//===-- X86MCTargetDesc.cpp - X86 Target Descriptions -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file provides X86 specific target descriptions. // //===----------------------------------------------------------------------===// #include "X86MCTargetDesc.h" #include "X86MCAsmInfo.h" #include "llvm/MC/MachineLocation.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Target/TargetRegistry.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/Host.h" #define GET_REGINFO_MC_DESC #include "X86GenRegisterInfo.inc" #define GET_INSTRINFO_MC_DESC #include "X86GenInstrInfo.inc" #define GET_SUBTARGETINFO_MC_DESC #include "X86GenSubtargetInfo.inc" using namespace llvm; std::string X86_MC::ParseX86Triple(StringRef TT) { Triple TheTriple(TT); if (TheTriple.getArch() == Triple::x86_64) return "+64bit-mode"; return "-64bit-mode"; } /// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the /// specified arguments. If we can't run cpuid on the host, return true. bool X86_MC::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, unsigned *rECX, unsigned *rEDX) { #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64) #if defined(__GNUC__) // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually. asm ("movq\t%%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq\t%%rbx, %%rsi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) int registers[4]; __cpuid(registers, value); *rEAX = registers[0]; *rEBX = registers[1]; *rECX = registers[2]; *rEDX = registers[3]; return false; #endif #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86) #if defined(__GNUC__) asm ("movl\t%%ebx, %%esi\n\t" "cpuid\n\t" "xchgl\t%%ebx, %%esi\n\t" : "=a" (*rEAX), "=S" (*rEBX), "=c" (*rECX), "=d" (*rEDX) : "a" (value)); return false; #elif defined(_MSC_VER) __asm { mov eax,value cpuid mov esi,rEAX mov dword ptr [esi],eax mov esi,rEBX mov dword ptr [esi],ebx mov esi,rECX mov dword ptr [esi],ecx mov esi,rEDX mov dword ptr [esi],edx } return false; #endif #endif return true; } void X86_MC::DetectFamilyModel(unsigned EAX, unsigned &Family, unsigned &Model) { Family = (EAX >> 8) & 0xf; // Bits 8 - 11 Model = (EAX >> 4) & 0xf; // Bits 4 - 7 if (Family == 6 || Family == 0xf) { if (Family == 0xf) // Examine extended family ID if family ID is F. Family += (EAX >> 20) & 0xff; // Bits 20 - 27 // Examine extended model ID if family ID is 6 or F. Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 } } unsigned X86_MC::getDwarfRegFlavour(StringRef TT, bool isEH) { Triple TheTriple(TT); if (TheTriple.getArch() == Triple::x86_64) return DWARFFlavour::X86_64; if (TheTriple.isOSDarwin()) return isEH ? DWARFFlavour::X86_32_DarwinEH : DWARFFlavour::X86_32_Generic; if (TheTriple.getOS() == Triple::MinGW32 || TheTriple.getOS() == Triple::Cygwin) // Unsupported by now, just quick fallback return DWARFFlavour::X86_32_Generic; return DWARFFlavour::X86_32_Generic; } /// getX86RegNum - This function maps LLVM register identifiers to their X86 /// specific numbering, which is used in various places encoding instructions. unsigned X86_MC::getX86RegNum(unsigned RegNo) { switch(RegNo) { case X86::RAX: case X86::EAX: case X86::AX: case X86::AL: return N86::EAX; case X86::RCX: case X86::ECX: case X86::CX: case X86::CL: return N86::ECX; case X86::RDX: case X86::EDX: case X86::DX: case X86::DL: return N86::EDX; case X86::RBX: case X86::EBX: case X86::BX: case X86::BL: return N86::EBX; case X86::RSP: case X86::ESP: case X86::SP: case X86::SPL: case X86::AH: return N86::ESP; case X86::RBP: case X86::EBP: case X86::BP: case X86::BPL: case X86::CH: return N86::EBP; case X86::RSI: case X86::ESI: case X86::SI: case X86::SIL: case X86::DH: return N86::ESI; case X86::RDI: case X86::EDI: case X86::DI: case X86::DIL: case X86::BH: return N86::EDI; case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: return N86::EAX; case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: return N86::ECX; case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: return N86::EDX; case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: return N86::EBX; case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: return N86::ESP; case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: return N86::EBP; case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: return N86::ESI; case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: return N86::EDI; case X86::ST0: case X86::ST1: case X86::ST2: case X86::ST3: case X86::ST4: case X86::ST5: case X86::ST6: case X86::ST7: return RegNo-X86::ST0; case X86::XMM0: case X86::XMM8: case X86::YMM0: case X86::YMM8: case X86::MM0: return 0; case X86::XMM1: case X86::XMM9: case X86::YMM1: case X86::YMM9: case X86::MM1: return 1; case X86::XMM2: case X86::XMM10: case X86::YMM2: case X86::YMM10: case X86::MM2: return 2; case X86::XMM3: case X86::XMM11: case X86::YMM3: case X86::YMM11: case X86::MM3: return 3; case X86::XMM4: case X86::XMM12: case X86::YMM4: case X86::YMM12: case X86::MM4: return 4; case X86::XMM5: case X86::XMM13: case X86::YMM5: case X86::YMM13: case X86::MM5: return 5; case X86::XMM6: case X86::XMM14: case X86::YMM6: case X86::YMM14: case X86::MM6: return 6; case X86::XMM7: case X86::XMM15: case X86::YMM7: case X86::YMM15: case X86::MM7: return 7; case X86::ES: return 0; case X86::CS: return 1; case X86::SS: return 2; case X86::DS: return 3; case X86::FS: return 4; case X86::GS: return 5; case X86::CR0: case X86::CR8 : case X86::DR0: return 0; case X86::CR1: case X86::CR9 : case X86::DR1: return 1; case X86::CR2: case X86::CR10: case X86::DR2: return 2; case X86::CR3: case X86::CR11: case X86::DR3: return 3; case X86::CR4: case X86::CR12: case X86::DR4: return 4; case X86::CR5: case X86::CR13: case X86::DR5: return 5; case X86::CR6: case X86::CR14: case X86::DR6: return 6; case X86::CR7: case X86::CR15: case X86::DR7: return 7; // Pseudo index registers are equivalent to a "none" // scaled index (See Intel Manual 2A, table 2-3) case X86::EIZ: case X86::RIZ: return 4; default: assert((int(RegNo) > 0) && "Unknown physical register!"); return 0; } } void X86_MC::InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI) { // FIXME: TableGen these. for (unsigned Reg = X86::NoRegister+1; Reg < X86::NUM_TARGET_REGS; ++Reg) { int SEH = X86_MC::getX86RegNum(Reg); switch (Reg) { case X86::R8: case X86::R8D: case X86::R8W: case X86::R8B: case X86::R9: case X86::R9D: case X86::R9W: case X86::R9B: case X86::R10: case X86::R10D: case X86::R10W: case X86::R10B: case X86::R11: case X86::R11D: case X86::R11W: case X86::R11B: case X86::R12: case X86::R12D: case X86::R12W: case X86::R12B: case X86::R13: case X86::R13D: case X86::R13W: case X86::R13B: case X86::R14: case X86::R14D: case X86::R14W: case X86::R14B: case X86::R15: case X86::R15D: case X86::R15W: case X86::R15B: case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11: case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15: case X86::YMM8: case X86::YMM9: case X86::YMM10: case X86::YMM11: case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15: SEH += 8; break; } MRI->mapLLVMRegToSEHReg(Reg, SEH); } } MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(StringRef TT, StringRef CPU, StringRef FS) { std::string ArchFS = X86_MC::ParseX86Triple(TT); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = ArchFS + "," + FS.str(); else ArchFS = FS; } std::string CPUName = CPU; if (CPUName.empty()) { #if defined (__x86_64__) || defined(__i386__) CPUName = sys::getHostCPUName(); #else CPUName = "generic"; #endif } MCSubtargetInfo *X = new MCSubtargetInfo(); InitX86MCSubtargetInfo(X, TT, CPUName, ArchFS); return X; } // Force static initialization. extern "C" void LLVMInitializeX86MCSubtargetInfo() { TargetRegistry::RegisterMCSubtargetInfo(TheX86_32Target, X86_MC::createX86MCSubtargetInfo); TargetRegistry::RegisterMCSubtargetInfo(TheX86_64Target, X86_MC::createX86MCSubtargetInfo); } static MCInstrInfo *createX86MCInstrInfo() { MCInstrInfo *X = new MCInstrInfo(); InitX86MCInstrInfo(X); return X; } extern "C" void LLVMInitializeX86MCInstrInfo() { TargetRegistry::RegisterMCInstrInfo(TheX86_32Target, createX86MCInstrInfo); TargetRegistry::RegisterMCInstrInfo(TheX86_64Target, createX86MCInstrInfo); } static MCRegisterInfo *createX86MCRegisterInfo(StringRef TT) { Triple TheTriple(TT); unsigned RA = (TheTriple.getArch() == Triple::x86_64) ? X86::RIP // Should have dwarf #16. : X86::EIP; // Should have dwarf #8. MCRegisterInfo *X = new MCRegisterInfo(); InitX86MCRegisterInfo(X, RA, X86_MC::getDwarfRegFlavour(TT, false), X86_MC::getDwarfRegFlavour(TT, true)); X86_MC::InitLLVM2SEHRegisterMapping(X); return X; } extern "C" void LLVMInitializeX86MCRegisterInfo() { TargetRegistry::RegisterMCRegInfo(TheX86_32Target, createX86MCRegisterInfo); TargetRegistry::RegisterMCRegInfo(TheX86_64Target, createX86MCRegisterInfo); } static MCAsmInfo *createX86MCAsmInfo(const Target &T, StringRef TT) { Triple TheTriple(TT); bool is64Bit = TheTriple.getArch() == Triple::x86_64; MCAsmInfo *MAI; if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) { if (is64Bit) MAI = new X86_64MCAsmInfoDarwin(TheTriple); else MAI = new X86MCAsmInfoDarwin(TheTriple); } else if (TheTriple.isOSWindows()) { MAI = new X86MCAsmInfoCOFF(TheTriple); } else { MAI = new X86ELFMCAsmInfo(TheTriple); } // Initialize initial frame state. // Calculate amount of bytes used for return address storing int stackGrowth = is64Bit ? -8 : -4; // Initial state of the frame pointer is esp+stackGrowth. MachineLocation Dst(MachineLocation::VirtualFP); MachineLocation Src(is64Bit ? X86::RSP : X86::ESP, stackGrowth); MAI->addInitialFrameState(0, Dst, Src); // Add return address to move list MachineLocation CSDst(is64Bit ? X86::RSP : X86::ESP, stackGrowth); MachineLocation CSSrc(is64Bit ? X86::RIP : X86::EIP); MAI->addInitialFrameState(0, CSDst, CSSrc); return MAI; } extern "C" void LLVMInitializeX86MCAsmInfo() { // Register the target asm info. RegisterMCAsmInfoFn A(TheX86_32Target, createX86MCAsmInfo); RegisterMCAsmInfoFn B(TheX86_64Target, createX86MCAsmInfo); } MCCodeGenInfo *createX86MCCodeGenInfo(StringRef TT, Reloc::Model RM) { MCCodeGenInfo *X = new MCCodeGenInfo(); Triple T(TT); bool is64Bit = T.getArch() == Triple::x86_64; if (RM == Reloc::Default) { // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode. // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we // use static relocation model by default. if (T.isOSDarwin()) { if (is64Bit) RM = Reloc::PIC_; else RM = Reloc::DynamicNoPIC; } else if (T.isOSWindows() && is64Bit) RM = Reloc::PIC_; else RM = Reloc::Static; } // ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC // is defined as a model for code which may be used in static or dynamic // executables but not necessarily a shared library. On X86-32 we just // compile in -static mode, in x86-64 we use PIC. if (RM == Reloc::DynamicNoPIC) { if (is64Bit) RM = Reloc::PIC_; else if (!T.isOSDarwin()) RM = Reloc::Static; } // If we are on Darwin, disallow static relocation model in X86-64 mode, since // the Mach-O file format doesn't support it. if (RM == Reloc::Static && T.isOSDarwin() && is64Bit) RM = Reloc::PIC_; X->InitMCCodeGenInfo(RM); return X; } extern "C" void LLVMInitializeX86MCCodeGenInfo() { // Register the target asm info. RegisterMCCodeGenInfoFn A(TheX86_32Target, createX86MCCodeGenInfo); RegisterMCCodeGenInfoFn B(TheX86_64Target, createX86MCCodeGenInfo); }