//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===// // // The LLVM Compiler Infrastructure // // This file was developed by Evan Cheng and is distributed under the // University of Illinois Open Source License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements bottom-up and top-down list schedulers, using standard // algorithms. The basic approach uses a priority queue of available nodes to // schedule. One at a time, nodes are taken from the priority queue (thus in // priority order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "sched" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/ADT/Statistic.h" #include #include #include #include #include #include "llvm/Support/CommandLine.h" using namespace llvm; namespace { Statistic<> NumNoops ("scheduler", "Number of noops inserted"); Statistic<> NumStalls("scheduler", "Number of pipeline stalls"); /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or /// a group of nodes flagged together. struct SUnit { SDNode *Node; // Representative node. std::vector FlaggedNodes; // All nodes flagged to Node. // Preds/Succs - The SUnits before/after us in the graph. The boolean value // is true if the edge is a token chain edge, false if it is a value edge. std::set > Preds; // All sunit predecessors. std::set > Succs; // All sunit successors. short NumPredsLeft; // # of preds not scheduled. short NumSuccsLeft; // # of succs not scheduled. short NumChainPredsLeft; // # of chain preds not scheduled. short NumChainSuccsLeft; // # of chain succs not scheduled. bool isTwoAddress : 1; // Is a two-address instruction. bool isDefNUseOperand : 1; // Is a def&use operand. bool isPending : 1; // True once pending. bool isAvailable : 1; // True once available. bool isScheduled : 1; // True once scheduled. unsigned short Latency; // Node latency. unsigned CycleBound; // Upper/lower cycle to be scheduled at. unsigned Cycle; // Once scheduled, the cycle of the op. unsigned NodeNum; // Entry # of node in the node vector. SUnit(SDNode *node, unsigned nodenum) : Node(node), NumPredsLeft(0), NumSuccsLeft(0), NumChainPredsLeft(0), NumChainSuccsLeft(0), isTwoAddress(false), isDefNUseOperand(false), isPending(false), isAvailable(false), isScheduled(false), Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {} void dump(const SelectionDAG *G) const; void dumpAll(const SelectionDAG *G) const; }; } void SUnit::dump(const SelectionDAG *G) const { std::cerr << "SU: "; Node->dump(G); std::cerr << "\n"; if (FlaggedNodes.size() != 0) { for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { std::cerr << " "; FlaggedNodes[i]->dump(G); std::cerr << "\n"; } } } void SUnit::dumpAll(const SelectionDAG *G) const { dump(G); std::cerr << " # preds left : " << NumPredsLeft << "\n"; std::cerr << " # succs left : " << NumSuccsLeft << "\n"; std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n"; std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n"; std::cerr << " Latency : " << Latency << "\n"; if (Preds.size() != 0) { std::cerr << " Predecessors:\n"; for (std::set >::const_iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { if (I->second) std::cerr << " ch "; else std::cerr << " val "; I->first->dump(G); } } if (Succs.size() != 0) { std::cerr << " Successors:\n"; for (std::set >::const_iterator I = Succs.begin(), E = Succs.end(); I != E; ++I) { if (I->second) std::cerr << " ch "; else std::cerr << " val "; I->first->dump(G); } } std::cerr << "\n"; } //===----------------------------------------------------------------------===// /// SchedulingPriorityQueue - This interface is used to plug different /// priorities computation algorithms into the list scheduler. It implements the /// interface of a standard priority queue, where nodes are inserted in /// arbitrary order and returned in priority order. The computation of the /// priority and the representation of the queue are totally up to the /// implementation to decide. /// namespace { class SchedulingPriorityQueue { public: virtual ~SchedulingPriorityQueue() {} virtual void initNodes(const std::vector &SUnits) = 0; virtual void releaseState() = 0; virtual bool empty() const = 0; virtual void push(SUnit *U) = 0; virtual void push_all(const std::vector &Nodes) = 0; virtual SUnit *pop() = 0; /// ScheduledNode - As each node is scheduled, this method is invoked. This /// allows the priority function to adjust the priority of node that have /// already been emitted. virtual void ScheduledNode(SUnit *Node) {} }; } namespace { //===----------------------------------------------------------------------===// /// ScheduleDAGList - The actual list scheduler implementation. This supports /// both top-down and bottom-up scheduling. /// class ScheduleDAGList : public ScheduleDAG { private: // SDNode to SUnit mapping (many to one). std::map SUnitMap; // The schedule. Null SUnit*'s represent noop instructions. std::vector Sequence; // The scheduling units. std::vector SUnits; /// isBottomUp - This is true if the scheduling problem is bottom-up, false if /// it is top-down. bool isBottomUp; /// AvailableQueue - The priority queue to use for the available SUnits. /// SchedulingPriorityQueue *AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands becomes available, the instruction is /// added to the AvailableQueue. This keeps track of each SUnit and the /// number of cycles left to execute before the operation is available. std::vector > PendingQueue; /// HazardRec - The hazard recognizer to use. HazardRecognizer *HazardRec; public: ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb, const TargetMachine &tm, bool isbottomup, SchedulingPriorityQueue *availqueue, HazardRecognizer *HR) : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), AvailableQueue(availqueue), HazardRec(HR) { } ~ScheduleDAGList() { delete HazardRec; delete AvailableQueue; } void Schedule(); void dumpSchedule() const; private: SUnit *NewSUnit(SDNode *N); void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle); void ReleaseSucc(SUnit *SuccSU, bool isChain); void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); void ListScheduleBottomUp(); void BuildSchedUnits(); void EmitSchedule(); }; } // end anonymous namespace HazardRecognizer::~HazardRecognizer() {} /// NewSUnit - Creates a new SUnit and return a ptr to it. SUnit *ScheduleDAGList::NewSUnit(SDNode *N) { SUnits.push_back(SUnit(N, SUnits.size())); return &SUnits.back(); } /// BuildSchedUnits - Build SUnits from the selection dag that we are input. /// This SUnit graph is similar to the SelectionDAG, but represents flagged /// together nodes with a single SUnit. void ScheduleDAGList::BuildSchedUnits() { // Reserve entries in the vector for each of the SUnits we are creating. This // ensure that reallocation of the vector won't happen, so SUnit*'s won't get // invalidated. SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end())); const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(), E = DAG.allnodes_end(); NI != E; ++NI) { if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. continue; // If this node has already been processed, stop now. if (SUnitMap[NI]) continue; SUnit *NodeSUnit = NewSUnit(NI); // See if anything is flagged to this node, if so, add them to flagged // nodes. Nodes can have at most one flag input and one flag output. Flags // are required the be the last operand and result of a node. // Scan up, adding flagged preds to FlaggedNodes. SDNode *N = NI; while (N->getNumOperands() && N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { N = N->getOperand(N->getNumOperands()-1).Val; NodeSUnit->FlaggedNodes.push_back(N); SUnitMap[N] = NodeSUnit; } // Scan down, adding this node and any flagged succs to FlaggedNodes if they // have a user of the flag operand. N = NI; while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { SDOperand FlagVal(N, N->getNumValues()-1); // There are either zero or one users of the Flag result. bool HasFlagUse = false; for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; ++UI) if (FlagVal.isOperand(*UI)) { HasFlagUse = true; NodeSUnit->FlaggedNodes.push_back(N); SUnitMap[N] = NodeSUnit; N = *UI; break; } if (!HasFlagUse) break; } // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. // Update the SUnit NodeSUnit->Node = N; SUnitMap[N] = NodeSUnit; // Compute the latency for the node. We use the sum of the latencies for // all nodes flagged together into this SUnit. if (InstrItins.isEmpty()) { // No latency information. NodeSUnit->Latency = 1; } else { NodeSUnit->Latency = 0; if (N->isTargetOpcode()) { unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode()); InstrStage *S = InstrItins.begin(SchedClass); InstrStage *E = InstrItins.end(SchedClass); for (; S != E; ++S) NodeSUnit->Latency += S->Cycles; } for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) { SDNode *FNode = NodeSUnit->FlaggedNodes[i]; if (FNode->isTargetOpcode()) { unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode()); InstrStage *S = InstrItins.begin(SchedClass); InstrStage *E = InstrItins.end(SchedClass); for (; S != E; ++S) NodeSUnit->Latency += S->Cycles; } } } } // Pass 2: add the preds, succs, etc. for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { SUnit *SU = &SUnits[su]; SDNode *MainNode = SU->Node; if (MainNode->isTargetOpcode() && TII->isTwoAddrInstr(MainNode->getTargetOpcode())) SU->isTwoAddress = true; // Find all predecessors and successors of the group. // Temporarily add N to make code simpler. SU->FlaggedNodes.push_back(MainNode); for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { SDNode *N = SU->FlaggedNodes[n]; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { SDNode *OpN = N->getOperand(i).Val; if (isPassiveNode(OpN)) continue; // Not scheduled. SUnit *OpSU = SUnitMap[OpN]; assert(OpSU && "Node has no SUnit!"); if (OpSU == SU) continue; // In the same group. MVT::ValueType OpVT = N->getOperand(i).getValueType(); assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); bool isChain = OpVT == MVT::Other; if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) { if (!isChain) { SU->NumPredsLeft++; } else { SU->NumChainPredsLeft++; } } if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) { if (!isChain) { OpSU->NumSuccsLeft++; } else { OpSU->NumChainSuccsLeft++; } } } } // Remove MainNode from FlaggedNodes again. SU->FlaggedNodes.pop_back(); } return; DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(&DAG)); } /// EmitSchedule - Emit the machine code in scheduled order. void ScheduleDAGList::EmitSchedule() { std::map VRBaseMap; for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) { for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) EmitNode(SU->FlaggedNodes[j], VRBaseMap); EmitNode(SU->Node, VRBaseMap); } else { // Null SUnit* is a noop. EmitNoop(); } } } /// dump - dump the schedule. void ScheduleDAGList::dumpSchedule() const { for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) SU->dump(&DAG); else std::cerr << "**** NOOP ****\n"; } } /// Schedule - Schedule the DAG using list scheduling. void ScheduleDAGList::Schedule() { DEBUG(std::cerr << "********** List Scheduling **********\n"); // Build scheduling units. BuildSchedUnits(); AvailableQueue->initNodes(SUnits); // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. if (isBottomUp) ListScheduleBottomUp(); else ListScheduleTopDown(); AvailableQueue->releaseState(); DEBUG(std::cerr << "*** Final schedule ***\n"); DEBUG(dumpSchedule()); DEBUG(std::cerr << "\n"); // Emit in scheduled order EmitSchedule(); } //===----------------------------------------------------------------------===// // Bottom-Up Scheduling //===----------------------------------------------------------------------===// /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to /// the Available queue is the count reaches zero. Also update its cycle bound. void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle) { // FIXME: the distance between two nodes is not always == the predecessor's // latency. For example, the reader can very well read the register written // by the predecessor later than the issue cycle. It also depends on the // interrupt model (drain vs. freeze). PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency); if (!isChain) PredSU->NumSuccsLeft--; else PredSU->NumChainSuccsLeft--; #ifndef NDEBUG if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) { std::cerr << "*** List scheduling failed! ***\n"; PredSU->dump(&DAG); std::cerr << " has been released too many times!\n"; assert(0); } #endif if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) { // EntryToken has to go last! Special case it here. if (PredSU->Node->getOpcode() != ISD::EntryToken) { PredSU->isAvailable = true; AvailableQueue->push(PredSU); } } } /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending /// count of its predecessors. If a predecessor pending count is zero, add it to /// the Available queue. void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); DEBUG(SU->dump(&DAG)); SU->Cycle = CurCycle; Sequence.push_back(SU); // Bottom up: release predecessors for (std::set >::iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { ReleasePred(I->first, I->second, CurCycle); // FIXME: This is something used by the priority function that it should // calculate directly. if (!I->second) SU->NumPredsLeft--; } } /// isReady - True if node's lower cycle bound is less or equal to the current /// scheduling cycle. Always true if all nodes have uniform latency 1. static inline bool isReady(SUnit *SU, unsigned CurrCycle) { return SU->CycleBound <= CurrCycle; } /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up /// schedulers. void ScheduleDAGList::ListScheduleBottomUp() { unsigned CurrCycle = 0; // Add root to Available queue. AvailableQueue->push(SUnitMap[DAG.getRoot().Val]); // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; while (!AvailableQueue->empty()) { SUnit *CurrNode = AvailableQueue->pop(); while (!isReady(CurrNode, CurrCycle)) { NotReady.push_back(CurrNode); CurrNode = AvailableQueue->pop(); } // Add the nodes that aren't ready back onto the available list. AvailableQueue->push_all(NotReady); NotReady.clear(); ScheduleNodeBottomUp(CurrNode, CurrCycle); CurrCycle++; CurrNode->isScheduled = true; AvailableQueue->ScheduledNode(CurrNode); } // Add entry node last if (DAG.getEntryNode().Val != DAG.getRoot().Val) { SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; Sequence.push_back(Entry); } // Reverse the order if it is bottom up. std::reverse(Sequence.begin(), Sequence.end()); #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) { if (!AnyNotSched) std::cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); std::cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) { if (!isChain) SuccSU->NumPredsLeft--; else SuccSU->NumChainPredsLeft--; assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 && "List scheduling internal error"); if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) { // Compute how many cycles it will be before this actually becomes // available. This is the max of the start time of all predecessors plus // their latencies. unsigned AvailableCycle = 0; for (std::set >::iterator I = SuccSU->Preds.begin(), E = SuccSU->Preds.end(); I != E; ++I) { // If this is a token edge, we don't need to wait for the latency of the // preceeding instruction (e.g. a long-latency load) unless there is also // some other data dependence. unsigned PredDoneCycle = I->first->Cycle; if (!I->second) PredDoneCycle += I->first->Latency; else if (I->first->Latency) PredDoneCycle += 1; AvailableCycle = std::max(AvailableCycle, PredDoneCycle); } PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU)); SuccSU->isPending = true; } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); DEBUG(SU->dump(&DAG)); Sequence.push_back(SU); SU->Cycle = CurCycle; // Bottom up: release successors. for (std::set >::iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) ReleaseSucc(I->first, I->second); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void ScheduleDAGList::ListScheduleTopDown() { unsigned CurCycle = 0; SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; // All leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) { AvailableQueue->push(&SUnits[i]); SUnits[i].isAvailable = SUnits[i].isPending = true; } } // Emit the entry node first. ScheduleNodeTopDown(Entry, CurCycle); HazardRec->EmitInstruction(Entry->Node); // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector NotReady; while (!AvailableQueue->empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i].first == CurCycle) { AvailableQueue->push(PendingQueue[i].second); PendingQueue[i].second->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else { assert(PendingQueue[i].first > CurCycle && "Negative latency?"); } } // If there are no instructions available, don't try to issue anything, and // don't advance the hazard recognizer. if (AvailableQueue->empty()) { ++CurCycle; continue; } SUnit *FoundSUnit = 0; SDNode *FoundNode = 0; bool HasNoopHazards = false; while (!AvailableQueue->empty()) { SUnit *CurSUnit = AvailableQueue->pop(); // Get the node represented by this SUnit. FoundNode = CurSUnit->Node; // If this is a pseudo op, like copyfromreg, look to see if there is a // real target node flagged to it. If so, use the target node. for (unsigned i = 0, e = CurSUnit->FlaggedNodes.size(); FoundNode->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i) FoundNode = CurSUnit->FlaggedNodes[i]; HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode); if (HT == HazardRecognizer::NoHazard) { FoundSUnit = CurSUnit; break; } // Remember if this is a noop hazard. HasNoopHazards |= HT == HazardRecognizer::NoopHazard; NotReady.push_back(CurSUnit); } // Add the nodes that aren't ready back onto the available list. if (!NotReady.empty()) { AvailableQueue->push_all(NotReady); NotReady.clear(); } // If we found a node to schedule, do it now. if (FoundSUnit) { ScheduleNodeTopDown(FoundSUnit, CurCycle); HazardRec->EmitInstruction(FoundNode); FoundSUnit->isScheduled = true; AvailableQueue->ScheduledNode(FoundSUnit); // If this is a pseudo-op node, we don't want to increment the current // cycle. if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops! ++CurCycle; } else if (!HasNoopHazards) { // Otherwise, we have a pipeline stall, but no other problem, just advance // the current cycle and try again. DEBUG(std::cerr << "*** Advancing cycle, no work to do\n"); HazardRec->AdvanceCycle(); ++NumStalls; ++CurCycle; } else { // Otherwise, we have no instructions to issue and we have instructions // that will fault if we don't do this right. This is the case for // processors without pipeline interlocks and other cases. DEBUG(std::cerr << "*** Emitting noop\n"); HazardRec->EmitNoop(); Sequence.push_back(0); // NULL SUnit* -> noop ++NumNoops; ++CurCycle; } } #ifndef NDEBUG // Verify that all SUnits were scheduled. bool AnyNotSched = false; for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) { if (!AnyNotSched) std::cerr << "*** List scheduling failed! ***\n"; SUnits[i].dump(&DAG); std::cerr << "has not been scheduled!\n"; AnyNotSched = true; } } assert(!AnyNotSched); #endif } //===----------------------------------------------------------------------===// // RegReductionPriorityQueue Implementation //===----------------------------------------------------------------------===// // // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers // to reduce register pressure. // namespace { class RegReductionPriorityQueue; /// Sorting functions for the Available queue. struct ls_rr_sort : public std::binary_function { RegReductionPriorityQueue *SPQ; ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {} ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; } // end anonymous namespace namespace { class RegReductionPriorityQueue : public SchedulingPriorityQueue { // SUnits - The SUnits for the current graph. const std::vector *SUnits; // SethiUllmanNumbers - The SethiUllman number for each node. std::vector SethiUllmanNumbers; std::priority_queue, ls_rr_sort> Queue; public: RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) { } void initNodes(const std::vector &sunits) { SUnits = &sunits; // Calculate node priorities. CalculatePriorities(); } void releaseState() { SUnits = 0; SethiUllmanNumbers.clear(); } unsigned getSethiUllmanNumber(unsigned NodeNum) const { assert(NodeNum < SethiUllmanNumbers.size()); return SethiUllmanNumbers[NodeNum]; } bool empty() const { return Queue.empty(); } void push(SUnit *U) { Queue.push(U); } void push_all(const std::vector &Nodes) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) Queue.push(Nodes[i]); } SUnit *pop() { SUnit *V = Queue.top(); Queue.pop(); return V; } private: void CalculatePriorities(); int CalcNodePriority(const SUnit *SU); }; } bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { unsigned LeftNum = left->NodeNum; unsigned RightNum = right->NodeNum; int LBonus = (int)left ->isDefNUseOperand; int RBonus = (int)right->isDefNUseOperand; // Special tie breaker: if two nodes share a operand, the one that // use it as a def&use operand is preferred. if (left->isTwoAddress && !right->isTwoAddress) { SDNode *DUNode = left->Node->getOperand(0).Val; if (DUNode->isOperand(right->Node)) LBonus++; } if (!left->isTwoAddress && right->isTwoAddress) { SDNode *DUNode = right->Node->getOperand(0).Val; if (DUNode->isOperand(left->Node)) RBonus++; } // Priority1 is just the number of live range genned. int LPriority1 = left ->NumPredsLeft - LBonus; int RPriority1 = right->NumPredsLeft - RBonus; int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus; int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus; if (LPriority1 > RPriority1) return true; else if (LPriority1 == RPriority1) if (LPriority2 < RPriority2) return true; else if (LPriority2 == RPriority2) if (left->CycleBound > right->CycleBound) return true; return false; } /// CalcNodePriority - Priority is the Sethi Ullman number. /// Smaller number is the higher priority. int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) { int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; if (SethiUllmanNumber != INT_MIN) return SethiUllmanNumber; if (SU->Preds.size() == 0) { SethiUllmanNumber = 1; } else { int Extra = 0; for (std::set >::const_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { if (I->second) continue; // ignore chain preds. SUnit *PredSU = I->first; int PredSethiUllman = CalcNodePriority(PredSU); if (PredSethiUllman > SethiUllmanNumber) { SethiUllmanNumber = PredSethiUllman; Extra = 0; } else if (PredSethiUllman == SethiUllmanNumber) Extra++; } if (SU->Node->getOpcode() != ISD::TokenFactor) SethiUllmanNumber += Extra; else SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1; } return SethiUllmanNumber; } /// CalculatePriorities - Calculate priorities of all scheduling units. void RegReductionPriorityQueue::CalculatePriorities() { SethiUllmanNumbers.assign(SUnits->size(), INT_MIN); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcNodePriority(&(*SUnits)[i]); } //===----------------------------------------------------------------------===// // LatencyPriorityQueue Implementation //===----------------------------------------------------------------------===// // // This is a SchedulingPriorityQueue that schedules using latency information to // reduce the length of the critical path through the basic block. // namespace { class LatencyPriorityQueue; /// Sorting functions for the Available queue. struct latency_sort : public std::binary_function { LatencyPriorityQueue *PQ; latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {} latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {} bool operator()(const SUnit* left, const SUnit* right) const; }; } // end anonymous namespace namespace { class LatencyPriorityQueue : public SchedulingPriorityQueue { // SUnits - The SUnits for the current graph. const std::vector *SUnits; // Latencies - The latency (max of latency from this node to the bb exit) // for each node. std::vector Latencies; /// NumNodesSolelyBlocking - This vector contains, for every node in the /// Queue, the number of nodes that the node is the sole unscheduled /// predecessor for. This is used as a tie-breaker heuristic for better /// mobility. std::vector NumNodesSolelyBlocking; std::priority_queue, latency_sort> Queue; public: LatencyPriorityQueue() : Queue(latency_sort(this)) { } void initNodes(const std::vector &sunits) { SUnits = &sunits; // Calculate node priorities. CalculatePriorities(); } void releaseState() { SUnits = 0; Latencies.clear(); } unsigned getLatency(unsigned NodeNum) const { assert(NodeNum < Latencies.size()); return Latencies[NodeNum]; } unsigned getNumSolelyBlockNodes(unsigned NodeNum) const { assert(NodeNum < NumNodesSolelyBlocking.size()); return NumNodesSolelyBlocking[NodeNum]; } bool empty() const { return Queue.empty(); } virtual void push(SUnit *U) { push_impl(U); } void push_impl(SUnit *U); void push_all(const std::vector &Nodes) { for (unsigned i = 0, e = Nodes.size(); i != e; ++i) push_impl(Nodes[i]); } SUnit *pop() { SUnit *V = Queue.top(); Queue.pop(); return V; } // ScheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void ScheduledNode(SUnit *Node); private: void CalculatePriorities(); int CalcLatency(const SUnit &SU); void AdjustPriorityOfUnscheduledPreds(SUnit *SU); /// RemoveFromPriorityQueue - This is a really inefficient way to remove a /// node from a priority queue. We should roll our own heap to make this /// better or something. void RemoveFromPriorityQueue(SUnit *SU) { std::vector Temp; assert(!Queue.empty() && "Not in queue!"); while (Queue.top() != SU) { Temp.push_back(Queue.top()); Queue.pop(); assert(!Queue.empty() && "Not in queue!"); } // Remove the node from the PQ. Queue.pop(); // Add all the other nodes back. for (unsigned i = 0, e = Temp.size(); i != e; ++i) Queue.push(Temp[i]); } }; } bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { unsigned LHSNum = LHS->NodeNum; unsigned RHSNum = RHS->NodeNum; // The most important heuristic is scheduling the critical path. unsigned LHSLatency = PQ->getLatency(LHSNum); unsigned RHSLatency = PQ->getLatency(RHSNum); if (LHSLatency < RHSLatency) return true; if (LHSLatency > RHSLatency) return false; // After that, if two nodes have identical latencies, look to see if one will // unblock more other nodes than the other. unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); if (LHSBlocked < RHSBlocked) return true; if (LHSBlocked > RHSBlocked) return false; // Finally, just to provide a stable ordering, use the node number as a // deciding factor. return LHSNum < RHSNum; } /// CalcNodePriority - Calculate the maximal path from the node to the exit. /// int LatencyPriorityQueue::CalcLatency(const SUnit &SU) { int &Latency = Latencies[SU.NodeNum]; if (Latency != -1) return Latency; int MaxSuccLatency = 0; for (std::set >::const_iterator I = SU.Succs.begin(), E = SU.Succs.end(); I != E; ++I) MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first)); return Latency = MaxSuccLatency + SU.Latency; } /// CalculatePriorities - Calculate priorities of all scheduling units. void LatencyPriorityQueue::CalculatePriorities() { Latencies.assign(SUnits->size(), -1); NumNodesSolelyBlocking.assign(SUnits->size(), 0); for (unsigned i = 0, e = SUnits->size(); i != e; ++i) CalcLatency((*SUnits)[i]); } /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor /// of SU, return it, otherwise return null. static SUnit *getSingleUnscheduledPred(SUnit *SU) { SUnit *OnlyAvailablePred = 0; for (std::set >::const_iterator I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) if (!I->first->isScheduled) { // We found an available, but not scheduled, predecessor. If it's the // only one we have found, keep track of it... otherwise give up. if (OnlyAvailablePred && OnlyAvailablePred != I->first) return 0; OnlyAvailablePred = I->first; } return OnlyAvailablePred; } void LatencyPriorityQueue::push_impl(SUnit *SU) { // Look at all of the successors of this node. Count the number of nodes that // this node is the sole unscheduled node for. unsigned NumNodesBlocking = 0; for (std::set >::const_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) if (getSingleUnscheduledPred(I->first) == SU) ++NumNodesBlocking; NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; Queue.push(SU); } // ScheduledNode - As nodes are scheduled, we look to see if there are any // successor nodes that have a single unscheduled predecessor. If so, that // single predecessor has a higher priority, since scheduling it will make // the node available. void LatencyPriorityQueue::ScheduledNode(SUnit *SU) { for (std::set >::const_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) AdjustPriorityOfUnscheduledPreds(I->first); } /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just /// scheduled. If SU is not itself available, then there is at least one /// predecessor node that has not been scheduled yet. If SU has exactly ONE /// unscheduled predecessor, we want to increase its priority: it getting /// scheduled will make this node available, so it is better than some other /// node of the same priority that will not make a node available. void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { if (SU->isPending) return; // All preds scheduled. SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; // Okay, we found a single predecessor that is available, but not scheduled. // Since it is available, it must be in the priority queue. First remove it. RemoveFromPriorityQueue(OnlyAvailablePred); // Reinsert the node into the priority queue, which recomputes its // NumNodesSolelyBlocking value. push(OnlyAvailablePred); } //===----------------------------------------------------------------------===// // Public Constructor Functions //===----------------------------------------------------------------------===// llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG, MachineBasicBlock *BB) { return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true, new RegReductionPriorityQueue(), new HazardRecognizer()); } /// createTDListDAGScheduler - This creates a top-down list scheduler with the /// specified hazard recognizer. ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG, MachineBasicBlock *BB, HazardRecognizer *HR) { return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false, new LatencyPriorityQueue(), HR); }