//===- ReadConst.cpp - Code to constants and constant pools ---------------===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements functionality to deserialize constants and entire // constant pools. // // Note that this library should be as fast as possible, reentrant, and // thread-safe!! // //===----------------------------------------------------------------------===// #include "ReaderInternals.h" #include "llvm/Module.h" #include "llvm/Constants.h" #include using namespace llvm; const Type *BytecodeParser::parseTypeConstant(const unsigned char *&Buf, const unsigned char *EndBuf) { unsigned PrimType; if (read_vbr(Buf, EndBuf, PrimType)) throw Error_readvbr; const Type *Val = 0; if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType))) return Val; switch (PrimType) { case Type::FunctionTyID: { unsigned Typ; if (read_vbr(Buf, EndBuf, Typ)) return Val; const Type *RetType = getType(Typ); unsigned NumParams; if (read_vbr(Buf, EndBuf, NumParams)) return Val; std::vector Params; while (NumParams--) { if (read_vbr(Buf, EndBuf, Typ)) return Val; Params.push_back(getType(Typ)); } bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); return FunctionType::get(RetType, Params, isVarArg); } case Type::ArrayTyID: { unsigned ElTyp; if (read_vbr(Buf, EndBuf, ElTyp)) return Val; const Type *ElementType = getType(ElTyp); unsigned NumElements; if (read_vbr(Buf, EndBuf, NumElements)) return Val; BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size=" << NumElements << "\n"); return ArrayType::get(ElementType, NumElements); } case Type::StructTyID: { unsigned Typ; std::vector Elements; if (read_vbr(Buf, EndBuf, Typ)) return Val; while (Typ) { // List is terminated by void/0 typeid Elements.push_back(getType(Typ)); if (read_vbr(Buf, EndBuf, Typ)) return Val; } return StructType::get(Elements); } case Type::PointerTyID: { unsigned ElTyp; if (read_vbr(Buf, EndBuf, ElTyp)) return Val; BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n"); return PointerType::get(getType(ElTyp)); } case Type::OpaqueTyID: { return OpaqueType::get(); } default: std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to deserialize" << " primitive Type " << PrimType << "\n"; return Val; } } // parseTypeConstants - We have to use this weird code to handle recursive // types. We know that recursive types will only reference the current slab of // values in the type plane, but they can forward reference types before they // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix // this ugly problem, we pessimistically insert an opaque type for each type we // are about to read. This means that forward references will resolve to // something and when we reread the type later, we can replace the opaque type // with a new resolved concrete type. // namespace llvm { void debug_type_tables(); } void BytecodeParser::parseTypeConstants(const unsigned char *&Buf, const unsigned char *EndBuf, TypeValuesListTy &Tab, unsigned NumEntries) { assert(Tab.size() == 0 && "should not have read type constants in before!"); // Insert a bunch of opaque types to be resolved later... Tab.reserve(NumEntries); for (unsigned i = 0; i != NumEntries; ++i) Tab.push_back(OpaqueType::get()); // Loop through reading all of the types. Forward types will make use of the // opaque types just inserted. // for (unsigned i = 0; i != NumEntries; ++i) { const Type *NewTy = parseTypeConstant(Buf, EndBuf), *OldTy = Tab[i].get(); if (NewTy == 0) throw std::string("Couldn't parse type!"); BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy << "' Replacing: " << OldTy << "\n"); // Don't insertValue the new type... instead we want to replace the opaque // type with the new concrete value... // // Refine the abstract type to the new type. This causes all uses of the // abstract type to use NewTy. This also will cause the opaque type to be // deleted... // cast(const_cast(OldTy))->refineAbstractTypeTo(NewTy); // This should have replace the old opaque type with the new type in the // value table... or with a preexisting type that was already in the system assert(Tab[i] != OldTy && "refineAbstractType didn't work!"); } BCR_TRACE(5, "Resulting types:\n"); for (unsigned i = 0; i < NumEntries; ++i) { BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n"); } debug_type_tables(); } Constant *BytecodeParser::parseConstantValue(const unsigned char *&Buf, const unsigned char *EndBuf, unsigned TypeID) { // We must check for a ConstantExpr before switching by type because // a ConstantExpr can be of any type, and has no explicit value. // unsigned isExprNumArgs; // 0 if not expr; numArgs if is expr if (read_vbr(Buf, EndBuf, isExprNumArgs)) throw Error_readvbr; if (isExprNumArgs) { // FIXME: Encoding of constant exprs could be much more compact! unsigned Opcode; std::vector ArgVec; ArgVec.reserve(isExprNumArgs); if (read_vbr(Buf, EndBuf, Opcode)) throw Error_readvbr; // Read the slot number and types of each of the arguments for (unsigned i = 0; i != isExprNumArgs; ++i) { unsigned ArgValSlot, ArgTypeSlot; if (read_vbr(Buf, EndBuf, ArgValSlot)) throw Error_readvbr; if (read_vbr(Buf, EndBuf, ArgTypeSlot)) throw Error_readvbr; BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot) << "' slot: " << ArgValSlot << "\n"); // Get the arg value from its slot if it exists, otherwise a placeholder ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot)); } // Construct a ConstantExpr of the appropriate kind if (isExprNumArgs == 1) { // All one-operand expressions assert(Opcode == Instruction::Cast); return ConstantExpr::getCast(ArgVec[0], getType(TypeID)); } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr std::vector IdxList(ArgVec.begin()+1, ArgVec.end()); return ConstantExpr::getGetElementPtr(ArgVec[0], IdxList); } else if (Opcode == Instruction::Shl || Opcode == Instruction::Shr) { return ConstantExpr::getShift(Opcode, ArgVec[0], ArgVec[1]); } else { // All other 2-operand expressions return ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]); } } // Ok, not an ConstantExpr. We now know how to read the given type... const Type *Ty = getType(TypeID); switch (Ty->getPrimitiveID()) { case Type::BoolTyID: { unsigned Val; if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr; if (Val != 0 && Val != 1) throw std::string("Invalid boolean value read."); return ConstantBool::get(Val == 1); } case Type::UByteTyID: // Unsigned integer types... case Type::UShortTyID: case Type::UIntTyID: { unsigned Val; if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr; if (!ConstantUInt::isValueValidForType(Ty, Val)) throw std::string("Invalid unsigned byte/short/int read."); return ConstantUInt::get(Ty, Val); } case Type::ULongTyID: { uint64_t Val; if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr; return ConstantUInt::get(Ty, Val); } case Type::SByteTyID: // Signed integer types... case Type::ShortTyID: case Type::IntTyID: { case Type::LongTyID: int64_t Val; if (read_vbr(Buf, EndBuf, Val)) throw Error_readvbr; if (!ConstantSInt::isValueValidForType(Ty, Val)) throw std::string("Invalid signed byte/short/int/long read."); return ConstantSInt::get(Ty, Val); } case Type::FloatTyID: { float F; if (input_data(Buf, EndBuf, &F, &F+1)) throw Error_inputdata; return ConstantFP::get(Ty, F); } case Type::DoubleTyID: { double Val; if (input_data(Buf, EndBuf, &Val, &Val+1)) throw Error_inputdata; return ConstantFP::get(Ty, Val); } case Type::TypeTyID: throw std::string("Type constants shouldn't live in constant table!"); case Type::ArrayTyID: { const ArrayType *AT = cast(Ty); unsigned NumElements = AT->getNumElements(); unsigned TypeSlot = getTypeSlot(AT->getElementType()); std::vector Elements; while (NumElements--) { // Read all of the elements of the constant. unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) throw Error_readvbr; Elements.push_back(getConstantValue(TypeSlot, Slot)); } return ConstantArray::get(AT, Elements); } case Type::StructTyID: { const StructType *ST = cast(Ty); const StructType::ElementTypes &ET = ST->getElementTypes(); std::vector Elements; for (unsigned i = 0; i < ET.size(); ++i) { unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) throw Error_readvbr; Elements.push_back(getConstantValue(ET[i], Slot)); } return ConstantStruct::get(ST, Elements); } case Type::PointerTyID: { // ConstantPointerRef value... const PointerType *PT = cast(Ty); unsigned Slot; if (read_vbr(Buf, EndBuf, Slot)) throw Error_readvbr; BCR_TRACE(4, "CPR: Type: '" << Ty << "' slot: " << Slot << "\n"); // Check to see if we have already read this global variable... Value *Val = getValue(TypeID, Slot, false); GlobalValue *GV; if (Val) { if (!(GV = dyn_cast(Val))) throw std::string("Value of ConstantPointerRef not in ValueTable!"); BCR_TRACE(5, "Value Found in ValueTable!\n"); } else { throw std::string("Forward references are not allowed here."); } return ConstantPointerRef::get(GV); } default: throw std::string("Don't know how to deserialize constant value of type '"+ Ty->getDescription()); } } void BytecodeParser::ParseGlobalTypes(const unsigned char *&Buf, const unsigned char *EndBuf) { ValueTable T; ParseConstantPool(Buf, EndBuf, T, ModuleTypeValues); } void BytecodeParser::ParseConstantPool(const unsigned char *&Buf, const unsigned char *EndBuf, ValueTable &Tab, TypeValuesListTy &TypeTab) { while (Buf < EndBuf) { unsigned NumEntries, Typ; if (read_vbr(Buf, EndBuf, NumEntries) || read_vbr(Buf, EndBuf, Typ)) throw Error_readvbr; if (Typ == Type::TypeTyID) { BCR_TRACE(3, "Type: 'type' NumEntries: " << NumEntries << "\n"); parseTypeConstants(Buf, EndBuf, TypeTab, NumEntries); } else { BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: " << NumEntries << "\n"); for (unsigned i = 0; i < NumEntries; ++i) { Constant *C = parseConstantValue(Buf, EndBuf, Typ); assert(C && "parseConstantValue returned NULL!"); BCR_TRACE(4, "Read Constant: '" << *C << "'\n"); unsigned Slot = insertValue(C, Typ, Tab); // If we are reading a function constant table, make sure that we adjust // the slot number to be the real global constant number. // if (&Tab != &ModuleValues && Typ < ModuleValues.size() && ModuleValues[Typ]) Slot += ModuleValues[Typ]->size(); ResolveReferencesToConstant(C, Slot); } } } if (Buf > EndBuf) throw std::string("Read past end of buffer."); }