//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the bison parser for LLVM assembly languages files. // //===----------------------------------------------------------------------===// %{ #include "UpgradeInternals.h" #include "llvm/CallingConv.h" #include "llvm/InlineAsm.h" #include "llvm/Instructions.h" #include "llvm/Module.h" #include "llvm/ParamAttrsList.h" #include "llvm/ValueSymbolTable.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/MathExtras.h" #include #include #include #include #include // DEBUG_UPREFS - Define this symbol if you want to enable debugging output // relating to upreferences in the input stream. // //#define DEBUG_UPREFS 1 #ifdef DEBUG_UPREFS #define UR_OUT(X) std::cerr << X #else #define UR_OUT(X) #endif #define YYERROR_VERBOSE 1 #define YYINCLUDED_STDLIB_H #define YYDEBUG 1 int yylex(); int yyparse(); int yyerror(const char*); static void warning(const std::string& WarningMsg); namespace llvm { std::istream* LexInput; static std::string CurFilename; // This bool controls whether attributes are ever added to function declarations // definitions and calls. static bool AddAttributes = false; static Module *ParserResult; static bool ObsoleteVarArgs; static bool NewVarArgs; static BasicBlock *CurBB; static GlobalVariable *CurGV; static unsigned lastCallingConv; // This contains info used when building the body of a function. It is // destroyed when the function is completed. // typedef std::vector ValueList; // Numbered defs typedef std::pair RenameMapKey; typedef std::map RenameMapType; static void ResolveDefinitions(std::map &LateResolvers, std::map *FutureLateResolvers = 0); static struct PerModuleInfo { Module *CurrentModule; std::map Values; // Module level numbered definitions std::map LateResolveValues; std::vector Types; std::vector TypeSigns; std::map NamedTypeSigns; std::map NamedValueSigns; std::map LateResolveTypes; static Module::Endianness Endian; static Module::PointerSize PointerSize; RenameMapType RenameMap; /// PlaceHolderInfo - When temporary placeholder objects are created, remember /// how they were referenced and on which line of the input they came from so /// that we can resolve them later and print error messages as appropriate. std::map > PlaceHolderInfo; // GlobalRefs - This maintains a mapping between 's and forward // references to global values. Global values may be referenced before they // are defined, and if so, the temporary object that they represent is held // here. This is used for forward references of GlobalValues. // typedef std::map, GlobalValue*> GlobalRefsType; GlobalRefsType GlobalRefs; void ModuleDone() { // If we could not resolve some functions at function compilation time // (calls to functions before they are defined), resolve them now... Types // are resolved when the constant pool has been completely parsed. // ResolveDefinitions(LateResolveValues); // Check to make sure that all global value forward references have been // resolved! // if (!GlobalRefs.empty()) { std::string UndefinedReferences = "Unresolved global references exist:\n"; for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end(); I != E; ++I) { UndefinedReferences += " " + I->first.first->getDescription() + " " + I->first.second.getName() + "\n"; } error(UndefinedReferences); return; } if (CurrentModule->getDataLayout().empty()) { std::string dataLayout; if (Endian != Module::AnyEndianness) dataLayout.append(Endian == Module::BigEndian ? "E" : "e"); if (PointerSize != Module::AnyPointerSize) { if (!dataLayout.empty()) dataLayout += "-"; dataLayout.append(PointerSize == Module::Pointer64 ? "p:64:64" : "p:32:32"); } CurrentModule->setDataLayout(dataLayout); } Values.clear(); // Clear out function local definitions Types.clear(); TypeSigns.clear(); NamedTypeSigns.clear(); NamedValueSigns.clear(); CurrentModule = 0; } // GetForwardRefForGlobal - Check to see if there is a forward reference // for this global. If so, remove it from the GlobalRefs map and return it. // If not, just return null. GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) { // Check to see if there is a forward reference to this global variable... // if there is, eliminate it and patch the reference to use the new def'n. GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID)); GlobalValue *Ret = 0; if (I != GlobalRefs.end()) { Ret = I->second; GlobalRefs.erase(I); } return Ret; } void setEndianness(Module::Endianness E) { Endian = E; } void setPointerSize(Module::PointerSize sz) { PointerSize = sz; } } CurModule; Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness; Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize; static struct PerFunctionInfo { Function *CurrentFunction; // Pointer to current function being created std::map Values; // Keep track of #'d definitions std::map LateResolveValues; bool isDeclare; // Is this function a forward declararation? GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration. /// BBForwardRefs - When we see forward references to basic blocks, keep /// track of them here. std::map > BBForwardRefs; std::vector NumberedBlocks; RenameMapType RenameMap; unsigned NextBBNum; inline PerFunctionInfo() { CurrentFunction = 0; isDeclare = false; Linkage = GlobalValue::ExternalLinkage; } inline void FunctionStart(Function *M) { CurrentFunction = M; NextBBNum = 0; } void FunctionDone() { NumberedBlocks.clear(); // Any forward referenced blocks left? if (!BBForwardRefs.empty()) { error("Undefined reference to label " + BBForwardRefs.begin()->first->getName()); return; } // Resolve all forward references now. ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues); Values.clear(); // Clear out function local definitions RenameMap.clear(); CurrentFunction = 0; isDeclare = false; Linkage = GlobalValue::ExternalLinkage; } } CurFun; // Info for the current function... static bool inFunctionScope() { return CurFun.CurrentFunction != 0; } /// This function is just a utility to make a Key value for the rename map. /// The Key is a combination of the name, type, Signedness of the original /// value (global/function). This just constructs the key and ensures that /// named Signedness values are resolved to the actual Signedness. /// @brief Make a key for the RenameMaps static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty, const Signedness &Sign) { TypeInfo TI; TI.T = Ty; if (Sign.isNamed()) // Don't allow Named Signedness nodes because they won't match. The actual // Signedness must be looked up in the NamedTypeSigns map. TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]); else TI.S.copy(Sign); return std::make_pair(Name, TI); } //===----------------------------------------------------------------------===// // Code to handle definitions of all the types //===----------------------------------------------------------------------===// static int InsertValue(Value *V, std::map &ValueTab = CurFun.Values) { if (V->hasName()) return -1; // Is this a numbered definition? // Yes, insert the value into the value table... ValueList &List = ValueTab[V->getType()]; List.push_back(V); return List.size()-1; } static const Type *getType(const ValID &D, bool DoNotImprovise = false) { switch (D.Type) { case ValID::NumberVal: // Is it a numbered definition? // Module constants occupy the lowest numbered slots... if ((unsigned)D.Num < CurModule.Types.size()) { return CurModule.Types[(unsigned)D.Num]; } break; case ValID::NameVal: // Is it a named definition? if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) { return N; } break; default: error("Internal parser error: Invalid symbol type reference"); return 0; } // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... // if (DoNotImprovise) return 0; // Do we just want a null to be returned? if (inFunctionScope()) { if (D.Type == ValID::NameVal) { error("Reference to an undefined type: '" + D.getName() + "'"); return 0; } else { error("Reference to an undefined type: #" + itostr(D.Num)); return 0; } } std::map::iterator I =CurModule.LateResolveTypes.find(D); if (I != CurModule.LateResolveTypes.end()) return I->second; Type *Typ = OpaqueType::get(); CurModule.LateResolveTypes.insert(std::make_pair(D, Typ)); return Typ; } /// This is like the getType method except that instead of looking up the type /// for a given ID, it looks up that type's sign. /// @brief Get the signedness of a referenced type static Signedness getTypeSign(const ValID &D) { switch (D.Type) { case ValID::NumberVal: // Is it a numbered definition? // Module constants occupy the lowest numbered slots... if ((unsigned)D.Num < CurModule.TypeSigns.size()) { return CurModule.TypeSigns[(unsigned)D.Num]; } break; case ValID::NameVal: { // Is it a named definition? std::map::const_iterator I = CurModule.NamedTypeSigns.find(D.Name); if (I != CurModule.NamedTypeSigns.end()) return I->second; // Perhaps its a named forward .. just cache the name Signedness S; S.makeNamed(D.Name); return S; } default: break; } // If we don't find it, its signless Signedness S; S.makeSignless(); return S; } /// This function is analagous to getElementType in LLVM. It provides the same /// function except that it looks up the Signedness instead of the type. This is /// used when processing GEP instructions that need to extract the type of an /// indexed struct/array/ptr member. /// @brief Look up an element's sign. static Signedness getElementSign(const ValueInfo& VI, const std::vector &Indices) { const Type *Ptr = VI.V->getType(); assert(isa(Ptr) && "Need pointer type"); unsigned CurIdx = 0; Signedness S(VI.S); while (const CompositeType *CT = dyn_cast(Ptr)) { if (CurIdx == Indices.size()) break; Value *Index = Indices[CurIdx++]; assert(!isa(CT) || CurIdx == 1 && "Invalid type"); Ptr = CT->getTypeAtIndex(Index); if (const Type* Ty = Ptr->getForwardedType()) Ptr = Ty; assert(S.isComposite() && "Bad Signedness type"); if (isa(CT)) { S = S.get(cast(Index)->getZExtValue()); } else { S = S.get(0UL); } if (S.isNamed()) S = CurModule.NamedTypeSigns[S.getName()]; } Signedness Result; Result.makeComposite(S); return Result; } /// This function just translates a ConstantInfo into a ValueInfo and calls /// getElementSign(ValueInfo,...). Its just a convenience. /// @brief ConstantInfo version of getElementSign. static Signedness getElementSign(const ConstInfo& CI, const std::vector &Indices) { ValueInfo VI; VI.V = CI.C; VI.S.copy(CI.S); std::vector Idx; for (unsigned i = 0; i < Indices.size(); ++i) Idx.push_back(Indices[i]); Signedness result = getElementSign(VI, Idx); VI.destroy(); return result; } // getExistingValue - Look up the value specified by the provided type and // the provided ValID. If the value exists and has already been defined, return // it. Otherwise return null. // static Value *getExistingValue(const Type *Ty, const ValID &D) { if (isa(Ty)) { error("Functions are not values and must be referenced as pointers"); } switch (D.Type) { case ValID::NumberVal: { // Is it a numbered definition? unsigned Num = (unsigned)D.Num; // Module constants occupy the lowest numbered slots... std::map::iterator VI = CurModule.Values.find(Ty); if (VI != CurModule.Values.end()) { if (Num < VI->second.size()) return VI->second[Num]; Num -= VI->second.size(); } // Make sure that our type is within bounds VI = CurFun.Values.find(Ty); if (VI == CurFun.Values.end()) return 0; // Check that the number is within bounds... if (VI->second.size() <= Num) return 0; return VI->second[Num]; } case ValID::NameVal: { // Is it a named definition? // Get the name out of the ID RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S); Value *V = 0; if (inFunctionScope()) { // See if the name was renamed RenameMapType::const_iterator I = CurFun.RenameMap.find(Key); std::string LookupName; if (I != CurFun.RenameMap.end()) LookupName = I->second; else LookupName = D.Name; ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable(); V = SymTab.lookup(LookupName); if (V && V->getType() != Ty) V = 0; } if (!V) { RenameMapType::const_iterator I = CurModule.RenameMap.find(Key); std::string LookupName; if (I != CurModule.RenameMap.end()) LookupName = I->second; else LookupName = D.Name; V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName); if (V && V->getType() != Ty) V = 0; } if (!V) return 0; D.destroy(); // Free old strdup'd memory... return V; } // Check to make sure that "Ty" is an integral type, and that our // value will fit into the specified type... case ValID::ConstSIntVal: // Is it a constant pool reference?? if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) { error("Signed integral constant '" + itostr(D.ConstPool64) + "' is invalid for type '" + Ty->getDescription() + "'"); } return ConstantInt::get(Ty, D.ConstPool64); case ValID::ConstUIntVal: // Is it an unsigned const pool reference? if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) { if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) error("Integral constant '" + utostr(D.UConstPool64) + "' is invalid or out of range"); else // This is really a signed reference. Transmogrify. return ConstantInt::get(Ty, D.ConstPool64); } else return ConstantInt::get(Ty, D.UConstPool64); case ValID::ConstFPVal: // Is it a floating point const pool reference? if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP)) error("FP constant invalid for type"); // Lexer has no type info, so builds all FP constants as double. // Fix this here. if (Ty==Type::FloatTy) D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); return ConstantFP::get(Ty, *D.ConstPoolFP); case ValID::ConstNullVal: // Is it a null value? if (!isa(Ty)) error("Cannot create a a non pointer null"); return ConstantPointerNull::get(cast(Ty)); case ValID::ConstUndefVal: // Is it an undef value? return UndefValue::get(Ty); case ValID::ConstZeroVal: // Is it a zero value? return Constant::getNullValue(Ty); case ValID::ConstantVal: // Fully resolved constant? if (D.ConstantValue->getType() != Ty) error("Constant expression type different from required type"); return D.ConstantValue; case ValID::InlineAsmVal: { // Inline asm expression const PointerType *PTy = dyn_cast(Ty); const FunctionType *FTy = PTy ? dyn_cast(PTy->getElementType()) : 0; if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints)) error("Invalid type for asm constraint string"); InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints, D.IAD->HasSideEffects); D.destroy(); // Free InlineAsmDescriptor. return IA; } default: assert(0 && "Unhandled case"); return 0; } // End of switch assert(0 && "Unhandled case"); return 0; } // getVal - This function is identical to getExistingValue, except that if a // value is not already defined, it "improvises" by creating a placeholder var // that looks and acts just like the requested variable. When the value is // defined later, all uses of the placeholder variable are replaced with the // real thing. // static Value *getVal(const Type *Ty, const ValID &ID) { if (Ty == Type::LabelTy) error("Cannot use a basic block here"); // See if the value has already been defined. Value *V = getExistingValue(Ty, ID); if (V) return V; if (!Ty->isFirstClassType() && !isa(Ty)) error("Invalid use of a composite type"); // If we reached here, we referenced either a symbol that we don't know about // or an id number that hasn't been read yet. We may be referencing something // forward, so just create an entry to be resolved later and get to it... V = new Argument(Ty); // Remember where this forward reference came from. FIXME, shouldn't we try // to recycle these things?? CurModule.PlaceHolderInfo.insert( std::make_pair(V, std::make_pair(ID, Upgradelineno))); if (inFunctionScope()) InsertValue(V, CurFun.LateResolveValues); else InsertValue(V, CurModule.LateResolveValues); return V; } /// @brief This just makes any name given to it unique, up to MAX_UINT times. static std::string makeNameUnique(const std::string& Name) { static unsigned UniqueNameCounter = 1; std::string Result(Name); Result += ".upgrd." + llvm::utostr(UniqueNameCounter++); return Result; } /// getBBVal - This is used for two purposes: /// * If isDefinition is true, a new basic block with the specified ID is being /// defined. /// * If isDefinition is true, this is a reference to a basic block, which may /// or may not be a forward reference. /// static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) { assert(inFunctionScope() && "Can't get basic block at global scope"); std::string Name; BasicBlock *BB = 0; switch (ID.Type) { default: error("Illegal label reference " + ID.getName()); break; case ValID::NumberVal: // Is it a numbered definition? if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size()) CurFun.NumberedBlocks.resize(ID.Num+1); BB = CurFun.NumberedBlocks[ID.Num]; break; case ValID::NameVal: // Is it a named definition? Name = ID.Name; if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) { if (N->getType() != Type::LabelTy) { // Register names didn't use to conflict with basic block names // because of type planes. Now they all have to be unique. So, we just // rename the register and treat this name as if no basic block // had been found. RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S); N->setName(makeNameUnique(N->getName())); CurModule.RenameMap[Key] = N->getName(); BB = 0; } else { BB = cast(N); } } break; } // See if the block has already been defined. if (BB) { // If this is the definition of the block, make sure the existing value was // just a forward reference. If it was a forward reference, there will be // an entry for it in the PlaceHolderInfo map. if (isDefinition && !CurFun.BBForwardRefs.erase(BB)) // The existing value was a definition, not a forward reference. error("Redefinition of label " + ID.getName()); ID.destroy(); // Free strdup'd memory. return BB; } // Otherwise this block has not been seen before. BB = new BasicBlock("", CurFun.CurrentFunction); if (ID.Type == ValID::NameVal) { BB->setName(ID.Name); } else { CurFun.NumberedBlocks[ID.Num] = BB; } // If this is not a definition, keep track of it so we can use it as a forward // reference. if (!isDefinition) { // Remember where this forward reference came from. CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno); } else { // The forward declaration could have been inserted anywhere in the // function: insert it into the correct place now. CurFun.CurrentFunction->getBasicBlockList().remove(BB); CurFun.CurrentFunction->getBasicBlockList().push_back(BB); } ID.destroy(); return BB; } //===----------------------------------------------------------------------===// // Code to handle forward references in instructions //===----------------------------------------------------------------------===// // // This code handles the late binding needed with statements that reference // values not defined yet... for example, a forward branch, or the PHI node for // a loop body. // // This keeps a table (CurFun.LateResolveValues) of all such forward references // and back patchs after we are done. // // ResolveDefinitions - If we could not resolve some defs at parsing // time (forward branches, phi functions for loops, etc...) resolve the // defs now... // static void ResolveDefinitions(std::map &LateResolvers, std::map *FutureLateResolvers) { // Loop over LateResolveDefs fixing up stuff that couldn't be resolved for (std::map::iterator LRI = LateResolvers.begin(), E = LateResolvers.end(); LRI != E; ++LRI) { const Type* Ty = LRI->first; ValueList &List = LRI->second; while (!List.empty()) { Value *V = List.back(); List.pop_back(); std::map >::iterator PHI = CurModule.PlaceHolderInfo.find(V); assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error"); ValID &DID = PHI->second.first; Value *TheRealValue = getExistingValue(Ty, DID); if (TheRealValue) { V->replaceAllUsesWith(TheRealValue); delete V; CurModule.PlaceHolderInfo.erase(PHI); } else if (FutureLateResolvers) { // Functions have their unresolved items forwarded to the module late // resolver table InsertValue(V, *FutureLateResolvers); } else { if (DID.Type == ValID::NameVal) { error("Reference to an invalid definition: '" + DID.getName() + "' of type '" + V->getType()->getDescription() + "'", PHI->second.second); return; } else { error("Reference to an invalid definition: #" + itostr(DID.Num) + " of type '" + V->getType()->getDescription() + "'", PHI->second.second); return; } } } } LateResolvers.clear(); } /// This function is used for type resolution and upref handling. When a type /// becomes concrete, this function is called to adjust the signedness for the /// concrete type. static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) { std::string TyName = CurModule.CurrentModule->getTypeName(oldTy); if (!TyName.empty()) CurModule.NamedTypeSigns[TyName] = Sign; } /// ResolveTypeTo - A brand new type was just declared. This means that (if /// name is not null) things referencing Name can be resolved. Otherwise, /// things refering to the number can be resolved. Do this now. static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){ ValID D; if (Name) D = ValID::create(Name); else D = ValID::create((int)CurModule.Types.size()); D.S.copy(Sign); if (Name) CurModule.NamedTypeSigns[Name] = Sign; std::map::iterator I = CurModule.LateResolveTypes.find(D); if (I != CurModule.LateResolveTypes.end()) { const Type *OldTy = I->second.get(); ((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy); CurModule.LateResolveTypes.erase(I); } } /// This is the implementation portion of TypeHasInteger. It traverses the /// type given, avoiding recursive types, and returns true as soon as it finds /// an integer type. If no integer type is found, it returns false. static bool TypeHasIntegerI(const Type *Ty, std::vector Stack) { // Handle some easy cases if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID)) return false; if (Ty->isInteger()) return true; if (const SequentialType *STy = dyn_cast(Ty)) return STy->getElementType()->isInteger(); // Avoid type structure recursion for (std::vector::iterator I = Stack.begin(), E = Stack.end(); I != E; ++I) if (Ty == *I) return false; // Push us on the type stack Stack.push_back(Ty); if (const FunctionType *FTy = dyn_cast(Ty)) { if (TypeHasIntegerI(FTy->getReturnType(), Stack)) return true; FunctionType::param_iterator I = FTy->param_begin(); FunctionType::param_iterator E = FTy->param_end(); for (; I != E; ++I) if (TypeHasIntegerI(*I, Stack)) return true; return false; } else if (const StructType *STy = dyn_cast(Ty)) { StructType::element_iterator I = STy->element_begin(); StructType::element_iterator E = STy->element_end(); for (; I != E; ++I) { if (TypeHasIntegerI(*I, Stack)) return true; } return false; } // There shouldn't be anything else, but its definitely not integer assert(0 && "What type is this?"); return false; } /// This is the interface to TypeHasIntegerI. It just provides the type stack, /// to avoid recursion, and then calls TypeHasIntegerI. static inline bool TypeHasInteger(const Type *Ty) { std::vector TyStack; return TypeHasIntegerI(Ty, TyStack); } // setValueName - Set the specified value to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is free'd by this function. // static void setValueName(const ValueInfo &V, char *NameStr) { if (NameStr) { std::string Name(NameStr); // Copy string free(NameStr); // Free old string if (V.V->getType() == Type::VoidTy) { error("Can't assign name '" + Name + "' to value with void type"); return; } assert(inFunctionScope() && "Must be in function scope"); // Search the function's symbol table for an existing value of this name ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable(); Value* Existing = ST.lookup(Name); if (Existing) { // An existing value of the same name was found. This might have happened // because of the integer type planes collapsing in LLVM 2.0. if (Existing->getType() == V.V->getType() && !TypeHasInteger(Existing->getType())) { // If the type does not contain any integers in them then this can't be // a type plane collapsing issue. It truly is a redefinition and we // should error out as the assembly is invalid. error("Redefinition of value named '" + Name + "' of type '" + V.V->getType()->getDescription() + "'"); return; } // In LLVM 2.0 we don't allow names to be re-used for any values in a // function, regardless of Type. Previously re-use of names was okay as // long as they were distinct types. With type planes collapsing because // of the signedness change and because of PR411, this can no longer be // supported. We must search the entire symbol table for a conflicting // name and make the name unique. No warning is needed as this can't // cause a problem. std::string NewName = makeNameUnique(Name); // We're changing the name but it will probably be used by other // instructions as operands later on. Consequently we have to retain // a mapping of the renaming that we're doing. RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S); CurFun.RenameMap[Key] = NewName; Name = NewName; } // Set the name. V.V->setName(Name); } } /// ParseGlobalVariable - Handle parsing of a global. If Initializer is null, /// this is a declaration, otherwise it is a definition. static GlobalVariable * ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage, bool isConstantGlobal, const Type *Ty, Constant *Initializer, const Signedness &Sign) { if (isa(Ty)) error("Cannot declare global vars of function type"); const PointerType *PTy = PointerType::getUnqual(Ty); std::string Name; if (NameStr) { Name = NameStr; // Copy string free(NameStr); // Free old string } // See if this global value was forward referenced. If so, recycle the // object. ValID ID; if (!Name.empty()) { ID = ValID::create((char*)Name.c_str()); } else { ID = ValID::create((int)CurModule.Values[PTy].size()); } ID.S.makeComposite(Sign); if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) { // Move the global to the end of the list, from whereever it was // previously inserted. GlobalVariable *GV = cast(FWGV); CurModule.CurrentModule->getGlobalList().remove(GV); CurModule.CurrentModule->getGlobalList().push_back(GV); GV->setInitializer(Initializer); GV->setLinkage(Linkage); GV->setConstant(isConstantGlobal); InsertValue(GV, CurModule.Values); return GV; } // If this global has a name, check to see if there is already a definition // of this global in the module and emit warnings if there are conflicts. if (!Name.empty()) { // The global has a name. See if there's an existing one of the same name. if (CurModule.CurrentModule->getNamedGlobal(Name) || CurModule.CurrentModule->getFunction(Name)) { // We found an existing global of the same name. This isn't allowed // in LLVM 2.0. Consequently, we must alter the name of the global so it // can at least compile. This can happen because of type planes // There is alread a global of the same name which means there is a // conflict. Let's see what we can do about it. std::string NewName(makeNameUnique(Name)); if (Linkage != GlobalValue::InternalLinkage) { // The linkage of this gval is external so we can't reliably rename // it because it could potentially create a linking problem. // However, we can't leave the name conflict in the output either or // it won't assemble with LLVM 2.0. So, all we can do is rename // this one to something unique and emit a warning about the problem. warning("Renaming global variable '" + Name + "' to '" + NewName + "' may cause linkage errors"); } // Put the renaming in the global rename map RenameMapKey Key = makeRenameMapKey(Name, PointerType::getUnqual(Ty), ID.S); CurModule.RenameMap[Key] = NewName; // Rename it Name = NewName; } } // Otherwise there is no existing GV to use, create one now. GlobalVariable *GV = new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, CurModule.CurrentModule); InsertValue(GV, CurModule.Values); // Remember the sign of this global. CurModule.NamedValueSigns[Name] = ID.S; return GV; } // setTypeName - Set the specified type to the name given. The name may be // null potentially, in which case this is a noop. The string passed in is // assumed to be a malloc'd string buffer, and is freed by this function. // // This function returns true if the type has already been defined, but is // allowed to be redefined in the specified context. If the name is a new name // for the type plane, it is inserted and false is returned. static bool setTypeName(const PATypeInfo& TI, char *NameStr) { assert(!inFunctionScope() && "Can't give types function-local names"); if (NameStr == 0) return false; std::string Name(NameStr); // Copy string free(NameStr); // Free old string const Type* Ty = TI.PAT->get(); // We don't allow assigning names to void type if (Ty == Type::VoidTy) { error("Can't assign name '" + Name + "' to the void type"); return false; } // Set the type name, checking for conflicts as we do so. bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty); // Save the sign information for later use CurModule.NamedTypeSigns[Name] = TI.S; if (AlreadyExists) { // Inserting a name that is already defined??? const Type *Existing = CurModule.CurrentModule->getTypeByName(Name); assert(Existing && "Conflict but no matching type?"); // There is only one case where this is allowed: when we are refining an // opaque type. In this case, Existing will be an opaque type. if (const OpaqueType *OpTy = dyn_cast(Existing)) { // We ARE replacing an opaque type! const_cast(OpTy)->refineAbstractTypeTo(Ty); return true; } // Otherwise, this is an attempt to redefine a type. That's okay if // the redefinition is identical to the original. This will be so if // Existing and T point to the same Type object. In this one case we // allow the equivalent redefinition. if (Existing == Ty) return true; // Yes, it's equal. // Any other kind of (non-equivalent) redefinition is an error. error("Redefinition of type named '" + Name + "' in the '" + Ty->getDescription() + "' type plane"); } return false; } //===----------------------------------------------------------------------===// // Code for handling upreferences in type names... // // TypeContains - Returns true if Ty directly contains E in it. // static bool TypeContains(const Type *Ty, const Type *E) { return std::find(Ty->subtype_begin(), Ty->subtype_end(), E) != Ty->subtype_end(); } namespace { struct UpRefRecord { // NestingLevel - The number of nesting levels that need to be popped before // this type is resolved. unsigned NestingLevel; // LastContainedTy - This is the type at the current binding level for the // type. Every time we reduce the nesting level, this gets updated. const Type *LastContainedTy; // UpRefTy - This is the actual opaque type that the upreference is // represented with. OpaqueType *UpRefTy; UpRefRecord(unsigned NL, OpaqueType *URTy) : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { } }; } // UpRefs - A list of the outstanding upreferences that need to be resolved. static std::vector UpRefs; /// HandleUpRefs - Every time we finish a new layer of types, this function is /// called. It loops through the UpRefs vector, which is a list of the /// currently active types. For each type, if the up reference is contained in /// the newly completed type, we decrement the level count. When the level /// count reaches zero, the upreferenced type is the type that is passed in: /// thus we can complete the cycle. /// static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) { // If Ty isn't abstract, or if there are no up-references in it, then there is // nothing to resolve here. if (!ty->isAbstract() || UpRefs.empty()) return ty; PATypeHolder Ty(ty); UR_OUT("Type '" << Ty->getDescription() << "' newly formed. Resolving upreferences.\n" << UpRefs.size() << " upreferences active!\n"); // If we find any resolvable upreferences (i.e., those whose NestingLevel goes // to zero), we resolve them all together before we resolve them to Ty. At // the end of the loop, if there is anything to resolve to Ty, it will be in // this variable. OpaqueType *TypeToResolve = 0; unsigned i = 0; for (; i != UpRefs.size(); ++i) { UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " << UpRefs[i].UpRefTy->getDescription() << ") = " << (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n"); if (TypeContains(Ty, UpRefs[i].LastContainedTy)) { // Decrement level of upreference unsigned Level = --UpRefs[i].NestingLevel; UpRefs[i].LastContainedTy = Ty; UR_OUT(" Uplevel Ref Level = " << Level << "\n"); if (Level == 0) { // Upreference should be resolved! if (!TypeToResolve) { TypeToResolve = UpRefs[i].UpRefTy; } else { UR_OUT(" * Resolving upreference for " << UpRefs[i].UpRefTy->getDescription() << "\n"; std::string OldName = UpRefs[i].UpRefTy->getDescription()); ResolveTypeSign(UpRefs[i].UpRefTy, Sign); UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve); UR_OUT(" * Type '" << OldName << "' refined upreference to: " << (const void*)Ty << ", " << Ty->getDescription() << "\n"); } UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list... --i; // Do not skip the next element... } } } if (TypeToResolve) { UR_OUT(" * Resolving upreference for " << UpRefs[i].UpRefTy->getDescription() << "\n"; std::string OldName = TypeToResolve->getDescription()); ResolveTypeSign(TypeToResolve, Sign); TypeToResolve->refineAbstractTypeTo(Ty); } return Ty; } bool Signedness::operator<(const Signedness &that) const { if (isNamed()) { if (that.isNamed()) return *(this->name) < *(that.name); else return CurModule.NamedTypeSigns[*name] < that; } else if (that.isNamed()) { return *this < CurModule.NamedTypeSigns[*that.name]; } if (isComposite() && that.isComposite()) { if (sv->size() == that.sv->size()) { SignVector::const_iterator thisI = sv->begin(), thisE = sv->end(); SignVector::const_iterator thatI = that.sv->begin(), thatE = that.sv->end(); for (; thisI != thisE; ++thisI, ++thatI) { if (*thisI < *thatI) return true; else if (!(*thisI == *thatI)) return false; } return false; } return sv->size() < that.sv->size(); } return kind < that.kind; } bool Signedness::operator==(const Signedness &that) const { if (isNamed()) if (that.isNamed()) return *(this->name) == *(that.name); else return CurModule.NamedTypeSigns[*(this->name)] == that; else if (that.isNamed()) return *this == CurModule.NamedTypeSigns[*(that.name)]; if (isComposite() && that.isComposite()) { if (sv->size() == that.sv->size()) { SignVector::const_iterator thisI = sv->begin(), thisE = sv->end(); SignVector::const_iterator thatI = that.sv->begin(), thatE = that.sv->end(); for (; thisI != thisE; ++thisI, ++thatI) { if (!(*thisI == *thatI)) return false; } return true; } return false; } return kind == that.kind; } void Signedness::copy(const Signedness &that) { if (that.isNamed()) { kind = Named; name = new std::string(*that.name); } else if (that.isComposite()) { kind = Composite; sv = new SignVector(); *sv = *that.sv; } else { kind = that.kind; sv = 0; } } void Signedness::destroy() { if (isNamed()) { delete name; } else if (isComposite()) { delete sv; } } #ifndef NDEBUG void Signedness::dump() const { if (isComposite()) { if (sv->size() == 1) { (*sv)[0].dump(); std::cerr << "*"; } else { std::cerr << "{ " ; for (unsigned i = 0; i < sv->size(); ++i) { if (i != 0) std::cerr << ", "; (*sv)[i].dump(); } std::cerr << "} " ; } } else if (isNamed()) { std::cerr << *name; } else if (isSigned()) { std::cerr << "S"; } else if (isUnsigned()) { std::cerr << "U"; } else std::cerr << "."; } #endif static inline Instruction::TermOps getTermOp(TermOps op) { switch (op) { default : assert(0 && "Invalid OldTermOp"); case RetOp : return Instruction::Ret; case BrOp : return Instruction::Br; case SwitchOp : return Instruction::Switch; case InvokeOp : return Instruction::Invoke; case UnwindOp : return Instruction::Unwind; case UnreachableOp: return Instruction::Unreachable; } } static inline Instruction::BinaryOps getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) { switch (op) { default : assert(0 && "Invalid OldBinaryOps"); case SetEQ : case SetNE : case SetLE : case SetGE : case SetLT : case SetGT : assert(0 && "Should use getCompareOp"); case AddOp : return Instruction::Add; case SubOp : return Instruction::Sub; case MulOp : return Instruction::Mul; case DivOp : { // This is an obsolete instruction so we must upgrade it based on the // types of its operands. bool isFP = Ty->isFloatingPoint(); if (const VectorType* PTy = dyn_cast(Ty)) // If its a vector type we want to use the element type isFP = PTy->getElementType()->isFloatingPoint(); if (isFP) return Instruction::FDiv; else if (Sign.isSigned()) return Instruction::SDiv; return Instruction::UDiv; } case UDivOp : return Instruction::UDiv; case SDivOp : return Instruction::SDiv; case FDivOp : return Instruction::FDiv; case RemOp : { // This is an obsolete instruction so we must upgrade it based on the // types of its operands. bool isFP = Ty->isFloatingPoint(); if (const VectorType* PTy = dyn_cast(Ty)) // If its a vector type we want to use the element type isFP = PTy->getElementType()->isFloatingPoint(); // Select correct opcode if (isFP) return Instruction::FRem; else if (Sign.isSigned()) return Instruction::SRem; return Instruction::URem; } case URemOp : return Instruction::URem; case SRemOp : return Instruction::SRem; case FRemOp : return Instruction::FRem; case LShrOp : return Instruction::LShr; case AShrOp : return Instruction::AShr; case ShlOp : return Instruction::Shl; case ShrOp : if (Sign.isSigned()) return Instruction::AShr; return Instruction::LShr; case AndOp : return Instruction::And; case OrOp : return Instruction::Or; case XorOp : return Instruction::Xor; } } static inline Instruction::OtherOps getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty, const Signedness &Sign) { bool isSigned = Sign.isSigned(); bool isFP = Ty->isFloatingPoint(); switch (op) { default : assert(0 && "Invalid OldSetCC"); case SetEQ : if (isFP) { predicate = FCmpInst::FCMP_OEQ; return Instruction::FCmp; } else { predicate = ICmpInst::ICMP_EQ; return Instruction::ICmp; } case SetNE : if (isFP) { predicate = FCmpInst::FCMP_UNE; return Instruction::FCmp; } else { predicate = ICmpInst::ICMP_NE; return Instruction::ICmp; } case SetLE : if (isFP) { predicate = FCmpInst::FCMP_OLE; return Instruction::FCmp; } else { if (isSigned) predicate = ICmpInst::ICMP_SLE; else predicate = ICmpInst::ICMP_ULE; return Instruction::ICmp; } case SetGE : if (isFP) { predicate = FCmpInst::FCMP_OGE; return Instruction::FCmp; } else { if (isSigned) predicate = ICmpInst::ICMP_SGE; else predicate = ICmpInst::ICMP_UGE; return Instruction::ICmp; } case SetLT : if (isFP) { predicate = FCmpInst::FCMP_OLT; return Instruction::FCmp; } else { if (isSigned) predicate = ICmpInst::ICMP_SLT; else predicate = ICmpInst::ICMP_ULT; return Instruction::ICmp; } case SetGT : if (isFP) { predicate = FCmpInst::FCMP_OGT; return Instruction::FCmp; } else { if (isSigned) predicate = ICmpInst::ICMP_SGT; else predicate = ICmpInst::ICMP_UGT; return Instruction::ICmp; } } } static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) { switch (op) { default : assert(0 && "Invalid OldMemoryOps"); case MallocOp : return Instruction::Malloc; case FreeOp : return Instruction::Free; case AllocaOp : return Instruction::Alloca; case LoadOp : return Instruction::Load; case StoreOp : return Instruction::Store; case GetElementPtrOp : return Instruction::GetElementPtr; } } static inline Instruction::OtherOps getOtherOp(OtherOps op, const Signedness &Sign) { switch (op) { default : assert(0 && "Invalid OldOtherOps"); case PHIOp : return Instruction::PHI; case CallOp : return Instruction::Call; case SelectOp : return Instruction::Select; case UserOp1 : return Instruction::UserOp1; case UserOp2 : return Instruction::UserOp2; case VAArg : return Instruction::VAArg; case ExtractElementOp : return Instruction::ExtractElement; case InsertElementOp : return Instruction::InsertElement; case ShuffleVectorOp : return Instruction::ShuffleVector; case ICmpOp : return Instruction::ICmp; case FCmpOp : return Instruction::FCmp; }; } static inline Value* getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy, const Signedness &DstSign, bool ForceInstruction = false) { Instruction::CastOps Opcode; const Type* SrcTy = Src->getType(); if (op == CastOp) { if (SrcTy->isFloatingPoint() && isa(DstTy)) { // fp -> ptr cast is no longer supported but we must upgrade this // by doing a double cast: fp -> int -> ptr SrcTy = Type::Int64Ty; Opcode = Instruction::IntToPtr; if (isa(Src)) { Src = ConstantExpr::getCast(Instruction::FPToUI, cast(Src), SrcTy); } else { std::string NewName(makeNameUnique(Src->getName())); Src = new FPToUIInst(Src, SrcTy, NewName, CurBB); } } else if (isa(DstTy) && cast(DstTy)->getBitWidth() == 1) { // cast type %x to bool was previously defined as setne type %x, null // The cast semantic is now to truncate, not compare so we must retain // the original intent by replacing the cast with a setne Constant* Null = Constant::getNullValue(SrcTy); Instruction::OtherOps Opcode = Instruction::ICmp; unsigned short predicate = ICmpInst::ICMP_NE; if (SrcTy->isFloatingPoint()) { Opcode = Instruction::FCmp; predicate = FCmpInst::FCMP_ONE; } else if (!SrcTy->isInteger() && !isa(SrcTy)) { error("Invalid cast to bool"); } if (isa(Src) && !ForceInstruction) return ConstantExpr::getCompare(predicate, cast(Src), Null); else return CmpInst::create(Opcode, predicate, Src, Null); } // Determine the opcode to use by calling CastInst::getCastOpcode Opcode = CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy, DstSign.isSigned()); } else switch (op) { default: assert(0 && "Invalid cast token"); case TruncOp: Opcode = Instruction::Trunc; break; case ZExtOp: Opcode = Instruction::ZExt; break; case SExtOp: Opcode = Instruction::SExt; break; case FPTruncOp: Opcode = Instruction::FPTrunc; break; case FPExtOp: Opcode = Instruction::FPExt; break; case FPToUIOp: Opcode = Instruction::FPToUI; break; case FPToSIOp: Opcode = Instruction::FPToSI; break; case UIToFPOp: Opcode = Instruction::UIToFP; break; case SIToFPOp: Opcode = Instruction::SIToFP; break; case PtrToIntOp: Opcode = Instruction::PtrToInt; break; case IntToPtrOp: Opcode = Instruction::IntToPtr; break; case BitCastOp: Opcode = Instruction::BitCast; break; } if (isa(Src) && !ForceInstruction) return ConstantExpr::getCast(Opcode, cast(Src), DstTy); return CastInst::create(Opcode, Src, DstTy); } static Instruction * upgradeIntrinsicCall(const Type* RetTy, const ValID &ID, std::vector& Args) { std::string Name = ID.Type == ValID::NameVal ? ID.Name : ""; if (Name.length() <= 5 || Name[0] != 'l' || Name[1] != 'l' || Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.') return 0; switch (Name[5]) { case 'i': if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") { if (Args.size() != 2) error("Invalid prototype for " + Name); return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]); } break; case 'v' : { const Type* PtrTy = PointerType::getUnqual(Type::Int8Ty); std::vector Params; if (Name == "llvm.va_start" || Name == "llvm.va_end") { if (Args.size() != 1) error("Invalid prototype for " + Name + " prototype"); Params.push_back(PtrTy); const FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false); const PointerType *PFTy = PointerType::getUnqual(FTy); Value* Func = getVal(PFTy, ID); Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB); return new CallInst(Func, Args.begin(), Args.end()); } else if (Name == "llvm.va_copy") { if (Args.size() != 2) error("Invalid prototype for " + Name + " prototype"); Params.push_back(PtrTy); Params.push_back(PtrTy); const FunctionType *FTy = FunctionType::get(Type::VoidTy, Params, false); const PointerType *PFTy = PointerType::getUnqual(FTy); Value* Func = getVal(PFTy, ID); std::string InstName0(makeNameUnique("va0")); std::string InstName1(makeNameUnique("va1")); Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB); Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB); return new CallInst(Func, Args.begin(), Args.end()); } } } return 0; } const Type* upgradeGEPCEIndices(const Type* PTy, std::vector *Indices, std::vector &Result) { const Type *Ty = PTy; Result.clear(); for (unsigned i = 0, e = Indices->size(); i != e ; ++i) { Constant *Index = cast((*Indices)[i].V); if (ConstantInt *CI = dyn_cast(Index)) { // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte // struct indices to i32 struct indices with ZExt for compatibility. if (CI->getBitWidth() < 32) Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty); } if (isa(Ty)) { // Make sure that unsigned SequentialType indices are zext'd to // 64-bits if they were smaller than that because LLVM 2.0 will sext // all indices for SequentialType elements. We must retain the same // semantic (zext) for unsigned types. if (const IntegerType *Ity = dyn_cast(Index->getType())) { if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) { Index = ConstantExpr::getCast(Instruction::ZExt, Index,Type::Int64Ty); } } } Result.push_back(Index); Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(), Result.end(),true); if (!Ty) error("Index list invalid for constant getelementptr"); } return Ty; } const Type* upgradeGEPInstIndices(const Type* PTy, std::vector *Indices, std::vector &Result) { const Type *Ty = PTy; Result.clear(); for (unsigned i = 0, e = Indices->size(); i != e ; ++i) { Value *Index = (*Indices)[i].V; if (ConstantInt *CI = dyn_cast(Index)) { // LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte // struct indices to i32 struct indices with ZExt for compatibility. if (CI->getBitWidth() < 32) Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty); } if (isa(Ty)) { // Only change struct indices if (!isa(Index)) { error("Invalid non-constant structure index"); return 0; } } else { // Make sure that unsigned SequentialType indices are zext'd to // 64-bits if they were smaller than that because LLVM 2.0 will sext // all indices for SequentialType elements. We must retain the same // semantic (zext) for unsigned types. if (const IntegerType *Ity = dyn_cast(Index->getType())) { if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) { if (isa(Index)) Index = ConstantExpr::getCast(Instruction::ZExt, cast(Index), Type::Int64Ty); else Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty, makeNameUnique("gep"), CurBB); } } } Result.push_back(Index); Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(), Result.end(),true); if (!Ty) error("Index list invalid for constant getelementptr"); } return Ty; } unsigned upgradeCallingConv(unsigned CC) { switch (CC) { case OldCallingConv::C : return CallingConv::C; case OldCallingConv::CSRet : return CallingConv::C; case OldCallingConv::Fast : return CallingConv::Fast; case OldCallingConv::Cold : return CallingConv::Cold; case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall; case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall; default: return CC; } } Module* UpgradeAssembly(const std::string &infile, std::istream& in, bool debug, bool addAttrs) { Upgradelineno = 1; CurFilename = infile; LexInput = ∈ yydebug = debug; AddAttributes = addAttrs; ObsoleteVarArgs = false; NewVarArgs = false; CurModule.CurrentModule = new Module(CurFilename); // Check to make sure the parser succeeded if (yyparse()) { if (ParserResult) delete ParserResult; std::cerr << "llvm-upgrade: parse failed.\n"; return 0; } // Check to make sure that parsing produced a result if (!ParserResult) { std::cerr << "llvm-upgrade: no parse result.\n"; return 0; } // Reset ParserResult variable while saving its value for the result. Module *Result = ParserResult; ParserResult = 0; //Not all functions use vaarg, so make a second check for ObsoleteVarArgs { Function* F; if ((F = Result->getFunction("llvm.va_start")) && F->getFunctionType()->getNumParams() == 0) ObsoleteVarArgs = true; if((F = Result->getFunction("llvm.va_copy")) && F->getFunctionType()->getNumParams() == 1) ObsoleteVarArgs = true; } if (ObsoleteVarArgs && NewVarArgs) { error("This file is corrupt: it uses both new and old style varargs"); return 0; } if(ObsoleteVarArgs) { if(Function* F = Result->getFunction("llvm.va_start")) { if (F->arg_size() != 0) { error("Obsolete va_start takes 0 argument"); return 0; } //foo = va_start() // -> //bar = alloca typeof(foo) //va_start(bar) //foo = load bar const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); const Type* ArgTy = F->getFunctionType()->getReturnType(); const Type* ArgTyPtr = PointerType::getUnqual(ArgTy); Function* NF = cast(Result->getOrInsertFunction( "llvm.va_start", RetTy, ArgTyPtr, (Type *)0)); while (!F->use_empty()) { CallInst* CI = cast(F->use_back()); AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI); new CallInst(NF, bar, "", CI); Value* foo = new LoadInst(bar, "vastart.fix.2", CI); CI->replaceAllUsesWith(foo); CI->getParent()->getInstList().erase(CI); } Result->getFunctionList().erase(F); } if(Function* F = Result->getFunction("llvm.va_end")) { if(F->arg_size() != 1) { error("Obsolete va_end takes 1 argument"); return 0; } //vaend foo // -> //bar = alloca 1 of typeof(foo) //vaend bar const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); const Type* ArgTy = F->getFunctionType()->getParamType(0); const Type* ArgTyPtr = PointerType::getUnqual(ArgTy); Function* NF = cast(Result->getOrInsertFunction( "llvm.va_end", RetTy, ArgTyPtr, (Type *)0)); while (!F->use_empty()) { CallInst* CI = cast(F->use_back()); AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI); new StoreInst(CI->getOperand(1), bar, CI); new CallInst(NF, bar, "", CI); CI->getParent()->getInstList().erase(CI); } Result->getFunctionList().erase(F); } if(Function* F = Result->getFunction("llvm.va_copy")) { if(F->arg_size() != 1) { error("Obsolete va_copy takes 1 argument"); return 0; } //foo = vacopy(bar) // -> //a = alloca 1 of typeof(foo) //b = alloca 1 of typeof(foo) //store bar -> b //vacopy(a, b) //foo = load a const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID); const Type* ArgTy = F->getFunctionType()->getReturnType(); const Type* ArgTyPtr = PointerType::getUnqual(ArgTy); Function* NF = cast(Result->getOrInsertFunction( "llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0)); while (!F->use_empty()) { CallInst* CI = cast(F->use_back()); Value *Args[2] = { new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI), new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI) }; new StoreInst(CI->getOperand(1), Args[1], CI); new CallInst(NF, Args, Args + 2, "", CI); Value* foo = new LoadInst(Args[0], "vacopy.fix.3", CI); CI->replaceAllUsesWith(foo); CI->getParent()->getInstList().erase(CI); } Result->getFunctionList().erase(F); } } return Result; } } // end llvm namespace using namespace llvm; %} %union { llvm::Module *ModuleVal; llvm::Function *FunctionVal; std::pair *ArgVal; llvm::BasicBlock *BasicBlockVal; llvm::TermInstInfo TermInstVal; llvm::InstrInfo InstVal; llvm::ConstInfo ConstVal; llvm::ValueInfo ValueVal; llvm::PATypeInfo TypeVal; llvm::TypeInfo PrimType; llvm::PHIListInfo PHIList; std::list *TypeList; std::vector *ValueList; std::vector *ConstVector; std::vector > *ArgList; // Represent the RHS of PHI node std::vector > *JumpTable; llvm::GlobalValue::LinkageTypes Linkage; int64_t SInt64Val; uint64_t UInt64Val; int SIntVal; unsigned UIntVal; llvm::APFloat *FPVal; bool BoolVal; char *StrVal; // This memory is strdup'd! llvm::ValID ValIDVal; // strdup'd memory maybe! llvm::BinaryOps BinaryOpVal; llvm::TermOps TermOpVal; llvm::MemoryOps MemOpVal; llvm::OtherOps OtherOpVal; llvm::CastOps CastOpVal; llvm::ICmpInst::Predicate IPred; llvm::FCmpInst::Predicate FPred; llvm::Module::Endianness Endianness; } %type Module FunctionList %type Function FunctionProto FunctionHeader BasicBlockList %type BasicBlock InstructionList %type BBTerminatorInst %type Inst InstVal MemoryInst %type ConstVal ConstExpr %type ConstVector %type ArgList ArgListH %type ArgVal %type PHIList %type ValueRefList ValueRefListE // For call param lists %type IndexList // For GEP derived indices %type TypeListI ArgTypeListI %type JumpTable %type GlobalType // GLOBAL or CONSTANT? %type OptVolatile // 'volatile' or not %type OptTailCall // TAIL CALL or plain CALL. %type OptSideEffect // 'sideeffect' or not. %type OptLinkage FnDeclareLinkage %type BigOrLittle // ValueRef - Unresolved reference to a definition or BB %type ValueRef ConstValueRef SymbolicValueRef %type ResolvedVal // pair // Tokens and types for handling constant integer values // // ESINT64VAL - A negative number within long long range %token ESINT64VAL // EUINT64VAL - A positive number within uns. long long range %token EUINT64VAL %type EINT64VAL %token SINTVAL // Signed 32 bit ints... %token UINTVAL // Unsigned 32 bit ints... %type INTVAL %token FPVAL // Float or Double constant // Built in types... %type Types TypesV UpRTypes UpRTypesV %type SIntType UIntType IntType FPType PrimType // Classifications %token VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG %token FLOAT DOUBLE TYPE LABEL %token VAR_ID LABELSTR STRINGCONSTANT %type Name OptName OptAssign %type OptAlign OptCAlign %type OptSection SectionString %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK %token DECLARE GLOBAL CONSTANT SECTION VOLATILE %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING %token DLLIMPORT DLLEXPORT EXTERN_WEAK %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN %token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT %token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK %token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK %token DATALAYOUT %type OptCallingConv // Basic Block Terminating Operators %token RET BR SWITCH INVOKE UNREACHABLE %token UNWIND EXCEPT // Binary Operators %type ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories %type ShiftOps %token ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM %token AND OR XOR SHL SHR ASHR LSHR %token SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators %token ICMP FCMP // Memory Instructions %token MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR // Other Operators %token PHI_TOK SELECT VAARG %token EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR %token VAARG_old VANEXT_old //OBSOLETE // Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0 %type IPredicates %type FPredicates %token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE %token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE %token CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI %token UITOFP SITOFP PTRTOINT INTTOPTR BITCAST %type CastOps %start Module %% // Handle constant integer size restriction and conversion... // INTVAL : SINTVAL | UINTVAL { if ($1 > (uint32_t)INT32_MAX) // Outside of my range! error("Value too large for type"); $$ = (int32_t)$1; } ; EINT64VAL : ESINT64VAL // These have same type and can't cause problems... | EUINT64VAL { if ($1 > (uint64_t)INT64_MAX) // Outside of my range! error("Value too large for type"); $$ = (int64_t)$1; }; // Operations that are notably excluded from this list include: // RET, BR, & SWITCH because they end basic blocks and are treated specially. // ArithmeticOps : ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM ; LogicalOps : AND | OR | XOR ; SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE ; IPredicates : EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; } | SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; } | SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; } | ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; } | ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; } ; FPredicates : OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; } | OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; } | OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; } | ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; } | UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; } | ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; } | ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; } | TRUETOK { $$ = FCmpInst::FCMP_TRUE; } | FALSETOK { $$ = FCmpInst::FCMP_FALSE; } ; ShiftOps : SHL | SHR | ASHR | LSHR ; CastOps : TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI | UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST ; // These are some types that allow classification if we only want a particular // thing... for example, only a signed, unsigned, or integral type. SIntType : LONG | INT | SHORT | SBYTE ; UIntType : ULONG | UINT | USHORT | UBYTE ; IntType : SIntType | UIntType ; FPType : FLOAT | DOUBLE ; // OptAssign - Value producing statements have an optional assignment component OptAssign : Name '=' { $$ = $1; } | /*empty*/ { $$ = 0; }; OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } | LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } | WEAK { $$ = GlobalValue::WeakLinkage; } | APPENDING { $$ = GlobalValue::AppendingLinkage; } | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } | DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; } | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } | /*empty*/ { $$ = GlobalValue::ExternalLinkage; } ; OptCallingConv : /*empty*/ { $$ = lastCallingConv = OldCallingConv::C; } | CCC_TOK { $$ = lastCallingConv = OldCallingConv::C; } | CSRETCC_TOK { $$ = lastCallingConv = OldCallingConv::CSRet; } | FASTCC_TOK { $$ = lastCallingConv = OldCallingConv::Fast; } | COLDCC_TOK { $$ = lastCallingConv = OldCallingConv::Cold; } | X86_STDCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_StdCall; } | X86_FASTCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_FastCall; } | CC_TOK EUINT64VAL { if ((unsigned)$2 != $2) error("Calling conv too large"); $$ = lastCallingConv = $2; } ; // OptAlign/OptCAlign - An optional alignment, and an optional alignment with // a comma before it. OptAlign : /*empty*/ { $$ = 0; } | ALIGN EUINT64VAL { $$ = $2; if ($$ != 0 && !isPowerOf2_32($$)) error("Alignment must be a power of two"); } ; OptCAlign : /*empty*/ { $$ = 0; } | ',' ALIGN EUINT64VAL { $$ = $3; if ($$ != 0 && !isPowerOf2_32($$)) error("Alignment must be a power of two"); } ; SectionString : SECTION STRINGCONSTANT { for (unsigned i = 0, e = strlen($2); i != e; ++i) if ($2[i] == '"' || $2[i] == '\\') error("Invalid character in section name"); $$ = $2; } ; OptSection : /*empty*/ { $$ = 0; } | SectionString { $$ = $1; } ; // GlobalVarAttributes - Used to pass the attributes string on a global. CurGV // is set to be the global we are processing. // GlobalVarAttributes : /* empty */ {} | ',' GlobalVarAttribute GlobalVarAttributes {} ; GlobalVarAttribute : SectionString { CurGV->setSection($1); free($1); } | ALIGN EUINT64VAL { if ($2 != 0 && !isPowerOf2_32($2)) error("Alignment must be a power of two"); CurGV->setAlignment($2); } ; //===----------------------------------------------------------------------===// // Types includes all predefined types... except void, because it can only be // used in specific contexts (function returning void for example). To have // access to it, a user must explicitly use TypesV. // // TypesV includes all of 'Types', but it also includes the void type. TypesV : Types | VOID { $$.PAT = new PATypeHolder($1.T); $$.S.makeSignless(); } ; UpRTypesV : UpRTypes | VOID { $$.PAT = new PATypeHolder($1.T); $$.S.makeSignless(); } ; Types : UpRTypes { if (!UpRefs.empty()) error("Invalid upreference in type: " + (*$1.PAT)->getDescription()); $$ = $1; } ; PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT | LONG | ULONG | FLOAT | DOUBLE | LABEL ; // Derived types are added later... UpRTypes : PrimType { $$.PAT = new PATypeHolder($1.T); $$.S.copy($1.S); } | OPAQUE { $$.PAT = new PATypeHolder(OpaqueType::get()); $$.S.makeSignless(); } | SymbolicValueRef { // Named types are also simple types... $$.S.copy(getTypeSign($1)); const Type* tmp = getType($1); $$.PAT = new PATypeHolder(tmp); } | '\\' EUINT64VAL { // Type UpReference if ($2 > (uint64_t)~0U) error("Value out of range"); OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector... $$.PAT = new PATypeHolder(OT); $$.S.makeSignless(); UR_OUT("New Upreference!\n"); } | UpRTypesV '(' ArgTypeListI ')' { // Function derived type? $$.S.makeComposite($1.S); std::vector Params; for (std::list::iterator I = $3->begin(), E = $3->end(); I != E; ++I) { Params.push_back(I->PAT->get()); $$.S.add(I->S); } bool isVarArg = Params.size() && Params.back() == Type::VoidTy; if (isVarArg) Params.pop_back(); const ParamAttrsList *PAL = 0; if (lastCallingConv == OldCallingConv::CSRet) { ParamAttrsVector Attrs; ParamAttrsWithIndex PAWI; PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg Attrs.push_back(PAWI); PAL = ParamAttrsList::get(Attrs); } const FunctionType *FTy = FunctionType::get($1.PAT->get(), Params, isVarArg); $$.PAT = new PATypeHolder( HandleUpRefs(FTy, $$.S) ); delete $1.PAT; // Delete the return type handle delete $3; // Delete the argument list } | '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type? $$.S.makeComposite($4.S); $$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(), (unsigned)$2), $$.S)); delete $4.PAT; } | '<' EUINT64VAL 'x' UpRTypes '>' { // Vector type? const llvm::Type* ElemTy = $4.PAT->get(); if ((unsigned)$2 != $2) error("Unsigned result not equal to signed result"); if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint())) error("Elements of a VectorType must be integer or floating point"); if (!isPowerOf2_32($2)) error("VectorType length should be a power of 2"); $$.S.makeComposite($4.S); $$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy, (unsigned)$2), $$.S)); delete $4.PAT; } | '{' TypeListI '}' { // Structure type? std::vector Elements; $$.S.makeComposite(); for (std::list::iterator I = $2->begin(), E = $2->end(); I != E; ++I) { Elements.push_back(I->PAT->get()); $$.S.add(I->S); } $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S)); delete $2; } | '{' '}' { // Empty structure type? $$.PAT = new PATypeHolder(StructType::get(std::vector())); $$.S.makeComposite(); } | '<' '{' TypeListI '}' '>' { // Packed Structure type? $$.S.makeComposite(); std::vector Elements; for (std::list::iterator I = $3->begin(), E = $3->end(); I != E; ++I) { Elements.push_back(I->PAT->get()); $$.S.add(I->S); delete I->PAT; } $$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true), $$.S)); delete $3; } | '<' '{' '}' '>' { // Empty packed structure type? $$.PAT = new PATypeHolder(StructType::get(std::vector(),true)); $$.S.makeComposite(); } | UpRTypes '*' { // Pointer type? if ($1.PAT->get() == Type::LabelTy) error("Cannot form a pointer to a basic block"); $$.S.makeComposite($1.S); $$.PAT = new PATypeHolder(HandleUpRefs(PointerType::getUnqual($1.PAT->get()), $$.S)); delete $1.PAT; } ; // TypeList - Used for struct declarations and as a basis for function type // declaration type lists // TypeListI : UpRTypes { $$ = new std::list(); $$->push_back($1); } | TypeListI ',' UpRTypes { ($$=$1)->push_back($3); } ; // ArgTypeList - List of types for a function type declaration... ArgTypeListI : TypeListI | TypeListI ',' DOTDOTDOT { PATypeInfo VoidTI; VoidTI.PAT = new PATypeHolder(Type::VoidTy); VoidTI.S.makeSignless(); ($$=$1)->push_back(VoidTI); } | DOTDOTDOT { $$ = new std::list(); PATypeInfo VoidTI; VoidTI.PAT = new PATypeHolder(Type::VoidTy); VoidTI.S.makeSignless(); $$->push_back(VoidTI); } | /*empty*/ { $$ = new std::list(); } ; // ConstVal - The various declarations that go into the constant pool. This // production is used ONLY to represent constants that show up AFTER a 'const', // 'constant' or 'global' token at global scope. Constants that can be inlined // into other expressions (such as integers and constexprs) are handled by the // ResolvedVal, ValueRef and ConstValueRef productions. // ConstVal : Types '[' ConstVector ']' { // Nonempty unsized arr const ArrayType *ATy = dyn_cast($1.PAT->get()); if (ATy == 0) error("Cannot make array constant with type: '" + $1.PAT->get()->getDescription() + "'"); const Type *ETy = ATy->getElementType(); int NumElements = ATy->getNumElements(); // Verify that we have the correct size... if (NumElements != -1 && NumElements != (int)$3->size()) error("Type mismatch: constant sized array initialized with " + utostr($3->size()) + " arguments, but has size of " + itostr(NumElements) + ""); // Verify all elements are correct type! std::vector Elems; for (unsigned i = 0; i < $3->size(); i++) { Constant *C = (*$3)[i].C; const Type* ValTy = C->getType(); if (ETy != ValTy) error("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '"+ ValTy->getDescription() + "'"); Elems.push_back(C); } $$.C = ConstantArray::get(ATy, Elems); $$.S.copy($1.S); delete $1.PAT; delete $3; } | Types '[' ']' { const ArrayType *ATy = dyn_cast($1.PAT->get()); if (ATy == 0) error("Cannot make array constant with type: '" + $1.PAT->get()->getDescription() + "'"); int NumElements = ATy->getNumElements(); if (NumElements != -1 && NumElements != 0) error("Type mismatch: constant sized array initialized with 0" " arguments, but has size of " + itostr(NumElements) +""); $$.C = ConstantArray::get(ATy, std::vector()); $$.S.copy($1.S); delete $1.PAT; } | Types 'c' STRINGCONSTANT { const ArrayType *ATy = dyn_cast($1.PAT->get()); if (ATy == 0) error("Cannot make array constant with type: '" + $1.PAT->get()->getDescription() + "'"); int NumElements = ATy->getNumElements(); const Type *ETy = dyn_cast(ATy->getElementType()); if (!ETy || cast(ETy)->getBitWidth() != 8) error("String arrays require type i8, not '" + ETy->getDescription() + "'"); char *EndStr = UnEscapeLexed($3, true); if (NumElements != -1 && NumElements != (EndStr-$3)) error("Can't build string constant of size " + itostr((int)(EndStr-$3)) + " when array has size " + itostr(NumElements) + ""); std::vector Vals; for (char *C = (char *)$3; C != (char *)EndStr; ++C) Vals.push_back(ConstantInt::get(ETy, *C)); free($3); $$.C = ConstantArray::get(ATy, Vals); $$.S.copy($1.S); delete $1.PAT; } | Types '<' ConstVector '>' { // Nonempty unsized arr const VectorType *PTy = dyn_cast($1.PAT->get()); if (PTy == 0) error("Cannot make packed constant with type: '" + $1.PAT->get()->getDescription() + "'"); const Type *ETy = PTy->getElementType(); int NumElements = PTy->getNumElements(); // Verify that we have the correct size... if (NumElements != -1 && NumElements != (int)$3->size()) error("Type mismatch: constant sized packed initialized with " + utostr($3->size()) + " arguments, but has size of " + itostr(NumElements) + ""); // Verify all elements are correct type! std::vector Elems; for (unsigned i = 0; i < $3->size(); i++) { Constant *C = (*$3)[i].C; const Type* ValTy = C->getType(); if (ETy != ValTy) error("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '"+ ValTy->getDescription() + "'"); Elems.push_back(C); } $$.C = ConstantVector::get(PTy, Elems); $$.S.copy($1.S); delete $1.PAT; delete $3; } | Types '{' ConstVector '}' { const StructType *STy = dyn_cast($1.PAT->get()); if (STy == 0) error("Cannot make struct constant with type: '" + $1.PAT->get()->getDescription() + "'"); if ($3->size() != STy->getNumContainedTypes()) error("Illegal number of initializers for structure type"); // Check to ensure that constants are compatible with the type initializer! std::vector Fields; for (unsigned i = 0, e = $3->size(); i != e; ++i) { Constant *C = (*$3)[i].C; if (C->getType() != STy->getElementType(i)) error("Expected type '" + STy->getElementType(i)->getDescription() + "' for element #" + utostr(i) + " of structure initializer"); Fields.push_back(C); } $$.C = ConstantStruct::get(STy, Fields); $$.S.copy($1.S); delete $1.PAT; delete $3; } | Types '{' '}' { const StructType *STy = dyn_cast($1.PAT->get()); if (STy == 0) error("Cannot make struct constant with type: '" + $1.PAT->get()->getDescription() + "'"); if (STy->getNumContainedTypes() != 0) error("Illegal number of initializers for structure type"); $$.C = ConstantStruct::get(STy, std::vector()); $$.S.copy($1.S); delete $1.PAT; } | Types '<' '{' ConstVector '}' '>' { const StructType *STy = dyn_cast($1.PAT->get()); if (STy == 0) error("Cannot make packed struct constant with type: '" + $1.PAT->get()->getDescription() + "'"); if ($4->size() != STy->getNumContainedTypes()) error("Illegal number of initializers for packed structure type"); // Check to ensure that constants are compatible with the type initializer! std::vector Fields; for (unsigned i = 0, e = $4->size(); i != e; ++i) { Constant *C = (*$4)[i].C; if (C->getType() != STy->getElementType(i)) error("Expected type '" + STy->getElementType(i)->getDescription() + "' for element #" + utostr(i) + " of packed struct initializer"); Fields.push_back(C); } $$.C = ConstantStruct::get(STy, Fields); $$.S.copy($1.S); delete $1.PAT; delete $4; } | Types '<' '{' '}' '>' { const StructType *STy = dyn_cast($1.PAT->get()); if (STy == 0) error("Cannot make packed struct constant with type: '" + $1.PAT->get()->getDescription() + "'"); if (STy->getNumContainedTypes() != 0) error("Illegal number of initializers for packed structure type"); $$.C = ConstantStruct::get(STy, std::vector()); $$.S.copy($1.S); delete $1.PAT; } | Types NULL_TOK { const PointerType *PTy = dyn_cast($1.PAT->get()); if (PTy == 0) error("Cannot make null pointer constant with type: '" + $1.PAT->get()->getDescription() + "'"); $$.C = ConstantPointerNull::get(PTy); $$.S.copy($1.S); delete $1.PAT; } | Types UNDEF { $$.C = UndefValue::get($1.PAT->get()); $$.S.copy($1.S); delete $1.PAT; } | Types SymbolicValueRef { const PointerType *Ty = dyn_cast($1.PAT->get()); if (Ty == 0) error("Global const reference must be a pointer type, not" + $1.PAT->get()->getDescription()); // ConstExprs can exist in the body of a function, thus creating // GlobalValues whenever they refer to a variable. Because we are in // the context of a function, getExistingValue will search the functions // symbol table instead of the module symbol table for the global symbol, // which throws things all off. To get around this, we just tell // getExistingValue that we are at global scope here. // Function *SavedCurFn = CurFun.CurrentFunction; CurFun.CurrentFunction = 0; $2.S.copy($1.S); Value *V = getExistingValue(Ty, $2); CurFun.CurrentFunction = SavedCurFn; // If this is an initializer for a constant pointer, which is referencing a // (currently) undefined variable, create a stub now that shall be replaced // in the future with the right type of variable. // if (V == 0) { assert(isa(Ty) && "Globals may only be used as pointers"); const PointerType *PT = cast(Ty); // First check to see if the forward references value is already created! PerModuleInfo::GlobalRefsType::iterator I = CurModule.GlobalRefs.find(std::make_pair(PT, $2)); if (I != CurModule.GlobalRefs.end()) { V = I->second; // Placeholder already exists, use it... $2.destroy(); } else { std::string Name; if ($2.Type == ValID::NameVal) Name = $2.Name; // Create the forward referenced global. GlobalValue *GV; if (const FunctionType *FTy = dyn_cast(PT->getElementType())) { GV = new Function(FTy, GlobalValue::ExternalLinkage, Name, CurModule.CurrentModule); } else { GV = new GlobalVariable(PT->getElementType(), false, GlobalValue::ExternalLinkage, 0, Name, CurModule.CurrentModule); } // Keep track of the fact that we have a forward ref to recycle it CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV)); V = GV; } } $$.C = cast(V); $$.S.copy($1.S); delete $1.PAT; // Free the type handle } | Types ConstExpr { if ($1.PAT->get() != $2.C->getType()) error("Mismatched types for constant expression"); $$ = $2; $$.S.copy($1.S); delete $1.PAT; } | Types ZEROINITIALIZER { const Type *Ty = $1.PAT->get(); if (isa(Ty) || Ty == Type::LabelTy || isa(Ty)) error("Cannot create a null initialized value of this type"); $$.C = Constant::getNullValue(Ty); $$.S.copy($1.S); delete $1.PAT; } | SIntType EINT64VAL { // integral constants const Type *Ty = $1.T; if (!ConstantInt::isValueValidForType(Ty, $2)) error("Constant value doesn't fit in type"); $$.C = ConstantInt::get(Ty, $2); $$.S.makeSigned(); } | UIntType EUINT64VAL { // integral constants const Type *Ty = $1.T; if (!ConstantInt::isValueValidForType(Ty, $2)) error("Constant value doesn't fit in type"); $$.C = ConstantInt::get(Ty, $2); $$.S.makeUnsigned(); } | BOOL TRUETOK { // Boolean constants $$.C = ConstantInt::get(Type::Int1Ty, true); $$.S.makeUnsigned(); } | BOOL FALSETOK { // Boolean constants $$.C = ConstantInt::get(Type::Int1Ty, false); $$.S.makeUnsigned(); } | FPType FPVAL { // Float & Double constants if (!ConstantFP::isValueValidForType($1.T, *$2)) error("Floating point constant invalid for type"); // Lexer has no type info, so builds all FP constants as double. // Fix this here. if ($1.T==Type::FloatTy) $2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven); $$.C = ConstantFP::get($1.T, *$2); delete $2; $$.S.makeSignless(); } ; ConstExpr : CastOps '(' ConstVal TO Types ')' { const Type* SrcTy = $3.C->getType(); const Type* DstTy = $5.PAT->get(); Signedness SrcSign($3.S); Signedness DstSign($5.S); if (!SrcTy->isFirstClassType()) error("cast constant expression from a non-primitive type: '" + SrcTy->getDescription() + "'"); if (!DstTy->isFirstClassType()) error("cast constant expression to a non-primitive type: '" + DstTy->getDescription() + "'"); $$.C = cast(getCast($1, $3.C, SrcSign, DstTy, DstSign)); $$.S.copy(DstSign); delete $5.PAT; } | GETELEMENTPTR '(' ConstVal IndexList ')' { const Type *Ty = $3.C->getType(); if (!isa(Ty)) error("GetElementPtr requires a pointer operand"); std::vector CIndices; upgradeGEPCEIndices($3.C->getType(), $4, CIndices); delete $4; $$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size()); $$.S.copy(getElementSign($3, CIndices)); } | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' { if (!$3.C->getType()->isInteger() || cast($3.C->getType())->getBitWidth() != 1) error("Select condition must be bool type"); if ($5.C->getType() != $7.C->getType()) error("Select operand types must match"); $$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C); $$.S.copy($5.S); } | ArithmeticOps '(' ConstVal ',' ConstVal ')' { const Type *Ty = $3.C->getType(); if (Ty != $5.C->getType()) error("Binary operator types must match"); // First, make sure we're dealing with the right opcode by upgrading from // obsolete versions. Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S); // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs. // To retain backward compatibility with these early compilers, we emit a // cast to the appropriate integer type automatically if we are in the // broken case. See PR424 for more information. if (!isa(Ty)) { $$.C = ConstantExpr::get(Opcode, $3.C, $5.C); } else { const Type *IntPtrTy = 0; switch (CurModule.CurrentModule->getPointerSize()) { case Module::Pointer32: IntPtrTy = Type::Int32Ty; break; case Module::Pointer64: IntPtrTy = Type::Int64Ty; break; default: error("invalid pointer binary constant expr"); } $$.C = ConstantExpr::get(Opcode, ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy), ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy)); $$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty); } $$.S.copy($3.S); } | LogicalOps '(' ConstVal ',' ConstVal ')' { const Type* Ty = $3.C->getType(); if (Ty != $5.C->getType()) error("Logical operator types must match"); if (!Ty->isInteger()) { if (!isa(Ty) || !cast(Ty)->getElementType()->isInteger()) error("Logical operator requires integer operands"); } Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S); $$.C = ConstantExpr::get(Opcode, $3.C, $5.C); $$.S.copy($3.S); } | SetCondOps '(' ConstVal ',' ConstVal ')' { const Type* Ty = $3.C->getType(); if (Ty != $5.C->getType()) error("setcc operand types must match"); unsigned short pred; Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S); $$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C); $$.S.makeUnsigned(); } | ICMP IPredicates '(' ConstVal ',' ConstVal ')' { if ($4.C->getType() != $6.C->getType()) error("icmp operand types must match"); $$.C = ConstantExpr::getCompare($2, $4.C, $6.C); $$.S.makeUnsigned(); } | FCMP FPredicates '(' ConstVal ',' ConstVal ')' { if ($4.C->getType() != $6.C->getType()) error("fcmp operand types must match"); $$.C = ConstantExpr::getCompare($2, $4.C, $6.C); $$.S.makeUnsigned(); } | ShiftOps '(' ConstVal ',' ConstVal ')' { if (!$5.C->getType()->isInteger() || cast($5.C->getType())->getBitWidth() != 8) error("Shift count for shift constant must be unsigned byte"); const Type* Ty = $3.C->getType(); if (!$3.C->getType()->isInteger()) error("Shift constant expression requires integer operand"); Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty); $$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt); $$.S.copy($3.S); } | EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' { if (!ExtractElementInst::isValidOperands($3.C, $5.C)) error("Invalid extractelement operands"); $$.C = ConstantExpr::getExtractElement($3.C, $5.C); $$.S.copy($3.S.get(0)); } | INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' { if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C)) error("Invalid insertelement operands"); $$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C); $$.S.copy($3.S); } | SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' { if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C)) error("Invalid shufflevector operands"); $$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C); $$.S.copy($3.S); } ; // ConstVector - A list of comma separated constants. ConstVector : ConstVector ',' ConstVal { ($$ = $1)->push_back($3); } | ConstVal { $$ = new std::vector(); $$->push_back($1); } ; // GlobalType - Match either GLOBAL or CONSTANT for global declarations... GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; } ; //===----------------------------------------------------------------------===// // Rules to match Modules //===----------------------------------------------------------------------===// // Module rule: Capture the result of parsing the whole file into a result // variable... // Module : FunctionList { $$ = ParserResult = $1; CurModule.ModuleDone(); } ; // FunctionList - A list of functions, preceeded by a constant pool. // FunctionList : FunctionList Function { $$ = $1; CurFun.FunctionDone(); } | FunctionList FunctionProto { $$ = $1; } | FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; } | FunctionList IMPLEMENTATION { $$ = $1; } | ConstPool { $$ = CurModule.CurrentModule; // Emit an error if there are any unresolved types left. if (!CurModule.LateResolveTypes.empty()) { const ValID &DID = CurModule.LateResolveTypes.begin()->first; if (DID.Type == ValID::NameVal) { error("Reference to an undefined type: '"+DID.getName() + "'"); } else { error("Reference to an undefined type: #" + itostr(DID.Num)); } } } ; // ConstPool - Constants with optional names assigned to them. ConstPool : ConstPool OptAssign TYPE TypesV { // Eagerly resolve types. This is not an optimization, this is a // requirement that is due to the fact that we could have this: // // %list = type { %list * } // %list = type { %list * } ; repeated type decl // // If types are not resolved eagerly, then the two types will not be // determined to be the same type! // ResolveTypeTo($2, $4.PAT->get(), $4.S); if (!setTypeName($4, $2) && !$2) { // If this is a numbered type that is not a redefinition, add it to the // slot table. CurModule.Types.push_back($4.PAT->get()); CurModule.TypeSigns.push_back($4.S); } delete $4.PAT; } | ConstPool FunctionProto { // Function prototypes can be in const pool } | ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool } | ConstPool OptAssign OptLinkage GlobalType ConstVal { if ($5.C == 0) error("Global value initializer is not a constant"); CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S); } GlobalVarAttributes { CurGV = 0; } | ConstPool OptAssign EXTERNAL GlobalType Types { const Type *Ty = $5.PAT->get(); CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0, $5.S); delete $5.PAT; } GlobalVarAttributes { CurGV = 0; } | ConstPool OptAssign DLLIMPORT GlobalType Types { const Type *Ty = $5.PAT->get(); CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0, $5.S); delete $5.PAT; } GlobalVarAttributes { CurGV = 0; } | ConstPool OptAssign EXTERN_WEAK GlobalType Types { const Type *Ty = $5.PAT->get(); CurGV = ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0, $5.S); delete $5.PAT; } GlobalVarAttributes { CurGV = 0; } | ConstPool TARGET TargetDefinition { } | ConstPool DEPLIBS '=' LibrariesDefinition { } | /* empty: end of list */ { } ; AsmBlock : STRINGCONSTANT { const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm(); char *EndStr = UnEscapeLexed($1, true); std::string NewAsm($1, EndStr); free($1); if (AsmSoFar.empty()) CurModule.CurrentModule->setModuleInlineAsm(NewAsm); else CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm); } ; BigOrLittle : BIG { $$ = Module::BigEndian; } | LITTLE { $$ = Module::LittleEndian; } ; TargetDefinition : ENDIAN '=' BigOrLittle { CurModule.setEndianness($3); } | POINTERSIZE '=' EUINT64VAL { if ($3 == 32) CurModule.setPointerSize(Module::Pointer32); else if ($3 == 64) CurModule.setPointerSize(Module::Pointer64); else error("Invalid pointer size: '" + utostr($3) + "'"); } | TRIPLE '=' STRINGCONSTANT { CurModule.CurrentModule->setTargetTriple($3); free($3); } | DATALAYOUT '=' STRINGCONSTANT { CurModule.CurrentModule->setDataLayout($3); free($3); } ; LibrariesDefinition : '[' LibList ']' ; LibList : LibList ',' STRINGCONSTANT { CurModule.CurrentModule->addLibrary($3); free($3); } | STRINGCONSTANT { CurModule.CurrentModule->addLibrary($1); free($1); } | /* empty: end of list */ { } ; //===----------------------------------------------------------------------===// // Rules to match Function Headers //===----------------------------------------------------------------------===// Name : VAR_ID | STRINGCONSTANT ; OptName : Name | /*empty*/ { $$ = 0; } ; ArgVal : Types OptName { if ($1.PAT->get() == Type::VoidTy) error("void typed arguments are invalid"); $$ = new std::pair($1, $2); } ; ArgListH : ArgListH ',' ArgVal { $$ = $1; $$->push_back(*$3); delete $3; } | ArgVal { $$ = new std::vector >(); $$->push_back(*$1); delete $1; } ; ArgList : ArgListH { $$ = $1; } | ArgListH ',' DOTDOTDOT { $$ = $1; PATypeInfo VoidTI; VoidTI.PAT = new PATypeHolder(Type::VoidTy); VoidTI.S.makeSignless(); $$->push_back(std::pair(VoidTI, 0)); } | DOTDOTDOT { $$ = new std::vector >(); PATypeInfo VoidTI; VoidTI.PAT = new PATypeHolder(Type::VoidTy); VoidTI.S.makeSignless(); $$->push_back(std::pair(VoidTI, 0)); } | /* empty */ { $$ = 0; } ; FunctionHeaderH : OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign { UnEscapeLexed($3); std::string FunctionName($3); free($3); // Free strdup'd memory! const Type* RetTy = $2.PAT->get(); if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy) error("LLVM functions cannot return aggregate types"); Signedness FTySign; FTySign.makeComposite($2.S); std::vector ParamTyList; // In LLVM 2.0 the signatures of three varargs intrinsics changed to take // i8*. We check here for those names and override the parameter list // types to ensure the prototype is correct. if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") { ParamTyList.push_back(PointerType::getUnqual(Type::Int8Ty)); } else if (FunctionName == "llvm.va_copy") { ParamTyList.push_back(PointerType::getUnqual(Type::Int8Ty)); ParamTyList.push_back(PointerType::getUnqual(Type::Int8Ty)); } else if ($5) { // If there are arguments... for (std::vector >::iterator I = $5->begin(), E = $5->end(); I != E; ++I) { const Type *Ty = I->first.PAT->get(); ParamTyList.push_back(Ty); FTySign.add(I->first.S); } } bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy; if (isVarArg) ParamTyList.pop_back(); const FunctionType *FT = FunctionType::get(RetTy, ParamTyList, isVarArg); const PointerType *PFT = PointerType::getUnqual(FT); delete $2.PAT; ValID ID; if (!FunctionName.empty()) { ID = ValID::create((char*)FunctionName.c_str()); } else { ID = ValID::create((int)CurModule.Values[PFT].size()); } ID.S.makeComposite(FTySign); Function *Fn = 0; Module* M = CurModule.CurrentModule; // See if this function was forward referenced. If so, recycle the object. if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) { // Move the function to the end of the list, from whereever it was // previously inserted. Fn = cast(FWRef); M->getFunctionList().remove(Fn); M->getFunctionList().push_back(Fn); } else if (!FunctionName.empty()) { GlobalValue *Conflict = M->getFunction(FunctionName); if (!Conflict) Conflict = M->getNamedGlobal(FunctionName); if (Conflict && PFT == Conflict->getType()) { if (!CurFun.isDeclare && !Conflict->isDeclaration()) { // We have two function definitions that conflict, same type, same // name. We should really check to make sure that this is the result // of integer type planes collapsing and generate an error if it is // not, but we'll just rename on the assumption that it is. However, // let's do it intelligently and rename the internal linkage one // if there is one. std::string NewName(makeNameUnique(FunctionName)); if (Conflict->hasInternalLinkage()) { Conflict->setName(NewName); RenameMapKey Key = makeRenameMapKey(FunctionName, Conflict->getType(), ID.S); CurModule.RenameMap[Key] = NewName; Fn = new Function(FT, CurFun.Linkage, FunctionName, M); InsertValue(Fn, CurModule.Values); } else { Fn = new Function(FT, CurFun.Linkage, NewName, M); InsertValue(Fn, CurModule.Values); RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S); CurModule.RenameMap[Key] = NewName; } } else { // If they are not both definitions, then just use the function we // found since the types are the same. Fn = cast(Conflict); // Make sure to strip off any argument names so we can't get // conflicts. if (Fn->isDeclaration()) for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end(); AI != AE; ++AI) AI->setName(""); } } else if (Conflict) { // We have two globals with the same name and different types. // Previously, this was permitted because the symbol table had // "type planes" and names only needed to be distinct within a // type plane. After PR411 was fixed, this is no loner the case. // To resolve this we must rename one of the two. if (Conflict->hasInternalLinkage()) { // We can safely rename the Conflict. RenameMapKey Key = makeRenameMapKey(Conflict->getName(), Conflict->getType(), CurModule.NamedValueSigns[Conflict->getName()]); Conflict->setName(makeNameUnique(Conflict->getName())); CurModule.RenameMap[Key] = Conflict->getName(); Fn = new Function(FT, CurFun.Linkage, FunctionName, M); InsertValue(Fn, CurModule.Values); } else { // We can't quietly rename either of these things, but we must // rename one of them. Only if the function's linkage is internal can // we forgo a warning message about the renamed function. std::string NewName = makeNameUnique(FunctionName); if (CurFun.Linkage != GlobalValue::InternalLinkage) { warning("Renaming function '" + FunctionName + "' as '" + NewName + "' may cause linkage errors"); } // Elect to rename the thing we're now defining. Fn = new Function(FT, CurFun.Linkage, NewName, M); InsertValue(Fn, CurModule.Values); RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S); CurModule.RenameMap[Key] = NewName; } } else { // There's no conflict, just define the function Fn = new Function(FT, CurFun.Linkage, FunctionName, M); InsertValue(Fn, CurModule.Values); } } else { // There's no conflict, just define the function Fn = new Function(FT, CurFun.Linkage, FunctionName, M); InsertValue(Fn, CurModule.Values); } CurFun.FunctionStart(Fn); if (CurFun.isDeclare) { // If we have declaration, always overwrite linkage. This will allow us // to correctly handle cases, when pointer to function is passed as // argument to another function. Fn->setLinkage(CurFun.Linkage); } Fn->setCallingConv(upgradeCallingConv($1)); Fn->setAlignment($8); if ($7) { Fn->setSection($7); free($7); } // Convert the CSRet calling convention into the corresponding parameter // attribute. if ($1 == OldCallingConv::CSRet) { ParamAttrsVector Attrs; ParamAttrsWithIndex PAWI; PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg Attrs.push_back(PAWI); Fn->setParamAttrs(ParamAttrsList::get(Attrs)); } // Add all of the arguments we parsed to the function... if ($5) { // Is null if empty... if (isVarArg) { // Nuke the last entry assert($5->back().first.PAT->get() == Type::VoidTy && $5->back().second == 0 && "Not a varargs marker"); delete $5->back().first.PAT; $5->pop_back(); // Delete the last entry } Function::arg_iterator ArgIt = Fn->arg_begin(); Function::arg_iterator ArgEnd = Fn->arg_end(); std::vector >::iterator I = $5->begin(); std::vector >::iterator E = $5->end(); for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) { delete I->first.PAT; // Delete the typeholder... ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S); setValueName(VI, I->second); // Insert arg into symtab... InsertValue(ArgIt); } delete $5; // We're now done with the argument list } lastCallingConv = OldCallingConv::C; } ; BEGIN : BEGINTOK | '{' // Allow BEGIN or '{' to start a function ; FunctionHeader : OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN { $$ = CurFun.CurrentFunction; // Make sure that we keep track of the linkage type even if there was a // previous "declare". $$->setLinkage($1); } ; END : ENDTOK | '}' // Allow end of '}' to end a function ; Function : BasicBlockList END { $$ = $1; }; FnDeclareLinkage : /*default*/ { $$ = GlobalValue::ExternalLinkage; } | DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; } | EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; } ; FunctionProto : DECLARE { CurFun.isDeclare = true; } FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH { $$ = CurFun.CurrentFunction; CurFun.FunctionDone(); } ; //===----------------------------------------------------------------------===// // Rules to match Basic Blocks //===----------------------------------------------------------------------===// OptSideEffect : /* empty */ { $$ = false; } | SIDEEFFECT { $$ = true; } ; ConstValueRef // A reference to a direct constant : ESINT64VAL { $$ = ValID::create($1); } | EUINT64VAL { $$ = ValID::create($1); } | FPVAL { $$ = ValID::create($1); } | TRUETOK { $$ = ValID::create(ConstantInt::get(Type::Int1Ty, true)); $$.S.makeUnsigned(); } | FALSETOK { $$ = ValID::create(ConstantInt::get(Type::Int1Ty, false)); $$.S.makeUnsigned(); } | NULL_TOK { $$ = ValID::createNull(); } | UNDEF { $$ = ValID::createUndef(); } | ZEROINITIALIZER { $$ = ValID::createZeroInit(); } | '<' ConstVector '>' { // Nonempty unsized packed vector const Type *ETy = (*$2)[0].C->getType(); int NumElements = $2->size(); VectorType* pt = VectorType::get(ETy, NumElements); $$.S.makeComposite((*$2)[0].S); PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S)); // Verify all elements are correct type! std::vector Elems; for (unsigned i = 0; i < $2->size(); i++) { Constant *C = (*$2)[i].C; const Type *CTy = C->getType(); if (ETy != CTy) error("Element #" + utostr(i) + " is not of type '" + ETy->getDescription() +"' as required!\nIt is of type '" + CTy->getDescription() + "'"); Elems.push_back(C); } $$ = ValID::create(ConstantVector::get(pt, Elems)); delete PTy; delete $2; } | ConstExpr { $$ = ValID::create($1.C); $$.S.copy($1.S); } | ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT { char *End = UnEscapeLexed($3, true); std::string AsmStr = std::string($3, End); End = UnEscapeLexed($5, true); std::string Constraints = std::string($5, End); $$ = ValID::createInlineAsm(AsmStr, Constraints, $2); free($3); free($5); } ; // SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value. // SymbolicValueRef : INTVAL { $$ = ValID::create($1); $$.S.makeSignless(); } | Name { $$ = ValID::create($1); $$.S.makeSignless(); } ; // ValueRef - A reference to a definition... either constant or symbolic ValueRef : SymbolicValueRef | ConstValueRef ; // ResolvedVal - a pair. This is used only in cases where the // type immediately preceeds the value reference, and allows complex constant // pool references (for things like: 'ret [2 x int] [ int 12, int 42]') ResolvedVal : Types ValueRef { const Type *Ty = $1.PAT->get(); $2.S.copy($1.S); $$.V = getVal(Ty, $2); $$.S.copy($1.S); delete $1.PAT; } ; BasicBlockList : BasicBlockList BasicBlock { $$ = $1; } | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks $$ = $1; }; // Basic blocks are terminated by branching instructions: // br, br/cc, switch, ret // BasicBlock : InstructionList OptAssign BBTerminatorInst { ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S); setValueName(VI, $2); InsertValue($3.TI); $1->getInstList().push_back($3.TI); InsertValue($1); $$ = $1; } ; InstructionList : InstructionList Inst { if ($2.I) $1->getInstList().push_back($2.I); $$ = $1; } | /* empty */ { $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true); // Make sure to move the basic block to the correct location in the // function, instead of leaving it inserted wherever it was first // referenced. Function::BasicBlockListType &BBL = CurFun.CurrentFunction->getBasicBlockList(); BBL.splice(BBL.end(), BBL, $$); } | LABELSTR { $$ = CurBB = getBBVal(ValID::create($1), true); // Make sure to move the basic block to the correct location in the // function, instead of leaving it inserted wherever it was first // referenced. Function::BasicBlockListType &BBL = CurFun.CurrentFunction->getBasicBlockList(); BBL.splice(BBL.end(), BBL, $$); } ; Unwind : UNWIND | EXCEPT; BBTerminatorInst : RET ResolvedVal { // Return with a result... $$.TI = new ReturnInst($2.V); $$.S.makeSignless(); } | RET VOID { // Return with no result... $$.TI = new ReturnInst(); $$.S.makeSignless(); } | BR LABEL ValueRef { // Unconditional Branch... BasicBlock* tmpBB = getBBVal($3); $$.TI = new BranchInst(tmpBB); $$.S.makeSignless(); } // Conditional Branch... | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef { $6.S.makeSignless(); $9.S.makeSignless(); BasicBlock* tmpBBA = getBBVal($6); BasicBlock* tmpBBB = getBBVal($9); $3.S.makeUnsigned(); Value* tmpVal = getVal(Type::Int1Ty, $3); $$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal); $$.S.makeSignless(); } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' { $3.S.copy($2.S); Value* tmpVal = getVal($2.T, $3); $6.S.makeSignless(); BasicBlock* tmpBB = getBBVal($6); SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size()); $$.TI = S; $$.S.makeSignless(); std::vector >::iterator I = $8->begin(), E = $8->end(); for (; I != E; ++I) { if (ConstantInt *CI = dyn_cast(I->first)) S->addCase(CI, I->second); else error("Switch case is constant, but not a simple integer"); } delete $8; } | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' { $3.S.copy($2.S); Value* tmpVal = getVal($2.T, $3); $6.S.makeSignless(); BasicBlock* tmpBB = getBBVal($6); SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0); $$.TI = S; $$.S.makeSignless(); } | INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')' TO LABEL ValueRef Unwind LABEL ValueRef { const PointerType *PFTy; const FunctionType *Ty; Signedness FTySign; if (!(PFTy = dyn_cast($3.PAT->get())) || !(Ty = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; FTySign.makeComposite($3.S); if ($6) { for (std::vector::iterator I = $6->begin(), E = $6->end(); I != E; ++I) { ParamTypes.push_back((*I).V->getType()); FTySign.add(I->S); } } bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; if (isVarArg) ParamTypes.pop_back(); Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg); PFTy = PointerType::getUnqual(Ty); $$.S.copy($3.S); } else { FTySign = $3.S; // Get the signedness of the result type. $3 is the pointer to the // function type so we get the 0th element to extract the function type, // and then the 0th element again to get the result type. $$.S.copy($3.S.get(0).get(0)); } $4.S.makeComposite(FTySign); Value *V = getVal(PFTy, $4); // Get the function we're calling... BasicBlock *Normal = getBBVal($10); BasicBlock *Except = getBBVal($13); // Create the call node... if (!$6) { // Has no arguments? std::vector Args; $$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end()); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! // FunctionType::param_iterator I = Ty->param_begin(); FunctionType::param_iterator E = Ty->param_end(); std::vector::iterator ArgI = $6->begin(), ArgE = $6->end(); std::vector Args; for (; ArgI != ArgE && I != E; ++ArgI, ++I) { if ((*ArgI).V->getType() != *I) error("Parameter " +(*ArgI).V->getName()+ " is not of type '" + (*I)->getDescription() + "'"); Args.push_back((*ArgI).V); } if (I != E || (ArgI != ArgE && !Ty->isVarArg())) error("Invalid number of parameters detected"); $$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end()); } cast($$.TI)->setCallingConv(upgradeCallingConv($2)); if ($2 == OldCallingConv::CSRet) { ParamAttrsVector Attrs; ParamAttrsWithIndex PAWI; PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg Attrs.push_back(PAWI); cast($$.TI)->setParamAttrs(ParamAttrsList::get(Attrs)); } delete $3.PAT; delete $6; lastCallingConv = OldCallingConv::C; } | Unwind { $$.TI = new UnwindInst(); $$.S.makeSignless(); } | UNREACHABLE { $$.TI = new UnreachableInst(); $$.S.makeSignless(); } ; JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef { $$ = $1; $3.S.copy($2.S); Constant *V = cast(getExistingValue($2.T, $3)); if (V == 0) error("May only switch on a constant pool value"); $6.S.makeSignless(); BasicBlock* tmpBB = getBBVal($6); $$->push_back(std::make_pair(V, tmpBB)); } | IntType ConstValueRef ',' LABEL ValueRef { $$ = new std::vector >(); $2.S.copy($1.S); Constant *V = cast(getExistingValue($1.T, $2)); if (V == 0) error("May only switch on a constant pool value"); $5.S.makeSignless(); BasicBlock* tmpBB = getBBVal($5); $$->push_back(std::make_pair(V, tmpBB)); } ; Inst : OptAssign InstVal { bool omit = false; if ($1) if (BitCastInst *BCI = dyn_cast($2.I)) if (BCI->getSrcTy() == BCI->getDestTy() && BCI->getOperand(0)->getName() == $1) // This is a useless bit cast causing a name redefinition. It is // a bit cast from a type to the same type of an operand with the // same name as the name we would give this instruction. Since this // instruction results in no code generation, it is safe to omit // the instruction. This situation can occur because of collapsed // type planes. For example: // %X = add int %Y, %Z // %X = cast int %Y to uint // After upgrade, this looks like: // %X = add i32 %Y, %Z // %X = bitcast i32 to i32 // The bitcast is clearly useless so we omit it. omit = true; if (omit) { $$.I = 0; $$.S.makeSignless(); } else { ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S); setValueName(VI, $1); InsertValue($2.I); $$ = $2; } }; PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes $$.P = new std::list >(); $$.S.copy($1.S); $3.S.copy($1.S); Value* tmpVal = getVal($1.PAT->get(), $3); $5.S.makeSignless(); BasicBlock* tmpBB = getBBVal($5); $$.P->push_back(std::make_pair(tmpVal, tmpBB)); delete $1.PAT; } | PHIList ',' '[' ValueRef ',' ValueRef ']' { $$ = $1; $4.S.copy($1.S); Value* tmpVal = getVal($1.P->front().first->getType(), $4); $6.S.makeSignless(); BasicBlock* tmpBB = getBBVal($6); $1.P->push_back(std::make_pair(tmpVal, tmpBB)); } ; ValueRefList : ResolvedVal { // Used for call statements, and memory insts... $$ = new std::vector(); $$->push_back($1); } | ValueRefList ',' ResolvedVal { $$ = $1; $1->push_back($3); }; // ValueRefListE - Just like ValueRefList, except that it may also be empty! ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; } ; OptTailCall : TAIL CALL { $$ = true; } | CALL { $$ = false; } ; InstVal : ArithmeticOps Types ValueRef ',' ValueRef { $3.S.copy($2.S); $5.S.copy($2.S); const Type* Ty = $2.PAT->get(); if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa(Ty)) error("Arithmetic operator requires integer, FP, or packed operands"); if (isa(Ty) && ($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp)) error("Remainder not supported on vector types"); // Upgrade the opcode from obsolete versions before we do anything with it. Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S); Value* val1 = getVal(Ty, $3); Value* val2 = getVal(Ty, $5); $$.I = BinaryOperator::create(Opcode, val1, val2); if ($$.I == 0) error("binary operator returned null"); $$.S.copy($2.S); delete $2.PAT; } | LogicalOps Types ValueRef ',' ValueRef { $3.S.copy($2.S); $5.S.copy($2.S); const Type *Ty = $2.PAT->get(); if (!Ty->isInteger()) { if (!isa(Ty) || !cast(Ty)->getElementType()->isInteger()) error("Logical operator requires integral operands"); } Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S); Value* tmpVal1 = getVal(Ty, $3); Value* tmpVal2 = getVal(Ty, $5); $$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2); if ($$.I == 0) error("binary operator returned null"); $$.S.copy($2.S); delete $2.PAT; } | SetCondOps Types ValueRef ',' ValueRef { $3.S.copy($2.S); $5.S.copy($2.S); const Type* Ty = $2.PAT->get(); if(isa(Ty)) error("VectorTypes currently not supported in setcc instructions"); unsigned short pred; Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S); Value* tmpVal1 = getVal(Ty, $3); Value* tmpVal2 = getVal(Ty, $5); $$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2); if ($$.I == 0) error("binary operator returned null"); $$.S.makeUnsigned(); delete $2.PAT; } | ICMP IPredicates Types ValueRef ',' ValueRef { $4.S.copy($3.S); $6.S.copy($3.S); const Type *Ty = $3.PAT->get(); if (isa(Ty)) error("VectorTypes currently not supported in icmp instructions"); else if (!Ty->isInteger() && !isa(Ty)) error("icmp requires integer or pointer typed operands"); Value* tmpVal1 = getVal(Ty, $4); Value* tmpVal2 = getVal(Ty, $6); $$.I = new ICmpInst($2, tmpVal1, tmpVal2); $$.S.makeUnsigned(); delete $3.PAT; } | FCMP FPredicates Types ValueRef ',' ValueRef { $4.S.copy($3.S); $6.S.copy($3.S); const Type *Ty = $3.PAT->get(); if (isa(Ty)) error("VectorTypes currently not supported in fcmp instructions"); else if (!Ty->isFloatingPoint()) error("fcmp instruction requires floating point operands"); Value* tmpVal1 = getVal(Ty, $4); Value* tmpVal2 = getVal(Ty, $6); $$.I = new FCmpInst($2, tmpVal1, tmpVal2); $$.S.makeUnsigned(); delete $3.PAT; } | NOT ResolvedVal { warning("Use of obsolete 'not' instruction: Replacing with 'xor"); const Type *Ty = $2.V->getType(); Value *Ones = ConstantInt::getAllOnesValue(Ty); if (Ones == 0) error("Expected integral type for not instruction"); $$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones); if ($$.I == 0) error("Could not create a xor instruction"); $$.S.copy($2.S); } | ShiftOps ResolvedVal ',' ResolvedVal { if (!$4.V->getType()->isInteger() || cast($4.V->getType())->getBitWidth() != 8) error("Shift amount must be int8"); const Type* Ty = $2.V->getType(); if (!Ty->isInteger()) error("Shift constant expression requires integer operand"); Value* ShiftAmt = 0; if (cast(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth()) if (Constant *C = dyn_cast($4.V)) ShiftAmt = ConstantExpr::getZExt(C, Ty); else ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB); else ShiftAmt = $4.V; $$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt); $$.S.copy($2.S); } | CastOps ResolvedVal TO Types { const Type *DstTy = $4.PAT->get(); if (!DstTy->isFirstClassType()) error("cast instruction to a non-primitive type: '" + DstTy->getDescription() + "'"); $$.I = cast(getCast($1, $2.V, $2.S, DstTy, $4.S, true)); $$.S.copy($4.S); delete $4.PAT; } | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal { if (!$2.V->getType()->isInteger() || cast($2.V->getType())->getBitWidth() != 1) error("select condition must be bool"); if ($4.V->getType() != $6.V->getType()) error("select value types should match"); $$.I = new SelectInst($2.V, $4.V, $6.V); $$.S.copy($4.S); } | VAARG ResolvedVal ',' Types { const Type *Ty = $4.PAT->get(); NewVarArgs = true; $$.I = new VAArgInst($2.V, Ty); $$.S.copy($4.S); delete $4.PAT; } | VAARG_old ResolvedVal ',' Types { const Type* ArgTy = $2.V->getType(); const Type* DstTy = $4.PAT->get(); ObsoleteVarArgs = true; Function* NF = cast(CurModule.CurrentModule-> getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0)); //b = vaarg a, t -> //foo = alloca 1 of t //bar = vacopy a //store bar -> foo //b = vaarg foo, t AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix"); CurBB->getInstList().push_back(foo); CallInst* bar = new CallInst(NF, $2.V); CurBB->getInstList().push_back(bar); CurBB->getInstList().push_back(new StoreInst(bar, foo)); $$.I = new VAArgInst(foo, DstTy); $$.S.copy($4.S); delete $4.PAT; } | VANEXT_old ResolvedVal ',' Types { const Type* ArgTy = $2.V->getType(); const Type* DstTy = $4.PAT->get(); ObsoleteVarArgs = true; Function* NF = cast(CurModule.CurrentModule-> getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0)); //b = vanext a, t -> //foo = alloca 1 of t //bar = vacopy a //store bar -> foo //tmp = vaarg foo, t //b = load foo AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix"); CurBB->getInstList().push_back(foo); CallInst* bar = new CallInst(NF, $2.V); CurBB->getInstList().push_back(bar); CurBB->getInstList().push_back(new StoreInst(bar, foo)); Instruction* tmp = new VAArgInst(foo, DstTy); CurBB->getInstList().push_back(tmp); $$.I = new LoadInst(foo); $$.S.copy($4.S); delete $4.PAT; } | EXTRACTELEMENT ResolvedVal ',' ResolvedVal { if (!ExtractElementInst::isValidOperands($2.V, $4.V)) error("Invalid extractelement operands"); $$.I = new ExtractElementInst($2.V, $4.V); $$.S.copy($2.S.get(0)); } | INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal { if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V)) error("Invalid insertelement operands"); $$.I = new InsertElementInst($2.V, $4.V, $6.V); $$.S.copy($2.S); } | SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal { if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V)) error("Invalid shufflevector operands"); $$.I = new ShuffleVectorInst($2.V, $4.V, $6.V); $$.S.copy($2.S); } | PHI_TOK PHIList { const Type *Ty = $2.P->front().first->getType(); if (!Ty->isFirstClassType()) error("PHI node operands must be of first class type"); PHINode *PHI = new PHINode(Ty); PHI->reserveOperandSpace($2.P->size()); while ($2.P->begin() != $2.P->end()) { if ($2.P->front().first->getType() != Ty) error("All elements of a PHI node must be of the same type"); PHI->addIncoming($2.P->front().first, $2.P->front().second); $2.P->pop_front(); } $$.I = PHI; $$.S.copy($2.S); delete $2.P; // Free the list... } | OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' { // Handle the short call syntax const PointerType *PFTy; const FunctionType *FTy; Signedness FTySign; if (!(PFTy = dyn_cast($3.PAT->get())) || !(FTy = dyn_cast(PFTy->getElementType()))) { // Pull out the types of all of the arguments... std::vector ParamTypes; FTySign.makeComposite($3.S); if ($6) { for (std::vector::iterator I = $6->begin(), E = $6->end(); I != E; ++I) { ParamTypes.push_back((*I).V->getType()); FTySign.add(I->S); } } bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy; if (isVarArg) ParamTypes.pop_back(); const Type *RetTy = $3.PAT->get(); if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy) error("Functions cannot return aggregate types"); FTy = FunctionType::get(RetTy, ParamTypes, isVarArg); PFTy = PointerType::getUnqual(FTy); $$.S.copy($3.S); } else { FTySign = $3.S; // Get the signedness of the result type. $3 is the pointer to the // function type so we get the 0th element to extract the function type, // and then the 0th element again to get the result type. $$.S.copy($3.S.get(0).get(0)); } $4.S.makeComposite(FTySign); // First upgrade any intrinsic calls. std::vector Args; if ($6) for (unsigned i = 0, e = $6->size(); i < e; ++i) Args.push_back((*$6)[i].V); Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args); // If we got an upgraded intrinsic if (Inst) { $$.I = Inst; } else { // Get the function we're calling Value *V = getVal(PFTy, $4); // Check the argument values match if (!$6) { // Has no arguments? // Make sure no arguments is a good thing! if (FTy->getNumParams() != 0) error("No arguments passed to a function that expects arguments"); } else { // Has arguments? // Loop through FunctionType's arguments and ensure they are specified // correctly! // FunctionType::param_iterator I = FTy->param_begin(); FunctionType::param_iterator E = FTy->param_end(); std::vector::iterator ArgI = $6->begin(), ArgE = $6->end(); for (; ArgI != ArgE && I != E; ++ArgI, ++I) if ((*ArgI).V->getType() != *I) error("Parameter " +(*ArgI).V->getName()+ " is not of type '" + (*I)->getDescription() + "'"); if (I != E || (ArgI != ArgE && !FTy->isVarArg())) error("Invalid number of parameters detected"); } // Create the call instruction CallInst *CI = new CallInst(V, Args.begin(), Args.end()); CI->setTailCall($1); CI->setCallingConv(upgradeCallingConv($2)); $$.I = CI; } // Deal with CSRetCC if ($2 == OldCallingConv::CSRet) { ParamAttrsVector Attrs; ParamAttrsWithIndex PAWI; PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg Attrs.push_back(PAWI); cast($$.I)->setParamAttrs(ParamAttrsList::get(Attrs)); } delete $3.PAT; delete $6; lastCallingConv = OldCallingConv::C; } | MemoryInst { $$ = $1; } ; // IndexList - List of indices for GEP based instructions... IndexList : ',' ValueRefList { $$ = $2; } | /* empty */ { $$ = new std::vector(); } ; OptVolatile : VOLATILE { $$ = true; } | /* empty */ { $$ = false; } ; MemoryInst : MALLOC Types OptCAlign { const Type *Ty = $2.PAT->get(); $$.S.makeComposite($2.S); $$.I = new MallocInst(Ty, 0, $3); delete $2.PAT; } | MALLOC Types ',' UINT ValueRef OptCAlign { const Type *Ty = $2.PAT->get(); $5.S.makeUnsigned(); $$.S.makeComposite($2.S); $$.I = new MallocInst(Ty, getVal($4.T, $5), $6); delete $2.PAT; } | ALLOCA Types OptCAlign { const Type *Ty = $2.PAT->get(); $$.S.makeComposite($2.S); $$.I = new AllocaInst(Ty, 0, $3); delete $2.PAT; } | ALLOCA Types ',' UINT ValueRef OptCAlign { const Type *Ty = $2.PAT->get(); $5.S.makeUnsigned(); $$.S.makeComposite($4.S); $$.I = new AllocaInst(Ty, getVal($4.T, $5), $6); delete $2.PAT; } | FREE ResolvedVal { const Type *PTy = $2.V->getType(); if (!isa(PTy)) error("Trying to free nonpointer type '" + PTy->getDescription() + "'"); $$.I = new FreeInst($2.V); $$.S.makeSignless(); } | OptVolatile LOAD Types ValueRef { const Type* Ty = $3.PAT->get(); $4.S.copy($3.S); if (!isa(Ty)) error("Can't load from nonpointer type: " + Ty->getDescription()); if (!cast(Ty)->getElementType()->isFirstClassType()) error("Can't load from pointer of non-first-class type: " + Ty->getDescription()); Value* tmpVal = getVal(Ty, $4); $$.I = new LoadInst(tmpVal, "", $1); $$.S.copy($3.S.get(0)); delete $3.PAT; } | OptVolatile STORE ResolvedVal ',' Types ValueRef { $6.S.copy($5.S); const PointerType *PTy = dyn_cast($5.PAT->get()); if (!PTy) error("Can't store to a nonpointer type: " + $5.PAT->get()->getDescription()); const Type *ElTy = PTy->getElementType(); Value *StoreVal = $3.V; Value* tmpVal = getVal(PTy, $6); if (ElTy != $3.V->getType()) { PTy = PointerType::getUnqual(StoreVal->getType()); if (Constant *C = dyn_cast(tmpVal)) tmpVal = ConstantExpr::getBitCast(C, PTy); else tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB); } $$.I = new StoreInst(StoreVal, tmpVal, $1); $$.S.makeSignless(); delete $5.PAT; } | GETELEMENTPTR Types ValueRef IndexList { $3.S.copy($2.S); const Type* Ty = $2.PAT->get(); if (!isa(Ty)) error("getelementptr insn requires pointer operand"); std::vector VIndices; upgradeGEPInstIndices(Ty, $4, VIndices); Value* tmpVal = getVal(Ty, $3); $$.I = new GetElementPtrInst(tmpVal, VIndices.begin(), VIndices.end()); ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S); $$.S.copy(getElementSign(VI, VIndices)); delete $2.PAT; delete $4; }; %% int yyerror(const char *ErrorMsg) { std::string where = std::string((CurFilename == "-") ? std::string("") : CurFilename) + ":" + llvm::utostr((unsigned) Upgradelineno) + ": "; std::string errMsg = where + "error: " + std::string(ErrorMsg); if (yychar != YYEMPTY && yychar != 0) errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) + "'."; std::cerr << "llvm-upgrade: " << errMsg << '\n'; std::cout << "llvm-upgrade: parse failed.\n"; exit(1); } void warning(const std::string& ErrorMsg) { std::string where = std::string((CurFilename == "-") ? std::string("") : CurFilename) + ":" + llvm::utostr((unsigned) Upgradelineno) + ": "; std::string errMsg = where + "warning: " + std::string(ErrorMsg); if (yychar != YYEMPTY && yychar != 0) errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) + "'."; std::cerr << "llvm-upgrade: " << errMsg << '\n'; } void error(const std::string& ErrorMsg, int LineNo) { if (LineNo == -1) LineNo = Upgradelineno; Upgradelineno = LineNo; yyerror(ErrorMsg.c_str()); }