argnos); // FIXME: If this is the last constant entry, and no non-constant // entries exist, and the target function is internal, the cost should // be reduced by the original size of the target function, almost // certainly making it negative and causing a specialization that will // leave the original function dead and removable. if (cost.isAlways() || (cost.isVariable() && cost.getValue() < bonus)) { ValueToValueMapTy m; Function::arg_iterator arg = F.arg_begin(); for (int y = 0; y < interestingArgs[x]; ++y) ++arg; m[&*arg] = ii->first; SpecializeFunction(&F, m); ++numSpecialized; breakOuter = true; Changed = true; } } } } return Changed; } /// scanForInterest - This function decides which arguments would be worth /// specializing on. void PartSpec::scanForInterest(Function& F, InterestingArgVector& args) { for(Function::arg_iterator ii = F.arg_begin(), ee = F.arg_end(); ii != ee; ++ii) { int argno = std::distance(F.arg_begin(), ii); SmallVector argnos; argnos.push_back(argno); int bonus = CA.getSpecializationBonus(&F, argnos); if (bonus > 0) { args.push_back(argno); } } } /// scanDistribution - Construct a histogram of constants for arg of F at arg. /// For each distinct constant, we'll compute the total of the specialization /// bonus across all callsites passing that constant; if that total exceeds /// the specialization cost, we will create the specialization. int PartSpec::scanDistribution(Function& F, int arg, std::map& dist) { bool hasIndirect = false; int total = 0; for (Value::use_iterator ii = F.use_begin(), ee = F.use_end(); ii != ee; ++ii) { User *U = *ii; CallSite CS(U); if (CS && CS.getCalledFunction() == &F) { SmallVector argnos; argnos.push_back(arg); dist[dyn_cast(CS.getArgument(arg))] += CA.getSpecializationBonus(&F, argnos); ++total; } else hasIndirect = true; } // Preserve the original address taken function even if all other uses // will be specialized. if (hasIndirect) ++total; return total; } ModulePass* llvm::createPartialSpecializationPass() { return new PartSpec(); }