//===- CloneFunction.cpp - Clone a function into another function ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the CloneFunctionInto interface, which is used as the // low-level function cloner. This is used by the CloneFunction and function // inliner to do the dirty work of copying the body of a function around. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DebugInfo.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include using namespace llvm; // CloneBasicBlock - See comments in Cloning.h BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix, Function *F, ClonedCodeInfo *CodeInfo) { BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; // Loop over all instructions, and copy them over. for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { Instruction *NewInst = II->clone(); if (II->hasName()) NewInst->setName(II->getName()+NameSuffix); NewBB->getInstList().push_back(NewInst); VMap[II] = NewInst; // Add instruction map to value. hasCalls |= (isa(II) && !isa(II)); if (const AllocaInst *AI = dyn_cast(II)) { if (isa(AI->getArraySize())) hasStaticAllocas = true; else hasDynamicAllocas = true; } } if (CodeInfo) { CodeInfo->ContainsCalls |= hasCalls; CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && BB != &BB->getParent()->getEntryBlock(); } return NewBB; } // Clone OldFunc into NewFunc, transforming the old arguments into references to // VMap values. // void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl &Returns, const char *NameSuffix, ClonedCodeInfo *CodeInfo, ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) { assert(NameSuffix && "NameSuffix cannot be null!"); #ifndef NDEBUG for (Function::const_arg_iterator I = OldFunc->arg_begin(), E = OldFunc->arg_end(); I != E; ++I) assert(VMap.count(I) && "No mapping from source argument specified!"); #endif // Copy all attributes other than those stored in the AttributeSet. We need // to remap the parameter indices of the AttributeSet. AttributeSet NewAttrs = NewFunc->getAttributes(); NewFunc->copyAttributesFrom(OldFunc); NewFunc->setAttributes(NewAttrs); AttributeSet OldAttrs = OldFunc->getAttributes(); // Clone any argument attributes that are present in the VMap. for (const Argument &OldArg : OldFunc->args()) if (Argument *NewArg = dyn_cast(VMap[&OldArg])) { AttributeSet attrs = OldAttrs.getParamAttributes(OldArg.getArgNo() + 1); if (attrs.getNumSlots() > 0) NewArg->addAttr(attrs); } NewFunc->setAttributes( NewFunc->getAttributes() .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex, OldAttrs.getRetAttributes()) .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex, OldAttrs.getFnAttributes())); // Loop over all of the basic blocks in the function, cloning them as // appropriate. Note that we save BE this way in order to handle cloning of // recursive functions into themselves. // for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); BI != BE; ++BI) { const BasicBlock &BB = *BI; // Create a new basic block and copy instructions into it! BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo); // Add basic block mapping. VMap[&BB] = CBB; // It is only legal to clone a function if a block address within that // function is never referenced outside of the function. Given that, we // want to map block addresses from the old function to block addresses in // the clone. (This is different from the generic ValueMapper // implementation, which generates an invalid blockaddress when // cloning a function.) if (BB.hasAddressTaken()) { Constant *OldBBAddr = BlockAddress::get(const_cast(OldFunc), const_cast(&BB)); VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); } // Note return instructions for the caller. if (ReturnInst *RI = dyn_cast(CBB->getTerminator())) Returns.push_back(RI); } // Loop over all of the instructions in the function, fixing up operand // references as we go. This uses VMap to do all the hard work. for (Function::iterator BB = cast(VMap[OldFunc->begin()]), BE = NewFunc->end(); BB != BE; ++BB) // Loop over all instructions, fixing each one as we find it... for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) RemapInstruction(II, VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, TypeMapper, Materializer); } // Find the MDNode which corresponds to the DISubprogram data that described F. static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) { for (DISubprogram Subprogram : Finder.subprograms()) { if (Subprogram.describes(F)) return Subprogram; } return NULL; } // Add an operand to an existing MDNode. The new operand will be added at the // back of the operand list. static void AddOperand(MDNode *Node, Value *Operand) { SmallVector Operands; for (unsigned i = 0; i < Node->getNumOperands(); i++) { Operands.push_back(Node->getOperand(i)); } Operands.push_back(Operand); MDNode *NewNode = MDNode::get(Node->getContext(), Operands); Node->replaceAllUsesWith(NewNode); } // Clone the module-level debug info associated with OldFunc. The cloned data // will point to NewFunc instead. static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap) { DebugInfoFinder Finder; Finder.processModule(*OldFunc->getParent()); const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder); if (!OldSubprogramMDNode) return; // Ensure that OldFunc appears in the map. // (if it's already there it must point to NewFunc anyway) VMap[OldFunc] = NewFunc; DISubprogram NewSubprogram(MapValue(OldSubprogramMDNode, VMap)); for (DICompileUnit CU : Finder.compile_units()) { DIArray Subprograms(CU.getSubprograms()); // If the compile unit's function list contains the old function, it should // also contain the new one. for (unsigned i = 0; i < Subprograms.getNumElements(); i++) { if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) { AddOperand(Subprograms, NewSubprogram); } } } } /// CloneFunction - Return a copy of the specified function, but without /// embedding the function into another module. Also, any references specified /// in the VMap are changed to refer to their mapped value instead of the /// original one. If any of the arguments to the function are in the VMap, /// the arguments are deleted from the resultant function. The VMap is /// updated to include mappings from all of the instructions and basicblocks in /// the function from their old to new values. /// Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap, bool ModuleLevelChanges, ClonedCodeInfo *CodeInfo) { std::vector ArgTypes; // The user might be deleting arguments to the function by specifying them in // the VMap. If so, we need to not add the arguments to the arg ty vector // for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet? ArgTypes.push_back(I->getType()); // Create a new function type... FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), ArgTypes, F->getFunctionType()->isVarArg()); // Create the new function... Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName()); // Loop over the arguments, copying the names of the mapped arguments over... Function::arg_iterator DestI = NewF->arg_begin(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) if (VMap.count(I) == 0) { // Is this argument preserved? DestI->setName(I->getName()); // Copy the name over... VMap[I] = DestI++; // Add mapping to VMap } if (ModuleLevelChanges) CloneDebugInfoMetadata(NewF, F, VMap); SmallVector Returns; // Ignore returns cloned. CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo); return NewF; } namespace { /// PruningFunctionCloner - This class is a private class used to implement /// the CloneAndPruneFunctionInto method. struct PruningFunctionCloner { Function *NewFunc; const Function *OldFunc; ValueToValueMapTy &VMap; bool ModuleLevelChanges; const char *NameSuffix; ClonedCodeInfo *CodeInfo; const DataLayout *DL; public: PruningFunctionCloner(Function *newFunc, const Function *oldFunc, ValueToValueMapTy &valueMap, bool moduleLevelChanges, const char *nameSuffix, ClonedCodeInfo *codeInfo, const DataLayout *DL) : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL) { } /// CloneBlock - The specified block is found to be reachable, clone it and /// anything that it can reach. void CloneBlock(const BasicBlock *BB, std::vector &ToClone); }; } /// CloneBlock - The specified block is found to be reachable, clone it and /// anything that it can reach. void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, std::vector &ToClone){ WeakVH &BBEntry = VMap[BB]; // Have we already cloned this block? if (BBEntry) return; // Nope, clone it now. BasicBlock *NewBB; BBEntry = NewBB = BasicBlock::Create(BB->getContext()); if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); // It is only legal to clone a function if a block address within that // function is never referenced outside of the function. Given that, we // want to map block addresses from the old function to block addresses in // the clone. (This is different from the generic ValueMapper // implementation, which generates an invalid blockaddress when // cloning a function.) // // Note that we don't need to fix the mapping for unreachable blocks; // the default mapping there is safe. if (BB->hasAddressTaken()) { Constant *OldBBAddr = BlockAddress::get(const_cast(OldFunc), const_cast(BB)); VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); } bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; // Loop over all instructions, and copy them over, DCE'ing as we go. This // loop doesn't include the terminator. for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end(); II != IE; ++II) { Instruction *NewInst = II->clone(); // Eagerly remap operands to the newly cloned instruction, except for PHI // nodes for which we defer processing until we update the CFG. if (!isa(NewInst)) { RemapInstruction(NewInst, VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); // If we can simplify this instruction to some other value, simply add // a mapping to that value rather than inserting a new instruction into // the basic block. if (Value *V = SimplifyInstruction(NewInst, DL)) { // On the off-chance that this simplifies to an instruction in the old // function, map it back into the new function. if (Value *MappedV = VMap.lookup(V)) V = MappedV; VMap[II] = V; delete NewInst; continue; } } if (II->hasName()) NewInst->setName(II->getName()+NameSuffix); VMap[II] = NewInst; // Add instruction map to value. NewBB->getInstList().push_back(NewInst); hasCalls |= (isa(II) && !isa(II)); if (const AllocaInst *AI = dyn_cast(II)) { if (isa(AI->getArraySize())) hasStaticAllocas = true; else hasDynamicAllocas = true; } } // Finally, clone over the terminator. const TerminatorInst *OldTI = BB->getTerminator(); bool TerminatorDone = false; if (const BranchInst *BI = dyn_cast(OldTI)) { if (BI->isConditional()) { // If the condition was a known constant in the callee... ConstantInt *Cond = dyn_cast(BI->getCondition()); // Or is a known constant in the caller... if (Cond == 0) { Value *V = VMap[BI->getCondition()]; Cond = dyn_cast_or_null(V); } // Constant fold to uncond branch! if (Cond) { BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); VMap[OldTI] = BranchInst::Create(Dest, NewBB); ToClone.push_back(Dest); TerminatorDone = true; } } } else if (const SwitchInst *SI = dyn_cast(OldTI)) { // If switching on a value known constant in the caller. ConstantInt *Cond = dyn_cast(SI->getCondition()); if (Cond == 0) { // Or known constant after constant prop in the callee... Value *V = VMap[SI->getCondition()]; Cond = dyn_cast_or_null(V); } if (Cond) { // Constant fold to uncond branch! SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond); BasicBlock *Dest = const_cast(Case.getCaseSuccessor()); VMap[OldTI] = BranchInst::Create(Dest, NewBB); ToClone.push_back(Dest); TerminatorDone = true; } } if (!TerminatorDone) { Instruction *NewInst = OldTI->clone(); if (OldTI->hasName()) NewInst->setName(OldTI->getName()+NameSuffix); NewBB->getInstList().push_back(NewInst); VMap[OldTI] = NewInst; // Add instruction map to value. // Recursively clone any reachable successor blocks. const TerminatorInst *TI = BB->getTerminator(); for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) ToClone.push_back(TI->getSuccessor(i)); } if (CodeInfo) { CodeInfo->ContainsCalls |= hasCalls; CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && BB != &BB->getParent()->front(); } } /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto, /// except that it does some simple constant prop and DCE on the fly. The /// effect of this is to copy significantly less code in cases where (for /// example) a function call with constant arguments is inlined, and those /// constant arguments cause a significant amount of code in the callee to be /// dead. Since this doesn't produce an exact copy of the input, it can't be /// used for things like CloneFunction or CloneModule. void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl &Returns, const char *NameSuffix, ClonedCodeInfo *CodeInfo, const DataLayout *DL, Instruction *TheCall) { assert(NameSuffix && "NameSuffix cannot be null!"); #ifndef NDEBUG for (Function::const_arg_iterator II = OldFunc->arg_begin(), E = OldFunc->arg_end(); II != E; ++II) assert(VMap.count(II) && "No mapping from source argument specified!"); #endif PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, NameSuffix, CodeInfo, DL); // Clone the entry block, and anything recursively reachable from it. std::vector CloneWorklist; CloneWorklist.push_back(&OldFunc->getEntryBlock()); while (!CloneWorklist.empty()) { const BasicBlock *BB = CloneWorklist.back(); CloneWorklist.pop_back(); PFC.CloneBlock(BB, CloneWorklist); } // Loop over all of the basic blocks in the old function. If the block was // reachable, we have cloned it and the old block is now in the value map: // insert it into the new function in the right order. If not, ignore it. // // Defer PHI resolution until rest of function is resolved. SmallVector PHIToResolve; for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); BI != BE; ++BI) { Value *V = VMap[BI]; BasicBlock *NewBB = cast_or_null(V); if (NewBB == 0) continue; // Dead block. // Add the new block to the new function. NewFunc->getBasicBlockList().push_back(NewBB); // Handle PHI nodes specially, as we have to remove references to dead // blocks. for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) if (const PHINode *PN = dyn_cast(I)) PHIToResolve.push_back(PN); else break; // Finally, remap the terminator instructions, as those can't be remapped // until all BBs are mapped. RemapInstruction(NewBB->getTerminator(), VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); } // Defer PHI resolution until rest of function is resolved, PHI resolution // requires the CFG to be up-to-date. for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { const PHINode *OPN = PHIToResolve[phino]; unsigned NumPreds = OPN->getNumIncomingValues(); const BasicBlock *OldBB = OPN->getParent(); BasicBlock *NewBB = cast(VMap[OldBB]); // Map operands for blocks that are live and remove operands for blocks // that are dead. for (; phino != PHIToResolve.size() && PHIToResolve[phino]->getParent() == OldBB; ++phino) { OPN = PHIToResolve[phino]; PHINode *PN = cast(VMap[OPN]); for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { Value *V = VMap[PN->getIncomingBlock(pred)]; if (BasicBlock *MappedBlock = cast_or_null(V)) { Value *InVal = MapValue(PN->getIncomingValue(pred), VMap, ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); assert(InVal && "Unknown input value?"); PN->setIncomingValue(pred, InVal); PN->setIncomingBlock(pred, MappedBlock); } else { PN->removeIncomingValue(pred, false); --pred, --e; // Revisit the next entry. } } } // The loop above has removed PHI entries for those blocks that are dead // and has updated others. However, if a block is live (i.e. copied over) // but its terminator has been changed to not go to this block, then our // phi nodes will have invalid entries. Update the PHI nodes in this // case. PHINode *PN = cast(NewBB->begin()); NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB)); if (NumPreds != PN->getNumIncomingValues()) { assert(NumPreds < PN->getNumIncomingValues()); // Count how many times each predecessor comes to this block. std::map PredCount; for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI) --PredCount[*PI]; // Figure out how many entries to remove from each PHI. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) ++PredCount[PN->getIncomingBlock(i)]; // At this point, the excess predecessor entries are positive in the // map. Loop over all of the PHIs and remove excess predecessor // entries. BasicBlock::iterator I = NewBB->begin(); for (; (PN = dyn_cast(I)); ++I) { for (std::map::iterator PCI =PredCount.begin(), E = PredCount.end(); PCI != E; ++PCI) { BasicBlock *Pred = PCI->first; for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove) PN->removeIncomingValue(Pred, false); } } } // If the loops above have made these phi nodes have 0 or 1 operand, // replace them with undef or the input value. We must do this for // correctness, because 0-operand phis are not valid. PN = cast(NewBB->begin()); if (PN->getNumIncomingValues() == 0) { BasicBlock::iterator I = NewBB->begin(); BasicBlock::const_iterator OldI = OldBB->begin(); while ((PN = dyn_cast(I++))) { Value *NV = UndefValue::get(PN->getType()); PN->replaceAllUsesWith(NV); assert(VMap[OldI] == PN && "VMap mismatch"); VMap[OldI] = NV; PN->eraseFromParent(); ++OldI; } } } // Make a second pass over the PHINodes now that all of them have been // remapped into the new function, simplifying the PHINode and performing any // recursive simplifications exposed. This will transparently update the // WeakVH in the VMap. Notably, we rely on that so that if we coalesce // two PHINodes, the iteration over the old PHIs remains valid, and the // mapping will just map us to the new node (which may not even be a PHI // node). for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) if (PHINode *PN = dyn_cast(VMap[PHIToResolve[Idx]])) recursivelySimplifyInstruction(PN, DL); // Now that the inlined function body has been fully constructed, go through // and zap unconditional fall-through branches. This happen all the time when // specializing code: code specialization turns conditional branches into // uncond branches, and this code folds them. Function::iterator Begin = cast(VMap[&OldFunc->getEntryBlock()]); Function::iterator I = Begin; while (I != NewFunc->end()) { // Check if this block has become dead during inlining or other // simplifications. Note that the first block will appear dead, as it has // not yet been wired up properly. if (I != Begin && (pred_begin(I) == pred_end(I) || I->getSinglePredecessor() == I)) { BasicBlock *DeadBB = I++; DeleteDeadBlock(DeadBB); continue; } // We need to simplify conditional branches and switches with a constant // operand. We try to prune these out when cloning, but if the // simplification required looking through PHI nodes, those are only // available after forming the full basic block. That may leave some here, // and we still want to prune the dead code as early as possible. ConstantFoldTerminator(I); BranchInst *BI = dyn_cast(I->getTerminator()); if (!BI || BI->isConditional()) { ++I; continue; } BasicBlock *Dest = BI->getSuccessor(0); if (!Dest->getSinglePredecessor()) { ++I; continue; } // We shouldn't be able to get single-entry PHI nodes here, as instsimplify // above should have zapped all of them.. assert(!isa(Dest->begin())); // We know all single-entry PHI nodes in the inlined function have been // removed, so we just need to splice the blocks. BI->eraseFromParent(); // Make all PHI nodes that referred to Dest now refer to I as their source. Dest->replaceAllUsesWith(I); // Move all the instructions in the succ to the pred. I->getInstList().splice(I->end(), Dest->getInstList()); // Remove the dest block. Dest->eraseFromParent(); // Do not increment I, iteratively merge all things this block branches to. } // Make a final pass over the basic blocks from theh old function to gather // any return instructions which survived folding. We have to do this here // because we can iteratively remove and merge returns above. for (Function::iterator I = cast(VMap[&OldFunc->getEntryBlock()]), E = NewFunc->end(); I != E; ++I) if (ReturnInst *RI = dyn_cast(I->getTerminator())) Returns.push_back(RI); }