//===- BottomUpClosure.cpp - Compute bottom-up interprocedural closure ----===// // // This file implements the BUDataStructures class, which represents the // Bottom-Up Interprocedural closure of the data structure graph over the // program. This is useful for applications like pool allocation, but **not** // applications like alias analysis. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/DataStructure.h" #include "llvm/Analysis/DSGraph.h" #include "llvm/Module.h" #include "Support/Statistic.h" using std::map; static RegisterAnalysis X("budatastructure", "Bottom-up Data Structure Analysis Closure"); using namespace DS; // releaseMemory - If the pass pipeline is done with this pass, we can release // our memory... here... // void BUDataStructures::releaseMemory() { // Delete all call site information CallSites.clear(); for (map::iterator I = DSInfo.begin(), E = DSInfo.end(); I != E; ++I) delete I->second; // Empty map so next time memory is released, data structures are not // re-deleted. DSInfo.clear(); } // run - Calculate the bottom up data structure graphs for each function in the // program. // bool BUDataStructures::run(Module &M) { // Simply calculate the graphs for each function... for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) if (!I->isExternal()) calculateGraph(*I); return false; } DSGraph &BUDataStructures::calculateGraph(Function &F) { // Make sure this graph has not already been calculated, or that we don't get // into an infinite loop with mutually recursive functions. // DSGraph *&Graph = DSInfo[&F]; if (Graph) return *Graph; // Copy the local version into DSInfo... Graph = new DSGraph(getAnalysis().getDSGraph(F)); #if 0 // Populate the GlobalsGraph with globals from this one. Graph->GlobalsGraph->cloneGlobals(*Graph, /*cloneCalls*/ false); #endif // Start resolving calls... std::vector &FCs = Graph->getFunctionCalls(); DEBUG(std::cerr << " [BU] Inlining: " << F.getName() << "\n"); bool Inlined; do { Inlined = false; for (unsigned i = 0; i != FCs.size(); ++i) { // Copy the call, because inlining graphs may invalidate the FCs vector. DSCallSite Call = FCs[i]; // If the function list is complete... if ((Call.getCallee().getNode()->NodeType & DSNode::Incomplete)==0) { // Start inlining all of the functions we can... some may not be // inlinable if they are external... // std::vector Callees = Call.getCallee().getNode()->getGlobals(); // Loop over the functions, inlining whatever we can... for (unsigned c = 0; c != Callees.size(); ++c) { // Must be a function type, so this cast MUST succeed. Function &FI = cast(*Callees[c]); if (&FI == &F) { // Self recursion... simply link up the formal arguments with the // actual arguments... DEBUG(std::cerr << "\t[BU] Self Inlining: " << F.getName() << "\n"); // Handle self recursion by resolving the arguments and return value Graph->mergeInGraph(Call, *Graph, DSGraph::StripAllocaBit); // Erase the entry in the callees vector Callees.erase(Callees.begin()+c--); } else if (!FI.isExternal()) { DEBUG(std::cerr << "\t[BU] In " << F.getName() << " inlining: " << FI.getName() << "\n"); // Get the data structure graph for the called function, closing it // if possible (which is only impossible in the case of mutual // recursion... // DSGraph &GI = calculateGraph(FI); // Graph to inline DEBUG(std::cerr << "\t\t[BU] Got graph for " << FI.getName() << " in: " << F.getName() << "\n"); // Record that the original DSCallSite was a call site of FI. // This may or may not have been known when the DSCallSite was // originally created. std::vector &CallSitesForFunc = CallSites[&FI]; CallSitesForFunc.push_back(Call); CallSitesForFunc.back().setResolvingCaller(&F); CallSitesForFunc.back().setCallee(0); // Handle self recursion by resolving the arguments and return value Graph->mergeInGraph(Call, GI, DSGraph::StripAllocaBit); // Erase the entry in the Callees vector Callees.erase(Callees.begin()+c--); } else if (FI.getName() == "printf" || FI.getName() == "sscanf" || FI.getName() == "fprintf" || FI.getName() == "open" || FI.getName() == "sprintf") { // FIXME: These special cases (eg printf) should go away when we can // define functions that take a variable number of arguments. // FIXME: at the very least, this should update mod/ref info // Erase the entry in the globals vector Callees.erase(Callees.begin()+c--); } } if (Callees.empty()) { // Inlined all of the function calls? // Erase the call if it is resolvable... FCs.erase(FCs.begin()+i--); // Don't skip a the next call... Inlined = true; } else if (Callees.size() != Call.getCallee().getNode()->getGlobals().size()) { // Was able to inline SOME, but not all of the functions. Construct a // new global node here. // assert(0 && "Unimpl!"); Inlined = true; } } } // Recompute the Incomplete markers. If there are any function calls left // now that are complete, we must loop! if (Inlined) { Graph->maskIncompleteMarkers(); Graph->markIncompleteNodes(); Graph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); } } while (Inlined && !FCs.empty()); Graph->maskIncompleteMarkers(); Graph->markIncompleteNodes(); Graph->removeTriviallyDeadNodes(false); Graph->removeDeadNodes(/*KeepAllGlobals*/ true, /*KeepCalls*/ true); DEBUG(std::cerr << " [BU] Done inlining: " << F.getName() << " [" << Graph->getGraphSize() << "+" << Graph->getFunctionCalls().size() << "]\n"); return *Graph; }