//===-- PPC32AsmPrinter.cpp - Print machine instrs to PowerPC assembly ----===// // // The LLVM Compiler Infrastructure // // This file was developed by the LLVM research group and is distributed under // the University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PowerPC assembly language. This printer is // the output mechanism used by `llc'. // // Documentation at http://developer.apple.com/documentation/DeveloperTools/ // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asmprinter" #include "PowerPC.h" #include "PowerPCInstrInfo.h" #include "PowerPCTargetMachine.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Support/Mangler.h" #include "Support/CommandLine.h" #include "Support/Debug.h" #include "Support/Statistic.h" #include "Support/StringExtras.h" #include using namespace llvm; namespace { Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed"); struct PowerPCAsmPrinter : public AsmPrinter { std::set FnStubs, GVStubs, LinkOnceStubs; std::set Strings; PowerPCAsmPrinter(std::ostream &O, TargetMachine &TM) : AsmPrinter(O, TM), LabelNumber(0) { UsesUnderscorePrefix = 1; } /// Unique incrementer for label values for referencing Global values. /// unsigned LabelNumber; virtual const char *getPassName() const { return "PowerPC Assembly Printer"; } PowerPCTargetMachine &getTM() { return static_cast(TM); } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO, bool LoadAddrOp = false); void printImmOp(const MachineOperand &MO, unsigned ArgType); void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT){ const MachineOperand &MO = MI->getOperand(OpNo); if (MO.getType() == MachineOperand::MO_MachineRegister) { assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physreg??"); O << LowercaseString(TM.getRegisterInfo()->get(MO.getReg()).Name); } else if (MO.isImmediate()) { O << MO.getImmedValue(); } else { printOp(MO); } } void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) { O << (unsigned short)MI->getOperand(OpNo).getImmedValue(); } void printConstantPool(MachineConstantPool *MCP); bool runOnMachineFunction(MachineFunction &F); bool doFinalization(Module &M); void emitGlobalConstant(const Constant* CV); }; } // end of anonymous namespace /// createPPC32AsmPrinterPass - Returns a pass that prints the PPC /// assembly code for a MachineFunction to the given output stream, /// using the given target machine description. This should work /// regardless of whether the function is in SSA form or not. /// FunctionPass *llvm::createPPCAsmPrinter(std::ostream &o,TargetMachine &tm) { return new PowerPCAsmPrinter(o, tm); } // Include the auto-generated portion of the assembly writer #include "PowerPCGenAsmWriter.inc" /// toOctal - Convert the low order bits of X into an octal digit. /// static inline char toOctal(int X) { return (X&7)+'0'; } /// getAsCString - Return the specified array as a C compatible /// string, only if the predicate isString is true. /// static void printAsCString(std::ostream &O, const ConstantArray *CVA) { assert(CVA->isString() && "Array is not string compatible!"); O << "\""; for (unsigned i = 0; i != CVA->getNumOperands(); ++i) { unsigned char C = cast(CVA->getOperand(i))->getRawValue(); if (C == '"') { O << "\\\""; } else if (C == '\\') { O << "\\\\"; } else if (isprint(C)) { O << C; } else { switch(C) { case '\b': O << "\\b"; break; case '\f': O << "\\f"; break; case '\n': O << "\\n"; break; case '\r': O << "\\r"; break; case '\t': O << "\\t"; break; default: O << '\\'; O << toOctal(C >> 6); O << toOctal(C >> 3); O << toOctal(C >> 0); break; } } } O << "\""; } // Print a constant value or values, with the appropriate storage class as a // prefix. void PowerPCAsmPrinter::emitGlobalConstant(const Constant *CV) { const TargetData &TD = TM.getTargetData(); if (CV->isNullValue()) { O << "\t.space\t" << TD.getTypeSize(CV->getType()) << "\n"; return; } else if (const ConstantArray *CVA = dyn_cast(CV)) { if (CVA->isString()) { O << "\t.ascii\t"; printAsCString(O, CVA); O << "\n"; } else { // Not a string. Print the values in successive locations for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i) emitGlobalConstant(CVA->getOperand(i)); } return; } else if (const ConstantStruct *CVS = dyn_cast(CV)) { // Print the fields in successive locations. Pad to align if needed! const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType()); unsigned sizeSoFar = 0; for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) { const Constant* field = CVS->getOperand(i); // Check if padding is needed and insert one or more 0s. unsigned fieldSize = TD.getTypeSize(field->getType()); unsigned padSize = ((i == e-1? cvsLayout->StructSize : cvsLayout->MemberOffsets[i+1]) - cvsLayout->MemberOffsets[i]) - fieldSize; sizeSoFar += fieldSize + padSize; // Now print the actual field value emitGlobalConstant(field); // Insert the field padding unless it's zero bytes... if (padSize) O << "\t.space\t " << padSize << "\n"; } assert(sizeSoFar == cvsLayout->StructSize && "Layout of constant struct may be incorrect!"); return; } else if (const ConstantFP *CFP = dyn_cast(CV)) { // FP Constants are printed as integer constants to avoid losing // precision... double Val = CFP->getValue(); if (CFP->getType() == Type::DoubleTy) { union DU { // Abide by C TBAA rules double FVal; uint64_t UVal; } U; U.FVal = Val; if (TD.isBigEndian()) { O << ".long\t" << unsigned(U.UVal >> 32) << "\t; double most significant word " << Val << "\n"; O << ".long\t" << unsigned(U.UVal) << "\t; double least significant word " << Val << "\n"; } else { O << ".long\t" << unsigned(U.UVal) << "\t; double least significant word " << Val << "\n"; O << ".long\t" << unsigned(U.UVal >> 32) << "\t; double most significant word " << Val << "\n"; } return; } else { union FU { // Abide by C TBAA rules float FVal; int32_t UVal; } U; U.FVal = Val; O << ".long\t" << U.UVal << "\t; float " << Val << "\n"; return; } } else if (CV->getType() == Type::ULongTy || CV->getType() == Type::LongTy) { if (const ConstantInt *CI = dyn_cast(CV)) { uint64_t Val = CI->getRawValue(); if (TD.isBigEndian()) { O << ".long\t" << unsigned(Val >> 32) << "\t; Double-word most significant word " << Val << "\n"; O << ".long\t" << unsigned(Val) << "\t; Double-word least significant word " << Val << "\n"; } else { O << ".long\t" << unsigned(Val) << "\t; Double-word least significant word " << Val << "\n"; O << ".long\t" << unsigned(Val >> 32) << "\t; Double-word most significant word " << Val << "\n"; } return; } } const Type *type = CV->getType(); O << "\t"; switch (type->getTypeID()) { case Type::UByteTyID: case Type::SByteTyID: O << ".byte"; break; case Type::UShortTyID: case Type::ShortTyID: O << ".short"; break; case Type::BoolTyID: case Type::PointerTyID: case Type::UIntTyID: case Type::IntTyID: O << ".long"; break; case Type::ULongTyID: case Type::LongTyID: assert (0 && "Should have already output double-word constant."); case Type::FloatTyID: case Type::DoubleTyID: assert (0 && "Should have already output floating point constant."); default: assert (0 && "Can't handle printing this type of thing"); break; } O << "\t"; emitConstantValueOnly(CV); O << "\n"; } /// printConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void PowerPCAsmPrinter::printConstantPool(MachineConstantPool *MCP) { const std::vector &CP = MCP->getConstants(); const TargetData &TD = TM.getTargetData(); if (CP.empty()) return; for (unsigned i = 0, e = CP.size(); i != e; ++i) { O << "\t.const\n"; O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType()) << "\n"; O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t;" << *CP[i] << "\n"; emitGlobalConstant(CP[i]); } } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool PowerPCAsmPrinter::runOnMachineFunction(MachineFunction &MF) { setupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function printConstantPool(MF.getConstantPool()); // Print out labels for the function. O << "\t.text\n"; O << "\t.globl\t" << CurrentFnName << "\n"; O << "\t.align 2\n"; O << CurrentFnName << ":\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t; " << I->getBasicBlock()->getName() << "\n"; for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. O << "\t"; printMachineInstruction(II); } } ++LabelNumber; // We didn't modify anything. return false; } void PowerPCAsmPrinter::printOp(const MachineOperand &MO, bool LoadAddrOp /* = false */) { const MRegisterInfo &RI = *TM.getRegisterInfo(); int new_symbol; switch (MO.getType()) { case MachineOperand::MO_VirtualRegister: if (Value *V = MO.getVRegValueOrNull()) { O << "<" << V->getName() << ">"; return; } // FALLTHROUGH case MachineOperand::MO_MachineRegister: case MachineOperand::MO_CCRegister: O << LowercaseString(RI.get(MO.getReg()).Name); return; case MachineOperand::MO_SignExtendedImmed: case MachineOperand::MO_UnextendedImmed: std::cerr << "printOp() does not handle immediate values\n"; abort(); return; case MachineOperand::MO_PCRelativeDisp: std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs"; abort(); return; case MachineOperand::MO_MachineBasicBlock: { MachineBasicBlock *MBBOp = MO.getMachineBasicBlock(); O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction()) << "_" << MBBOp->getNumber() << "\t; " << MBBOp->getBasicBlock()->getName(); return; } case MachineOperand::MO_ConstantPoolIndex: O << ".CPI" << CurrentFnName << "_" << MO.getConstantPoolIndex(); return; case MachineOperand::MO_ExternalSymbol: O << MO.getSymbolName(); return; case MachineOperand::MO_GlobalAddress: { GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); // Dynamically-resolved functions need a stub for the function. Be // wary however not to output $stub for external functions whose addresses // are taken. Those should be emitted as $non_lazy_ptr below. Function *F = dyn_cast(GV); if (F && F->isExternal() && !LoadAddrOp && getTM().CalledFunctions.count(F)) { FnStubs.insert(Name); O << "L" << Name << "$stub"; return; } // External global variables need a non-lazily-resolved stub if (GV->isExternal() && getTM().AddressTaken.count(GV)) { GVStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; return; } if (F && LoadAddrOp && getTM().AddressTaken.count(GV)) { LinkOnceStubs.insert(Name); O << "L" << Name << "$non_lazy_ptr"; return; } O << Mang->getValueName(GV); return; } default: O << ""; return; } } void PowerPCAsmPrinter::printImmOp(const MachineOperand &MO, unsigned ArgType) { int Imm = MO.getImmedValue(); if (ArgType == PPCII::Simm16 || ArgType == PPCII::Disimm16) { O << (short)Imm; } else { O << Imm; } } /// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to /// the current output stream. /// void PowerPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; if (printInstruction(MI)) return; // Printer was automatically generated unsigned Opcode = MI->getOpcode(); const TargetInstrInfo &TII = *TM.getInstrInfo(); const TargetInstrDescriptor &Desc = TII.get(Opcode); unsigned i; unsigned ArgCount = MI->getNumOperands(); unsigned ArgType[] = { (Desc.TSFlags >> PPCII::Arg0TypeShift) & PPCII::ArgTypeMask, (Desc.TSFlags >> PPCII::Arg1TypeShift) & PPCII::ArgTypeMask, (Desc.TSFlags >> PPCII::Arg2TypeShift) & PPCII::ArgTypeMask, (Desc.TSFlags >> PPCII::Arg3TypeShift) & PPCII::ArgTypeMask, (Desc.TSFlags >> PPCII::Arg4TypeShift) & PPCII::ArgTypeMask }; assert(((Desc.TSFlags & PPCII::VMX) == 0) && "Instruction requires VMX support"); assert(((Desc.TSFlags & PPCII::PPC64) == 0) && "Instruction requires 64 bit support"); // CALLpcrel and CALLindirect are handled specially here to print only the // appropriate number of args that the assembler expects. This is because // may have many arguments appended to record the uses of registers that are // holding arguments to the called function. if (Opcode == PPC::COND_BRANCH) { std::cerr << "Error: untranslated conditional branch psuedo instruction!\n"; abort(); } else if (Opcode == PPC::IMPLICIT_DEF) { O << "; IMPLICIT DEF "; printOp(MI->getOperand(0)); O << "\n"; return; } else if (Opcode == PPC::CALLpcrel) { O << TII.getName(Opcode) << " "; printOp(MI->getOperand(0)); O << "\n"; return; } else if (Opcode == PPC::CALLindirect) { O << TII.getName(Opcode) << " "; printImmOp(MI->getOperand(0), ArgType[0]); O << ", "; printImmOp(MI->getOperand(1), ArgType[0]); O << "\n"; return; } else if (Opcode == PPC::MovePCtoLR) { // FIXME: should probably be converted to cout.width and cout.fill O << "bl \"L0000" << LabelNumber << "$pb\"\n"; O << "\"L0000" << LabelNumber << "$pb\":\n"; O << "\tmflr "; printOp(MI->getOperand(0)); O << "\n"; return; } O << TII.getName(Opcode) << " "; if (Opcode == PPC::LOADLoDirect || Opcode == PPC::LOADLoIndirect) { printOp(MI->getOperand(0)); O << ", lo16("; printOp(MI->getOperand(2), true /* LoadAddrOp */); O << "-\"L0000" << LabelNumber << "$pb\")"; O << "("; if (MI->getOperand(1).getReg() == PPC::R0) O << "0"; else printOp(MI->getOperand(1)); O << ")\n"; } else if (Opcode == PPC::LOADHiAddr) { printOp(MI->getOperand(0)); O << ", "; if (MI->getOperand(1).getReg() == PPC::R0) O << "0"; else printOp(MI->getOperand(1)); O << ", ha16(" ; printOp(MI->getOperand(2), true /* LoadAddrOp */); O << "-\"L0000" << LabelNumber << "$pb\")\n"; } else if (ArgCount == 3 && ArgType[1] == PPCII::Disimm16) { printOp(MI->getOperand(0)); O << ", "; printImmOp(MI->getOperand(1), ArgType[1]); O << "("; if (MI->getOperand(2).hasAllocatedReg() && MI->getOperand(2).getReg() == PPC::R0) O << "0"; else printOp(MI->getOperand(2)); O << ")\n"; } else { for (i = 0; i < ArgCount; ++i) { // addi and friends if (i == 1 && ArgCount == 3 && ArgType[2] == PPCII::Simm16 && MI->getOperand(1).hasAllocatedReg() && MI->getOperand(1).getReg() == PPC::R0) { O << "0"; // for long branch support, bc $+8 } else if (i == 1 && ArgCount == 2 && MI->getOperand(1).isImmediate() && TII.isBranch(MI->getOpcode())) { O << "$+8"; assert(8 == MI->getOperand(i).getImmedValue() && "branch off PC not to pc+8?"); //printOp(MI->getOperand(i)); } else if (MI->getOperand(i).isImmediate()) { printImmOp(MI->getOperand(i), ArgType[i]); } else { printOp(MI->getOperand(i)); } if (ArgCount - 1 == i) O << "\n"; else O << ", "; } } return; } // SwitchSection - Switch to the specified section of the executable if we are // not already in it! // static void SwitchSection(std::ostream &OS, std::string &CurSection, const char *NewSection) { if (CurSection != NewSection) { CurSection = NewSection; if (!CurSection.empty()) OS << "\t" << NewSection << "\n"; } } bool PowerPCAsmPrinter::doFinalization(Module &M) { const TargetData &TD = TM.getTargetData(); std::string CurSection; // Print out module-level global variables here. for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I) if (I->hasInitializer()) { // External global require no code O << "\n\n"; std::string name = Mang->getValueName(I); Constant *C = I->getInitializer(); unsigned Size = TD.getTypeSize(C->getType()); unsigned Align = TD.getTypeAlignment(C->getType()); if (C->isNullValue() && /* FIXME: Verify correct */ (I->hasInternalLinkage() || I->hasWeakLinkage())) { SwitchSection(O, CurSection, ".data"); if (I->hasInternalLinkage()) O << ".lcomm " << name << "," << TD.getTypeSize(C->getType()) << "," << (unsigned)TD.getTypeAlignment(C->getType()); else O << ".comm " << name << "," << TD.getTypeSize(C->getType()); O << "\t\t; "; WriteAsOperand(O, I, true, true, &M); O << "\n"; } else { switch (I->getLinkage()) { case GlobalValue::LinkOnceLinkage: O << ".section __TEXT,__textcoal_nt,coalesced,no_toc\n" << ".weak_definition " << name << '\n' << ".private_extern " << name << '\n' << ".section __DATA,__datacoal_nt,coalesced,no_toc\n"; LinkOnceStubs.insert(name); break; case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak. // Nonnull linkonce -> weak O << "\t.weak " << name << "\n"; SwitchSection(O, CurSection, ""); O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n"; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << "\n"; // FALL THROUGH case GlobalValue::InternalLinkage: SwitchSection(O, CurSection, ".data"); break; } O << "\t.align " << Align << "\n"; O << name << ":\t\t\t\t; "; WriteAsOperand(O, I, true, true, &M); O << " = "; WriteAsOperand(O, C, false, false, &M); O << "\n"; emitGlobalConstant(C); } } // Output stubs for dynamically-linked functions for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { O << ".data\n"; O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n"; O << "\t.align 2\n"; O << "L" << *i << "$stub:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\tmflr r0\n"; O << "\tbcl 20,31,L0$" << *i << "\n"; O << "L0$" << *i << ":\n"; O << "\tmflr r11\n"; O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n"; O << "\tmtlr r0\n"; O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; O << ".data\n"; O << ".lazy_symbol_pointer\n"; O << "L" << *i << "$lazy_ptr:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\t.long dyld_stub_binding_helper\n"; } O << "\n"; // Output stubs for external global variables if (GVStubs.begin() != GVStubs.end()) O << ".data\n.non_lazy_symbol_pointer\n"; for (std::set::iterator i = GVStubs.begin(), e = GVStubs.end(); i != e; ++i) { O << "L" << *i << "$non_lazy_ptr:\n"; O << "\t.indirect_symbol " << *i << "\n"; O << "\t.long\t0\n"; } // Output stubs for link-once variables if (LinkOnceStubs.begin() != LinkOnceStubs.end()) O << ".data\n.align 2\n"; for (std::set::iterator i = LinkOnceStubs.begin(), e = LinkOnceStubs.end(); i != e; ++i) { O << "L" << *i << "$non_lazy_ptr:\n" << "\t.long\t" << *i << '\n'; } AsmPrinter::doFinalization(M); return false; // success }