//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the pass that transforms the ARM machine instructions into // relocatable machine code. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "ARM.h" #include "ARMAddressingModes.h" #include "ARMConstantPoolValue.h" #include "ARMInstrInfo.h" #include "ARMRelocations.h" #include "ARMSubtarget.h" #include "ARMTargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Function.h" #include "llvm/PassManager.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #ifndef NDEBUG #include #endif using namespace llvm; STATISTIC(NumEmitted, "Number of machine instructions emitted"); namespace { class VISIBILITY_HIDDEN ARMCodeEmitter : public MachineFunctionPass { ARMJITInfo *JTI; const ARMInstrInfo *II; const TargetData *TD; TargetMachine &TM; MachineCodeEmitter &MCE; const std::vector *MCPEs; const std::vector *MJTEs; bool IsPIC; public: static char ID; explicit ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce) : MachineFunctionPass(&ID), JTI(0), II(0), TD(0), TM(tm), MCE(mce), MCPEs(0), MJTEs(0), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} ARMCodeEmitter(TargetMachine &tm, MachineCodeEmitter &mce, const ARMInstrInfo &ii, const TargetData &td) : MachineFunctionPass(&ID), JTI(0), II(&ii), TD(&td), TM(tm), MCE(mce), MCPEs(0), MJTEs(0), IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} bool runOnMachineFunction(MachineFunction &MF); virtual const char *getPassName() const { return "ARM Machine Code Emitter"; } void emitInstruction(const MachineInstr &MI); private: void emitWordLE(unsigned Binary); void emitConstPoolInstruction(const MachineInstr &MI); void emitMOVi2piecesInstruction(const MachineInstr &MI); void emitLEApcrelJTInstruction(const MachineInstr &MI); void addPCLabel(unsigned LabelID); void emitPseudoInstruction(const MachineInstr &MI); unsigned getMachineSoRegOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO, unsigned OpIdx); unsigned getMachineSoImmOpValue(unsigned SoImm); unsigned getAddrModeSBit(const MachineInstr &MI, const TargetInstrDesc &TID) const; void emitDataProcessingInstruction(const MachineInstr &MI, unsigned ImplicitRd = 0, unsigned ImplicitRn = 0); void emitLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRd = 0, unsigned ImplicitRn = 0); void emitMiscLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRn = 0); void emitLoadStoreMultipleInstruction(const MachineInstr &MI); void emitMulFrmInstruction(const MachineInstr &MI); void emitExtendInstruction(const MachineInstr &MI); void emitMiscArithInstruction(const MachineInstr &MI); void emitBranchInstruction(const MachineInstr &MI); void emitInlineJumpTable(unsigned JTIndex); void emitMiscBranchInstruction(const MachineInstr &MI); /// getBinaryCodeForInstr - This function, generated by the /// CodeEmitterGenerator using TableGen, produces the binary encoding for /// machine instructions. /// unsigned getBinaryCodeForInstr(const MachineInstr &MI); /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned getMachineOpValue(const MachineInstr &MI,const MachineOperand &MO); unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) { return getMachineOpValue(MI, MI.getOperand(OpIdx)); } /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. /// unsigned getShiftOp(unsigned Imm) const ; /// Routines that handle operands which add machine relocations which are /// fixed up by the relocation stage. void emitGlobalAddress(GlobalValue *GV, unsigned Reloc, bool NeedStub, unsigned CPIdx = 0); void emitExternalSymbolAddress(const char *ES, unsigned Reloc); void emitConstPoolAddress(unsigned CPI, unsigned Reloc); void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc); void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, intptr_t JTBase = 0); }; char ARMCodeEmitter::ID = 0; } /// createARMCodeEmitterPass - Return a pass that emits the collected ARM code /// to the specified MCE object. FunctionPass *llvm::createARMCodeEmitterPass(ARMTargetMachine &TM, MachineCodeEmitter &MCE) { return new ARMCodeEmitter(TM, MCE); } bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) { assert((MF.getTarget().getRelocationModel() != Reloc::Default || MF.getTarget().getRelocationModel() != Reloc::Static) && "JIT relocation model must be set to static or default!"); II = ((ARMTargetMachine&)MF.getTarget()).getInstrInfo(); TD = ((ARMTargetMachine&)MF.getTarget()).getTargetData(); JTI = ((ARMTargetMachine&)MF.getTarget()).getJITInfo(); MCPEs = &MF.getConstantPool()->getConstants(); MJTEs = &MF.getJumpTableInfo()->getJumpTables(); IsPIC = TM.getRelocationModel() == Reloc::PIC_; JTI->Initialize(MF); do { DOUT << "JITTing function '" << MF.getFunction()->getName() << "'\n"; MCE.startFunction(MF); for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); MBB != E; ++MBB) { MCE.StartMachineBasicBlock(MBB); for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) emitInstruction(*I); } } while (MCE.finishFunction(MF)); return false; } /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value. /// unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const { switch (ARM_AM::getAM2ShiftOpc(Imm)) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::asr: return 2; case ARM_AM::lsl: return 0; case ARM_AM::lsr: return 1; case ARM_AM::ror: case ARM_AM::rrx: return 3; } return 0; } /// getMachineOpValue - Return binary encoding of operand. If the machine /// operand requires relocation, record the relocation and return zero. unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI, const MachineOperand &MO) { if (MO.isReg()) return ARMRegisterInfo::getRegisterNumbering(MO.getReg()); else if (MO.isImm()) return static_cast(MO.getImm()); else if (MO.isGlobal()) emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true); else if (MO.isSymbol()) emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_relative); else if (MO.isCPI()) emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry); else if (MO.isJTI()) emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative); else if (MO.isMBB()) emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch); else { cerr << "ERROR: Unknown type of MachineOperand: " << MO << "\n"; abort(); } return 0; } /// emitGlobalAddress - Emit the specified address to the code stream. /// void ARMCodeEmitter::emitGlobalAddress(GlobalValue *GV, unsigned Reloc, bool NeedStub, unsigned CPIdx) { MCE.addRelocation(MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, GV, CPIdx, NeedStub)); } /// emitExternalSymbolAddress - Arrange for the address of an external symbol to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitExternalSymbolAddress(const char *ES, unsigned Reloc) { MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), Reloc, ES)); } /// emitConstPoolAddress - Arrange for the address of an constant pool /// to be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) { // Tell JIT emitter we'll resolve the address. MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), Reloc, CPI, 0, true)); } /// emitJumpTableAddress - Arrange for the address of a jump table to /// be emitted to the current location in the function, and allow it to be PC /// relative. void ARMCodeEmitter::emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) { MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), Reloc, JTIndex, 0, true)); } /// emitMachineBasicBlock - Emit the specified address basic block. void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc, intptr_t JTBase) { MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), Reloc, BB, JTBase)); } void ARMCodeEmitter::emitWordLE(unsigned Binary) { #ifndef NDEBUG DOUT << " 0x" << std::hex << std::setw(8) << std::setfill('0') << Binary << std::dec << "\n"; #endif MCE.emitWordLE(Binary); } void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) { DOUT << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI; NumEmitted++; // Keep track of the # of mi's emitted switch (MI.getDesc().TSFlags & ARMII::FormMask) { default: assert(0 && "Unhandled instruction encoding format!"); break; case ARMII::Pseudo: emitPseudoInstruction(MI); break; case ARMII::DPFrm: case ARMII::DPSoRegFrm: emitDataProcessingInstruction(MI); break; case ARMII::LdFrm: case ARMII::StFrm: emitLoadStoreInstruction(MI); break; case ARMII::LdMiscFrm: case ARMII::StMiscFrm: emitMiscLoadStoreInstruction(MI); break; case ARMII::LdMulFrm: case ARMII::StMulFrm: emitLoadStoreMultipleInstruction(MI); break; case ARMII::MulFrm: emitMulFrmInstruction(MI); break; case ARMII::ExtFrm: emitExtendInstruction(MI); break; case ARMII::ArithMiscFrm: emitMiscArithInstruction(MI); break; case ARMII::BrFrm: emitBranchInstruction(MI); break; case ARMII::BrMiscFrm: emitMiscBranchInstruction(MI); break; } } void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) { unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index. unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index. const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex]; // Remember the CONSTPOOL_ENTRY address for later relocation. JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue()); // Emit constpool island entry. In most cases, the actual values will be // resolved and relocated after code emission. if (MCPE.isMachineConstantPoolEntry()) { ARMConstantPoolValue *ACPV = static_cast(MCPE.Val.MachineCPVal); DOUT << " ** ARM constant pool #" << CPI << " @ " << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n'; GlobalValue *GV = ACPV->getGV(); if (GV) { assert(!ACPV->isStub() && "Don't know how to deal this yet!"); emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry, false, CPIndex); } else { assert(!ACPV->isNonLazyPointer() && "Don't know how to deal this yet!"); emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute); } emitWordLE(0); } else { Constant *CV = MCPE.Val.ConstVal; DOUT << " ** Constant pool #" << CPI << " @ " << (void*)MCE.getCurrentPCValue() << " " << *CV << '\n'; if (GlobalValue *GV = dyn_cast(CV)) { emitGlobalAddress(GV, ARM::reloc_arm_absolute, false); emitWordLE(0); } else { assert(CV->getType()->isInteger() && "Not expecting non-integer constpool entries yet!"); const ConstantInt *CI = dyn_cast(CV); uint32_t Val = *(uint32_t*)CI->getValue().getRawData(); emitWordLE(Val); } } } void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) { const MachineOperand &MO0 = MI.getOperand(0); const MachineOperand &MO1 = MI.getOperand(1); assert(MO1.isImm() && "Not a valid so_imm value!"); unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm()); unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm()); // Emit the 'mov' instruction. unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101 // Set the conditional execution predicate. Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; // Encode so_imm. // Set bit I(25) to identify this is the immediate form of Binary |= 1 << ARMII::I_BitShift; Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V1)); emitWordLE(Binary); // Now the 'orr' instruction. Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100 // Set the conditional execution predicate. Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode Rd. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift; // Encode Rn. Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift; // Encode so_imm. // Set bit I(25) to identify this is the immediate form of Binary |= 1 << ARMII::I_BitShift; Binary |= getMachineSoImmOpValue(ARM_AM::getSOImmVal(V2)); emitWordLE(Binary); } void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) { // It's basically add r, pc, (LJTI - $+8) const TargetInstrDesc &TID = MI.getDesc(); // Emit the 'add' instruction. unsigned Binary = 0x4 << 21; // add: Insts{24-31} = 0b0100 // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // Encode Rd. Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Encode Rn which is PC. Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::PC) << ARMII::RegRnShift; // Encode the displacement. // Set bit I(25) to identify this is the immediate form of . Binary |= 1 << ARMII::I_BitShift; emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base); emitWordLE(Binary); } void ARMCodeEmitter::addPCLabel(unsigned LabelID) { DOUT << " ** LPC" << LabelID << " @ " << (void*)MCE.getCurrentPCValue() << '\n'; JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue()); } void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) { unsigned Opcode = MI.getDesc().Opcode; switch (Opcode) { default: abort(); // FIXME: case ARM::CONSTPOOL_ENTRY: emitConstPoolInstruction(MI); break; case ARM::PICADD: { // Remember of the address of the PC label for relocation later. addPCLabel(MI.getOperand(2).getImm()); // PICADD is just an add instruction that implicitly read pc. emitDataProcessingInstruction(MI, 0, ARM::PC); break; } case ARM::PICLDR: case ARM::PICLDRB: case ARM::PICSTR: case ARM::PICSTRB: { // Remember of the address of the PC label for relocation later. addPCLabel(MI.getOperand(2).getImm()); // These are just load / store instructions that implicitly read pc. emitLoadStoreInstruction(MI, 0, ARM::PC); break; } case ARM::PICLDRH: case ARM::PICLDRSH: case ARM::PICLDRSB: case ARM::PICSTRH: { // Remember of the address of the PC label for relocation later. addPCLabel(MI.getOperand(2).getImm()); // These are just load / store instructions that implicitly read pc. emitMiscLoadStoreInstruction(MI, ARM::PC); break; } case ARM::MOVi2pieces: // Two instructions to materialize a constant. emitMOVi2piecesInstruction(MI); break; case ARM::LEApcrelJT: // Materialize jumptable address. emitLEApcrelJTInstruction(MI); break; } } unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI, const TargetInstrDesc &TID, const MachineOperand &MO, unsigned OpIdx) { unsigned Binary = getMachineOpValue(MI, MO); const MachineOperand &MO1 = MI.getOperand(OpIdx + 1); const MachineOperand &MO2 = MI.getOperand(OpIdx + 2); ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm()); // Encode the shift opcode. unsigned SBits = 0; unsigned Rs = MO1.getReg(); if (Rs) { // Set shift operand (bit[7:4]). // LSL - 0001 // LSR - 0011 // ASR - 0101 // ROR - 0111 // RRX - 0110 and bit[11:8] clear. switch (SOpc) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x1; break; case ARM_AM::lsr: SBits = 0x3; break; case ARM_AM::asr: SBits = 0x5; break; case ARM_AM::ror: SBits = 0x7; break; case ARM_AM::rrx: SBits = 0x6; break; } } else { // Set shift operand (bit[6:4]). // LSL - 000 // LSR - 010 // ASR - 100 // ROR - 110 switch (SOpc) { default: assert(0 && "Unknown shift opc!"); case ARM_AM::lsl: SBits = 0x0; break; case ARM_AM::lsr: SBits = 0x2; break; case ARM_AM::asr: SBits = 0x4; break; case ARM_AM::ror: SBits = 0x6; break; } } Binary |= SBits << 4; if (SOpc == ARM_AM::rrx) return Binary; // Encode the shift operation Rs or shift_imm (except rrx). if (Rs) { // Encode Rs bit[11:8]. assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0); return Binary | (ARMRegisterInfo::getRegisterNumbering(Rs) << ARMII::RegRsShift); } // Encode shift_imm bit[11:7]. return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7; } unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) { // Encode rotate_imm. unsigned Binary = (ARM_AM::getSOImmValRot(SoImm) >> 1) << ARMII::SoRotImmShift; // Encode immed_8. Binary |= ARM_AM::getSOImmValImm(SoImm); return Binary; } unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI, const TargetInstrDesc &TID) const { for (unsigned i = MI.getNumOperands(), e = TID.getNumOperands(); i != e; --i){ const MachineOperand &MO = MI.getOperand(i-1); if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) return 1 << ARMII::S_BitShift; } return 0; } void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI, unsigned ImplicitRd, unsigned ImplicitRn) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // Encode register def if there is one. unsigned NumDefs = TID.getNumDefs(); unsigned OpIdx = 0; if (NumDefs) Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; else if (ImplicitRd) // Special handling for implicit use (e.g. PC). Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); // If this is a two-address operand, skip it. e.g. MOVCCr operand 1. if (TID.getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) ++OpIdx; // Encode first non-shifter register operand if there is one. bool isUnary = TID.TSFlags & ARMII::UnaryDP; if (!isUnary) { if (ImplicitRn) // Special handling for implicit use (e.g. PC). Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); else { Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift; ++OpIdx; } } // Encode shifter operand. const MachineOperand &MO = MI.getOperand(OpIdx); if ((TID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) { // Encode SoReg. emitWordLE(Binary | getMachineSoRegOpValue(MI, TID, MO, OpIdx)); return; } if (MO.isReg()) { // Encode register Rm. emitWordLE(Binary | ARMRegisterInfo::getRegisterNumbering(MO.getReg())); return; } // Encode so_imm. // Set bit I(25) to identify this is the immediate form of . Binary |= 1 << ARMII::I_BitShift; Binary |= getMachineSoImmOpValue(MO.getImm()); emitWordLE(Binary); } void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRd, unsigned ImplicitRn) { // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Set first operand unsigned OpIdx = 0; if (ImplicitRd) // Special handling for implicit use (e.g. PC). Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRd) << ARMII::RegRdShift); else Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; // Set second operand if (ImplicitRn) // Special handling for implicit use (e.g. PC). Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); else Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; const MachineOperand &MO2 = MI.getOperand(OpIdx); unsigned AM2Opc = (ImplicitRn == ARM::PC) ? 0 : MI.getOperand(OpIdx+1).getImm(); // Set bit U(23) according to sign of immed value (positive or negative). Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); if (!MO2.getReg()) { // is immediate if (ARM_AM::getAM2Offset(AM2Opc)) // Set the value of offset_12 field Binary |= ARM_AM::getAM2Offset(AM2Opc); emitWordLE(Binary); return; } // Set bit I(25), because this is not in immediate enconding. Binary |= 1 << ARMII::I_BitShift; assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg())); // Set bit[3:0] to the corresponding Rm register Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); // if this instr is in scaled register offset/index instruction, set // shift_immed(bit[11:7]) and shift(bit[6:5]) fields. if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) { Binary |= getShiftOp(AM2Opc) << 5; // shift Binary |= ShImm << 7; // shift_immed } emitWordLE(Binary); } void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI, unsigned ImplicitRn) { // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift; // Set second operand unsigned OpIdx = 1; if (ImplicitRn) // Special handling for implicit use (e.g. PC). Binary |= (ARMRegisterInfo::getRegisterNumbering(ImplicitRn) << ARMII::RegRnShift); else Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift; const MachineOperand &MO2 = MI.getOperand(OpIdx); unsigned AM3Opc = (ImplicitRn == ARM::PC) ? 0 : MI.getOperand(OpIdx+1).getImm(); // Set bit U(23) according to sign of immed value (positive or negative) Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) << ARMII::U_BitShift); // If this instr is in register offset/index encoding, set bit[3:0] // to the corresponding Rm register. if (MO2.getReg()) { Binary |= ARMRegisterInfo::getRegisterNumbering(MO2.getReg()); emitWordLE(Binary); return; } // This instr is in immediate offset/index encoding, set bit 22 to 1. Binary |= 1 << ARMII::AM3_I_BitShift; if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) { // Set operands Binary |= (ImmOffs >> 4) << 8; // immedH Binary |= (ImmOffs & ~0xF); // immedL } emitWordLE(Binary); } void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) { // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Set first operand Binary |= getMachineOpValue(MI, 0) << ARMII::RegRnShift; // Set addressing mode by modifying bits U(23) and P(24) // IA - Increment after - bit U = 1 and bit P = 0 // IB - Increment before - bit U = 1 and bit P = 1 // DA - Decrement after - bit U = 0 and bit P = 0 // DB - Decrement before - bit U = 0 and bit P = 1 const MachineOperand &MO = MI.getOperand(1); ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO.getImm()); switch (Mode) { default: assert(0 && "Unknown addressing sub-mode!"); case ARM_AM::da: break; case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break; case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break; case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break; } // Set bit W(21) if (ARM_AM::getAM4WBFlag(MO.getImm())) Binary |= 0x1 << ARMII::W_BitShift; // Set registers for (unsigned i = 4, e = MI.getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI.getOperand(i); if (MO.isReg() && MO.isImplicit()) continue; unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(MO.getReg()); assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) && RegNum < 16); Binary |= 0x1 << RegNum; } emitWordLE(Binary); } void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Encode S bit if MI modifies CPSR. Binary |= getAddrModeSBit(MI, TID); // 32x32->64bit operations have two destination registers. The number // of register definitions will tell us if that's what we're dealing with. unsigned OpIdx = 0; if (TID.getNumDefs() == 2) Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift; // Encode Rm Binary |= getMachineOpValue(MI, OpIdx++); // Encode Rs Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift; // Many multiple instructions (e.g. MLA) have three src operands. Encode // it as Rn (for multiply, that's in the same offset as RdLo. if (TID.getNumOperands() > OpIdx && !TID.OpInfo[OpIdx].isPredicate() && !TID.OpInfo[OpIdx].isOptionalDef()) Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift; emitWordLE(Binary); } void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; const MachineOperand &MO1 = MI.getOperand(OpIdx++); const MachineOperand &MO2 = MI.getOperand(OpIdx); if (MO2.isReg()) { // Two register operand form. // Encode Rn. Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift; // Encode Rm. Binary |= getMachineOpValue(MI, MO2); ++OpIdx; } else { Binary |= getMachineOpValue(MI, MO1); } // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand. if (MI.getOperand(OpIdx).isImm() && !TID.OpInfo[OpIdx].isPredicate() && !TID.OpInfo[OpIdx].isOptionalDef()) Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift; emitWordLE(Binary); } void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; unsigned OpIdx = 0; // Encode Rd Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift; const MachineOperand &MO = MI.getOperand(OpIdx++); if (OpIdx == TID.getNumOperands() || TID.OpInfo[OpIdx].isPredicate() || TID.OpInfo[OpIdx].isOptionalDef()) { // Encode Rm and it's done. Binary |= getMachineOpValue(MI, MO); emitWordLE(Binary); return; } // Encode Rn. Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift; // Encode Rm. Binary |= getMachineOpValue(MI, OpIdx++); // Encode shift_imm. unsigned ShiftAmt = MI.getOperand(OpIdx).getImm(); assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!"); Binary |= ShiftAmt << ARMII::ShiftShift; emitWordLE(Binary); } void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); if (TID.Opcode == ARM::TPsoft) abort(); // FIXME // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; // Set signed_immed_24 field Binary |= getMachineOpValue(MI, 0); emitWordLE(Binary); } void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) { // Remember the base address of the inline jump table. intptr_t JTBase = MCE.getCurrentPCValue(); JTI->addJumpTableBaseAddr(JTIndex, JTBase); DOUT << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase << '\n'; // Now emit the jump table entries. const std::vector &MBBs = (*MJTEs)[JTIndex].MBBs; for (unsigned i = 0, e = MBBs.size(); i != e; ++i) { if (IsPIC) // DestBB address - JT base. emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase); else // Absolute DestBB address. emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute); emitWordLE(0); } } void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) { const TargetInstrDesc &TID = MI.getDesc(); // Handle jump tables. if (TID.Opcode == ARM::BR_JTr || TID.Opcode == ARM::BR_JTadd) { // First emit a ldr pc, [] instruction. emitDataProcessingInstruction(MI, ARM::PC); // Then emit the inline jump table. unsigned JTIndex = (TID.Opcode == ARM::BR_JTr) ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex(); emitInlineJumpTable(JTIndex); return; } else if (TID.Opcode == ARM::BR_JTm) { // First emit a ldr pc, [] instruction. emitLoadStoreInstruction(MI, ARM::PC); // Then emit the inline jump table. emitInlineJumpTable(MI.getOperand(3).getIndex()); return; } // Part of binary is determined by TableGn. unsigned Binary = getBinaryCodeForInstr(MI); // Set the conditional execution predicate Binary |= II->getPredicate(&MI) << ARMII::CondShift; if (TID.Opcode == ARM::BX_RET) // The return register is LR. Binary |= ARMRegisterInfo::getRegisterNumbering(ARM::LR); else // otherwise, set the return register Binary |= getMachineOpValue(MI, 0); emitWordLE(Binary); } #include "ARMGenCodeEmitter.inc"