//===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly --------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to PowerPC assembly language. This printer is // the output mechanism used by `llc'. // // Documentation at http://developer.apple.com/documentation/DeveloperTools/ // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asmprinter" #include "PPC.h" #include "PPCPredicates.h" #include "PPCTargetMachine.h" #include "PPCSubtarget.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Module.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/DwarfWriter.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Support/Mangler.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetAsmInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOptions.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include using namespace llvm; STATISTIC(EmittedInsts, "Number of machine instrs printed"); namespace { struct VISIBILITY_HIDDEN PPCAsmPrinter : public AsmPrinter { std::set FnStubs, GVStubs; const PPCSubtarget &Subtarget; PPCAsmPrinter(raw_ostream &O, TargetMachine &TM, const TargetAsmInfo *T) : AsmPrinter(O, TM, T), Subtarget(TM.getSubtarget()) { } virtual const char *getPassName() const { return "PowerPC Assembly Printer"; } PPCTargetMachine &getTM() { return static_cast(TM); } unsigned enumRegToMachineReg(unsigned enumReg) { switch (enumReg) { default: assert(0 && "Unhandled register!"); break; case PPC::CR0: return 0; case PPC::CR1: return 1; case PPC::CR2: return 2; case PPC::CR3: return 3; case PPC::CR4: return 4; case PPC::CR5: return 5; case PPC::CR6: return 6; case PPC::CR7: return 7; } abort(); } /// printInstruction - This method is automatically generated by tablegen /// from the instruction set description. This method returns true if the /// machine instruction was sufficiently described to print it, otherwise it /// returns false. bool printInstruction(const MachineInstr *MI); void printMachineInstruction(const MachineInstr *MI); void printOp(const MachineOperand &MO); /// stripRegisterPrefix - This method strips the character prefix from a /// register name so that only the number is left. Used by for linux asm. const char *stripRegisterPrefix(const char *RegName) { switch (RegName[0]) { case 'r': case 'f': case 'v': return RegName + 1; case 'c': if (RegName[1] == 'r') return RegName + 2; } return RegName; } /// printRegister - Print register according to target requirements. /// void printRegister(const MachineOperand &MO, bool R0AsZero) { unsigned RegNo = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(RegNo) && "Not physreg??"); // If we should use 0 for R0. if (R0AsZero && RegNo == PPC::R0) { O << "0"; return; } const char *RegName = TM.getRegisterInfo()->get(RegNo).AsmName; // Linux assembler (Others?) does not take register mnemonics. // FIXME - What about special registers used in mfspr/mtspr? if (!Subtarget.isDarwin()) RegName = stripRegisterPrefix(RegName); O << RegName; } void printOperand(const MachineInstr *MI, unsigned OpNo) { const MachineOperand &MO = MI->getOperand(OpNo); if (MO.isRegister()) { printRegister(MO, false); } else if (MO.isImmediate()) { O << MO.getImm(); } else { printOp(MO); } } bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode); bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode); void printS5ImmOperand(const MachineInstr *MI, unsigned OpNo) { char value = MI->getOperand(OpNo).getImm(); value = (value << (32-5)) >> (32-5); O << (int)value; } void printU5ImmOperand(const MachineInstr *MI, unsigned OpNo) { unsigned char value = MI->getOperand(OpNo).getImm(); assert(value <= 31 && "Invalid u5imm argument!"); O << (unsigned int)value; } void printU6ImmOperand(const MachineInstr *MI, unsigned OpNo) { unsigned char value = MI->getOperand(OpNo).getImm(); assert(value <= 63 && "Invalid u6imm argument!"); O << (unsigned int)value; } void printS16ImmOperand(const MachineInstr *MI, unsigned OpNo) { O << (short)MI->getOperand(OpNo).getImm(); } void printU16ImmOperand(const MachineInstr *MI, unsigned OpNo) { O << (unsigned short)MI->getOperand(OpNo).getImm(); } void printS16X4ImmOperand(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) { O << (short)(MI->getOperand(OpNo).getImm()*4); } else { O << "lo16("; printOp(MI->getOperand(OpNo)); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\")"; else O << ')'; } } void printBranchOperand(const MachineInstr *MI, unsigned OpNo) { // Branches can take an immediate operand. This is used by the branch // selection pass to print $+8, an eight byte displacement from the PC. if (MI->getOperand(OpNo).isImmediate()) { O << "$+" << MI->getOperand(OpNo).getImm()*4; } else { printOp(MI->getOperand(OpNo)); } } void printCallOperand(const MachineInstr *MI, unsigned OpNo) { const MachineOperand &MO = MI->getOperand(OpNo); if (TM.getRelocationModel() != Reloc::Static) { if (MO.getType() == MachineOperand::MO_GlobalAddress) { GlobalValue *GV = MO.getGlobal(); if (((GV->isDeclaration() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || GV->hasCommonLinkage()))) { // Dynamically-resolved functions need a stub for the function. std::string Name = Mang->getValueName(GV); FnStubs.insert(Name); printSuffixedName(Name, "$stub"); if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); return; } } if (MO.getType() == MachineOperand::MO_ExternalSymbol) { std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); FnStubs.insert(Name); printSuffixedName(Name, "$stub"); return; } } printOp(MI->getOperand(OpNo)); } void printAbsAddrOperand(const MachineInstr *MI, unsigned OpNo) { O << (int)MI->getOperand(OpNo).getImm()*4; } void printPICLabel(const MachineInstr *MI, unsigned OpNo) { O << "\"L" << getFunctionNumber() << "$pb\"\n"; O << "\"L" << getFunctionNumber() << "$pb\":"; } void printSymbolHi(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) { printS16ImmOperand(MI, OpNo); } else { if (Subtarget.isDarwin()) O << "ha16("; printOp(MI->getOperand(OpNo)); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; if (Subtarget.isDarwin()) O << ')'; else O << "@ha"; } } void printSymbolLo(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) { printS16ImmOperand(MI, OpNo); } else { if (Subtarget.isDarwin()) O << "lo16("; printOp(MI->getOperand(OpNo)); if (TM.getRelocationModel() == Reloc::PIC_) O << "-\"L" << getFunctionNumber() << "$pb\""; if (Subtarget.isDarwin()) O << ')'; else O << "@l"; } } void printcrbitm(const MachineInstr *MI, unsigned OpNo) { unsigned CCReg = MI->getOperand(OpNo).getReg(); unsigned RegNo = enumRegToMachineReg(CCReg); O << (0x80 >> RegNo); } // The new addressing mode printers. void printMemRegImm(const MachineInstr *MI, unsigned OpNo) { printSymbolLo(MI, OpNo); O << '('; if (MI->getOperand(OpNo+1).isRegister() && MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1); O << ')'; } void printMemRegImmShifted(const MachineInstr *MI, unsigned OpNo) { if (MI->getOperand(OpNo).isImmediate()) printS16X4ImmOperand(MI, OpNo); else printSymbolLo(MI, OpNo); O << '('; if (MI->getOperand(OpNo+1).isRegister() && MI->getOperand(OpNo+1).getReg() == PPC::R0) O << "0"; else printOperand(MI, OpNo+1); O << ')'; } void printMemRegReg(const MachineInstr *MI, unsigned OpNo) { // When used as the base register, r0 reads constant zero rather than // the value contained in the register. For this reason, the darwin // assembler requires that we print r0 as 0 (no r) when used as the base. const MachineOperand &MO = MI->getOperand(OpNo); printRegister(MO, true); O << ", "; printOperand(MI, OpNo+1); } void printPredicateOperand(const MachineInstr *MI, unsigned OpNo, const char *Modifier); virtual bool runOnMachineFunction(MachineFunction &F) = 0; virtual bool doFinalization(Module &M) = 0; virtual void EmitExternalGlobal(const GlobalVariable *GV); }; /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux struct VISIBILITY_HIDDEN PPCLinuxAsmPrinter : public PPCAsmPrinter { DwarfWriter DW; MachineModuleInfo *MMI; PPCLinuxAsmPrinter(raw_ostream &O, PPCTargetMachine &TM, const TargetAsmInfo *T) : PPCAsmPrinter(O, TM, T), DW(O, this, T), MMI(0) { } virtual const char *getPassName() const { return "Linux PPC Assembly Printer"; } bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); PPCAsmPrinter::getAnalysisUsage(AU); } /// getSectionForFunction - Return the section that we should emit the /// specified function body into. virtual std::string getSectionForFunction(const Function &F) const; void printModuleLevelGV(const GlobalVariable* GVar); }; /// PPCDarwinAsmPrinter - PowerPC assembly printer, customized for Darwin/Mac /// OS X struct VISIBILITY_HIDDEN PPCDarwinAsmPrinter : public PPCAsmPrinter { DwarfWriter DW; MachineModuleInfo *MMI; PPCDarwinAsmPrinter(raw_ostream &O, PPCTargetMachine &TM, const TargetAsmInfo *T) : PPCAsmPrinter(O, TM, T), DW(O, this, T), MMI(0) { } virtual const char *getPassName() const { return "Darwin PPC Assembly Printer"; } bool runOnMachineFunction(MachineFunction &F); bool doInitialization(Module &M); bool doFinalization(Module &M); void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); PPCAsmPrinter::getAnalysisUsage(AU); } /// getSectionForFunction - Return the section that we should emit the /// specified function body into. virtual std::string getSectionForFunction(const Function &F) const; void printModuleLevelGV(const GlobalVariable* GVar); }; } // end of anonymous namespace // Include the auto-generated portion of the assembly writer #include "PPCGenAsmWriter.inc" void PPCAsmPrinter::printOp(const MachineOperand &MO) { switch (MO.getType()) { case MachineOperand::MO_Immediate: cerr << "printOp() does not handle immediate values\n"; abort(); return; case MachineOperand::MO_MachineBasicBlock: printBasicBlockLabel(MO.getMBB()); return; case MachineOperand::MO_JumpTableIndex: O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); // FIXME: PIC relocation model return; case MachineOperand::MO_ConstantPoolIndex: O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_' << MO.getIndex(); return; case MachineOperand::MO_ExternalSymbol: // Computing the address of an external symbol, not calling it. if (TM.getRelocationModel() != Reloc::Static) { std::string Name(TAI->getGlobalPrefix()); Name += MO.getSymbolName(); GVStubs.insert(Name); printSuffixedName(Name, "$non_lazy_ptr"); return; } O << TAI->getGlobalPrefix() << MO.getSymbolName(); return; case MachineOperand::MO_GlobalAddress: { // Computing the address of a global symbol, not calling it. GlobalValue *GV = MO.getGlobal(); std::string Name = Mang->getValueName(GV); // External or weakly linked global variables need non-lazily-resolved stubs if (TM.getRelocationModel() != Reloc::Static) { if (((GV->isDeclaration() || GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || GV->hasCommonLinkage()))) { GVStubs.insert(Name); printSuffixedName(Name, "$non_lazy_ptr"); if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); return; } } O << Name; if (MO.getOffset() > 0) O << "+" << MO.getOffset(); else if (MO.getOffset() < 0) O << MO.getOffset(); if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); return; } default: O << ""; return; } } /// EmitExternalGlobal - In this case we need to use the indirect symbol. /// void PPCAsmPrinter::EmitExternalGlobal(const GlobalVariable *GV) { std::string Name = getGlobalLinkName(GV); if (TM.getRelocationModel() != Reloc::Static) { GVStubs.insert(Name); printSuffixedName(Name, "$non_lazy_ptr"); return; } O << Name; } /// PrintAsmOperand - Print out an operand for an inline asm expression. /// bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) { if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: return true; // Unknown modifier. case 'c': // Don't print "$" before a global var name or constant. // PPC never has a prefix. printOperand(MI, OpNo); return false; case 'L': // Write second word of DImode reference. // Verify that this operand has two consecutive registers. if (!MI->getOperand(OpNo).isRegister() || OpNo+1 == MI->getNumOperands() || !MI->getOperand(OpNo+1).isRegister()) return true; ++OpNo; // Return the high-part. break; case 'I': // Write 'i' if an integer constant, otherwise nothing. Used to print // addi vs add, etc. if (MI->getOperand(OpNo).isImmediate()) O << "i"; return false; } } printOperand(MI, OpNo); return false; } bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode) { if (ExtraCode && ExtraCode[0]) return true; // Unknown modifier. if (MI->getOperand(OpNo).isRegister()) printMemRegReg(MI, OpNo); else printMemRegImm(MI, OpNo); return false; } void PPCAsmPrinter::printPredicateOperand(const MachineInstr *MI, unsigned OpNo, const char *Modifier) { assert(Modifier && "Must specify 'cc' or 'reg' as predicate op modifier!"); unsigned Code = MI->getOperand(OpNo).getImm(); if (!strcmp(Modifier, "cc")) { switch ((PPC::Predicate)Code) { case PPC::PRED_ALWAYS: return; // Don't print anything for always. case PPC::PRED_LT: O << "lt"; return; case PPC::PRED_LE: O << "le"; return; case PPC::PRED_EQ: O << "eq"; return; case PPC::PRED_GE: O << "ge"; return; case PPC::PRED_GT: O << "gt"; return; case PPC::PRED_NE: O << "ne"; return; case PPC::PRED_UN: O << "un"; return; case PPC::PRED_NU: O << "nu"; return; } } else { assert(!strcmp(Modifier, "reg") && "Need to specify 'cc' or 'reg' as predicate op modifier!"); // Don't print the register for 'always'. if (Code == PPC::PRED_ALWAYS) return; printOperand(MI, OpNo+1); } } /// printMachineInstruction -- Print out a single PowerPC MI in Darwin syntax to /// the current output stream. /// void PPCAsmPrinter::printMachineInstruction(const MachineInstr *MI) { ++EmittedInsts; // Check for slwi/srwi mnemonics. if (MI->getOpcode() == PPC::RLWINM) { bool FoundMnemonic = false; unsigned char SH = MI->getOperand(2).getImm(); unsigned char MB = MI->getOperand(3).getImm(); unsigned char ME = MI->getOperand(4).getImm(); if (SH <= 31 && MB == 0 && ME == (31-SH)) { O << "\tslwi "; FoundMnemonic = true; } if (SH <= 31 && MB == (32-SH) && ME == 31) { O << "\tsrwi "; FoundMnemonic = true; SH = 32-SH; } if (FoundMnemonic) { printOperand(MI, 0); O << ", "; printOperand(MI, 1); O << ", " << (unsigned int)SH << '\n'; return; } } else if (MI->getOpcode() == PPC::OR || MI->getOpcode() == PPC::OR8) { if (MI->getOperand(1).getReg() == MI->getOperand(2).getReg()) { O << "\tmr "; printOperand(MI, 0); O << ", "; printOperand(MI, 1); O << '\n'; return; } } else if (MI->getOpcode() == PPC::RLDICR) { unsigned char SH = MI->getOperand(2).getImm(); unsigned char ME = MI->getOperand(3).getImm(); // rldicr RA, RS, SH, 63-SH == sldi RA, RS, SH if (63-SH == ME) { O << "\tsldi "; printOperand(MI, 0); O << ", "; printOperand(MI, 1); O << ", " << (unsigned int)SH << '\n'; return; } } if (printInstruction(MI)) return; // Printer was automatically generated assert(0 && "Unhandled instruction in asm writer!"); abort(); return; } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool PPCLinuxAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out labels for the function. const Function *F = MF.getFunction(); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); switch (F->getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. break; case Function::ExternalLinkage: O << "\t.global\t" << CurrentFnName << '\n' << "\t.type\t" << CurrentFnName << ", @function\n"; break; case Function::WeakLinkage: case Function::LinkOnceLinkage: O << "\t.global\t" << CurrentFnName << '\n'; O << "\t.weak\t" << CurrentFnName << '\n'; break; } printVisibility(CurrentFnName, F->getVisibility()); EmitAlignment(2, F); O << CurrentFnName << ":\n"; // Emit pre-function debug information. DW.BeginFunction(&MF); // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end(); II != E; ++II) { // Print the assembly for the instruction. printMachineInstruction(II); } } O << "\t.size\t" << CurrentFnName << ",.-" << CurrentFnName << '\n'; // Print out jump tables referenced by the function. EmitJumpTableInfo(MF.getJumpTableInfo(), MF); // Emit post-function debug information. DW.EndFunction(); // We didn't modify anything. return false; } bool PPCLinuxAsmPrinter::doInitialization(Module &M) { bool Result = AsmPrinter::doInitialization(M); // Emit initial debug information. DW.BeginModule(&M); // AsmPrinter::doInitialization should have done this analysis. MMI = getAnalysisToUpdate(); assert(MMI); DW.SetModuleInfo(MMI); // GNU as handles section names wrapped in quotes Mang->setUseQuotes(true); SwitchToTextSection(TAI->getTextSection()); return Result; } /// PrintUnmangledNameSafely - Print out the printable characters in the name. /// Don't print things like \n or \0. static void PrintUnmangledNameSafely(const Value *V, raw_ostream &OS) { for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen(); Name != E; ++Name) if (isprint(*Name)) OS << *Name; } void PPCLinuxAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) { const TargetData *TD = TM.getTargetData(); if (!GVar->hasInitializer()) return; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GVar)) return; std::string name = Mang->getValueName(GVar); std::string SectionName = TAI->SectionForGlobal(GVar); printVisibility(name, GVar->getVisibility()); Constant *C = GVar->getInitializer(); const Type *Type = C->getType(); unsigned Size = TD->getABITypeSize(Type); unsigned Align = TD->getPreferredAlignmentLog(GVar); SwitchToDataSection(SectionName.c_str()); if (C->isNullValue() && /* FIXME: Verify correct */ !GVar->hasSection() && (GVar->hasInternalLinkage() || GVar->hasExternalLinkage() || GVar->isWeakForLinker())) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (GVar->hasExternalLinkage()) { O << "\t.global " << name << '\n'; O << "\t.type " << name << ", @object\n"; O << name << ":\n"; O << "\t.zero " << Size << '\n'; } else if (GVar->hasInternalLinkage()) { O << TAI->getLCOMMDirective() << name << ',' << Size; } else { O << ".comm " << name << ',' << Size; } O << "\t\t" << TAI->getCommentString() << " '"; PrintUnmangledNameSafely(GVar, O); O << "'\n"; return; } switch (GVar->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: case GlobalValue::CommonLinkage: O << "\t.global " << name << '\n' << "\t.type " << name << ", @object\n" << "\t.weak " << name << '\n'; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.global " << name << '\n' << "\t.type " << name << ", @object\n"; // FALL THROUGH case GlobalValue::InternalLinkage: break; default: cerr << "Unknown linkage type!"; abort(); } EmitAlignment(Align, GVar); O << name << ":\t\t\t\t" << TAI->getCommentString() << " '"; PrintUnmangledNameSafely(GVar, O); O << "'\n"; // If the initializer is a extern weak symbol, remember to emit the weak // reference! if (const GlobalValue *GV = dyn_cast(C)) if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); EmitGlobalConstant(C); O << '\n'; } bool PPCLinuxAsmPrinter::doFinalization(Module &M) { // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) printModuleLevelGV(I); // TODO // Emit initial debug information. DW.EndModule(); return AsmPrinter::doFinalization(M); } std::string PPCLinuxAsmPrinter::getSectionForFunction(const Function &F) const { return TAI->SectionForGlobal(&F); } std::string PPCDarwinAsmPrinter::getSectionForFunction(const Function &F) const { return TAI->SectionForGlobal(&F); } /// runOnMachineFunction - This uses the printMachineInstruction() /// method to print assembly for each instruction. /// bool PPCDarwinAsmPrinter::runOnMachineFunction(MachineFunction &MF) { SetupMachineFunction(MF); O << "\n\n"; // Print out constants referenced by the function EmitConstantPool(MF.getConstantPool()); // Print out labels for the function. const Function *F = MF.getFunction(); SwitchToTextSection(getSectionForFunction(*F).c_str(), F); switch (F->getLinkage()) { default: assert(0 && "Unknown linkage type!"); case Function::InternalLinkage: // Symbols default to internal. break; case Function::ExternalLinkage: O << "\t.globl\t" << CurrentFnName << '\n'; break; case Function::WeakLinkage: case Function::LinkOnceLinkage: O << "\t.globl\t" << CurrentFnName << '\n'; O << "\t.weak_definition\t" << CurrentFnName << '\n'; break; } printVisibility(CurrentFnName, F->getVisibility()); EmitAlignment(OptimizeForSize ? 2 : 4, F); O << CurrentFnName << ":\n"; // Emit pre-function debug information. DW.BeginFunction(&MF); // If the function is empty, then we need to emit *something*. Otherwise, the // function's label might be associated with something that it wasn't meant to // be associated with. We emit a noop in this situation. MachineFunction::iterator I = MF.begin(); if (++I == MF.end() && MF.front().empty()) O << "\tnop\n"; // Print out code for the function. for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); I != E; ++I) { // Print a label for the basic block. if (I != MF.begin()) { printBasicBlockLabel(I, true, true); O << '\n'; } for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); II != IE; ++II) { // Print the assembly for the instruction. printMachineInstruction(II); } } // Print out jump tables referenced by the function. EmitJumpTableInfo(MF.getJumpTableInfo(), MF); // Emit post-function debug information. DW.EndFunction(); // We didn't modify anything. return false; } bool PPCDarwinAsmPrinter::doInitialization(Module &M) { static const char *const CPUDirectives[] = { "", "ppc", "ppc601", "ppc602", "ppc603", "ppc7400", "ppc750", "ppc970", "ppc64" }; unsigned Directive = Subtarget.getDarwinDirective(); if (Subtarget.isGigaProcessor() && Directive < PPC::DIR_970) Directive = PPC::DIR_970; if (Subtarget.hasAltivec() && Directive < PPC::DIR_7400) Directive = PPC::DIR_7400; if (Subtarget.isPPC64() && Directive < PPC::DIR_970) Directive = PPC::DIR_64; assert(Directive <= PPC::DIR_64 && "Directive out of range."); O << "\t.machine " << CPUDirectives[Directive] << '\n'; bool Result = AsmPrinter::doInitialization(M); // Emit initial debug information. DW.BeginModule(&M); // We need this for Personality functions. // AsmPrinter::doInitialization should have done this analysis. MMI = getAnalysisToUpdate(); assert(MMI); DW.SetModuleInfo(MMI); // Darwin wants symbols to be quoted if they have complex names. Mang->setUseQuotes(true); // Prime text sections so they are adjacent. This reduces the likelihood a // large data or debug section causes a branch to exceed 16M limit. SwitchToTextSection("\t.section __TEXT,__textcoal_nt,coalesced," "pure_instructions"); if (TM.getRelocationModel() == Reloc::PIC_) { SwitchToTextSection("\t.section __TEXT,__picsymbolstub1,symbol_stubs," "pure_instructions,32"); } else if (TM.getRelocationModel() == Reloc::DynamicNoPIC) { SwitchToTextSection("\t.section __TEXT,__symbol_stub1,symbol_stubs," "pure_instructions,16"); } SwitchToTextSection(TAI->getTextSection()); return Result; } void PPCDarwinAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) { const TargetData *TD = TM.getTargetData(); if (!GVar->hasInitializer()) return; // External global require no code // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GVar)) { if (TM.getRelocationModel() == Reloc::Static) { if (GVar->getName() == "llvm.global_ctors") O << ".reference .constructors_used\n"; else if (GVar->getName() == "llvm.global_dtors") O << ".reference .destructors_used\n"; } return; } std::string name = Mang->getValueName(GVar); std::string SectionName = TAI->SectionForGlobal(GVar); printVisibility(name, GVar->getVisibility()); Constant *C = GVar->getInitializer(); const Type *Type = C->getType(); unsigned Size = TD->getABITypeSize(Type); unsigned Align = TD->getPreferredAlignmentLog(GVar); SwitchToDataSection(SectionName.c_str()); if (C->isNullValue() && /* FIXME: Verify correct */ !GVar->hasSection() && (GVar->hasInternalLinkage() || GVar->hasExternalLinkage() || GVar->isWeakForLinker())) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. if (GVar->hasExternalLinkage()) { O << "\t.globl " << name << '\n'; O << "\t.zerofill __DATA, __common, " << name << ", " << Size << ", " << Align; } else if (GVar->hasInternalLinkage()) { O << TAI->getLCOMMDirective() << name << ',' << Size << ',' << Align; } else if (!GVar->hasCommonLinkage()) { O << "\t.globl " << name << '\n' << TAI->getWeakDefDirective() << name << '\n'; EmitAlignment(Align, GVar); O << name << ":\t\t\t\t" << TAI->getCommentString() << " "; PrintUnmangledNameSafely(GVar, O); O << '\n'; EmitGlobalConstant(C); return; } else { O << ".comm " << name << ',' << Size; // Darwin 9 and above support aligned common data. if (Subtarget.isDarwin9()) O << ',' << Align; } O << "\t\t" << TAI->getCommentString() << " '"; PrintUnmangledNameSafely(GVar, O); O << "'\n"; return; } switch (GVar->getLinkage()) { case GlobalValue::LinkOnceLinkage: case GlobalValue::WeakLinkage: case GlobalValue::CommonLinkage: O << "\t.globl " << name << '\n' << "\t.weak_definition " << name << '\n'; break; case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol O << "\t.globl " << name << '\n'; // FALL THROUGH case GlobalValue::InternalLinkage: break; default: cerr << "Unknown linkage type!"; abort(); } EmitAlignment(Align, GVar); O << name << ":\t\t\t\t" << TAI->getCommentString() << " '"; PrintUnmangledNameSafely(GVar, O); O << "'\n"; // If the initializer is a extern weak symbol, remember to emit the weak // reference! if (const GlobalValue *GV = dyn_cast(C)) if (GV->hasExternalWeakLinkage()) ExtWeakSymbols.insert(GV); EmitGlobalConstant(C); O << '\n'; } bool PPCDarwinAsmPrinter::doFinalization(Module &M) { const TargetData *TD = TM.getTargetData(); // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) printModuleLevelGV(I); bool isPPC64 = TD->getPointerSizeInBits() == 64; // Output stubs for dynamically-linked functions if (TM.getRelocationModel() == Reloc::PIC_) { for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { SwitchToTextSection("\t.section __TEXT,__picsymbolstub1,symbol_stubs," "pure_instructions,32"); EmitAlignment(4); std::string p = *i; std::string L0p = (p[0]=='\"') ? "\"L0$" + p.substr(1) : "L0$" + p ; printSuffixedName(p, "$stub"); O << ":\n"; O << "\t.indirect_symbol " << *i << '\n'; O << "\tmflr r0\n"; O << "\tbcl 20,31," << L0p << '\n'; O << L0p << ":\n"; O << "\tmflr r11\n"; O << "\taddis r11,r11,ha16("; printSuffixedName(p, "$lazy_ptr"); O << "-" << L0p << ")\n"; O << "\tmtlr r0\n"; if (isPPC64) O << "\tldu r12,lo16("; else O << "\tlwzu r12,lo16("; printSuffixedName(p, "$lazy_ptr"); O << "-" << L0p << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; SwitchToDataSection(".lazy_symbol_pointer"); printSuffixedName(p, "$lazy_ptr"); O << ":\n"; O << "\t.indirect_symbol " << *i << '\n'; if (isPPC64) O << "\t.quad dyld_stub_binding_helper\n"; else O << "\t.long dyld_stub_binding_helper\n"; } } else { for (std::set::iterator i = FnStubs.begin(), e = FnStubs.end(); i != e; ++i) { SwitchToTextSection("\t.section __TEXT,__symbol_stub1,symbol_stubs," "pure_instructions,16"); EmitAlignment(4); std::string p = *i; printSuffixedName(p, "$stub"); O << ":\n"; O << "\t.indirect_symbol " << *i << '\n'; O << "\tlis r11,ha16("; printSuffixedName(p, "$lazy_ptr"); O << ")\n"; if (isPPC64) O << "\tldu r12,lo16("; else O << "\tlwzu r12,lo16("; printSuffixedName(p, "$lazy_ptr"); O << ")(r11)\n"; O << "\tmtctr r12\n"; O << "\tbctr\n"; SwitchToDataSection(".lazy_symbol_pointer"); printSuffixedName(p, "$lazy_ptr"); O << ":\n"; O << "\t.indirect_symbol " << *i << '\n'; if (isPPC64) O << "\t.quad dyld_stub_binding_helper\n"; else O << "\t.long dyld_stub_binding_helper\n"; } } O << '\n'; if (TAI->doesSupportExceptionHandling() && MMI) { // Add the (possibly multiple) personalities to the set of global values. // Only referenced functions get into the Personalities list. const std::vector& Personalities = MMI->getPersonalities(); for (std::vector::const_iterator I = Personalities.begin(), E = Personalities.end(); I != E; ++I) if (*I) GVStubs.insert("_" + (*I)->getName()); } // Output stubs for external and common global variables. if (!GVStubs.empty()) { SwitchToDataSection(".non_lazy_symbol_pointer"); for (std::set::iterator I = GVStubs.begin(), E = GVStubs.end(); I != E; ++I) { std::string p = *I; printSuffixedName(p, "$non_lazy_ptr"); O << ":\n"; O << "\t.indirect_symbol " << *I << '\n'; if (isPPC64) O << "\t.quad\t0\n"; else O << "\t.long\t0\n"; } } // Emit initial debug information. DW.EndModule(); // Funny Darwin hack: This flag tells the linker that no global symbols // contain code that falls through to other global symbols (e.g. the obvious // implementation of multiple entry points). If this doesn't occur, the // linker can safely perform dead code stripping. Since LLVM never generates // code that does this, it is always safe to set. O << "\t.subsections_via_symbols\n"; return AsmPrinter::doFinalization(M); } /// createPPCAsmPrinterPass - Returns a pass that prints the PPC assembly code /// for a MachineFunction to the given output stream, in a format that the /// Darwin assembler can deal with. /// FunctionPass *llvm::createPPCAsmPrinterPass(raw_ostream &o, PPCTargetMachine &tm) { const PPCSubtarget *Subtarget = &tm.getSubtarget(); if (Subtarget->isDarwin()) { return new PPCDarwinAsmPrinter(o, tm, tm.getTargetAsmInfo()); } else { return new PPCLinuxAsmPrinter(o, tm, tm.getTargetAsmInfo()); } } namespace { static struct Register { Register() { PPCTargetMachine::registerAsmPrinter(createPPCAsmPrinterPass); } } Registrator; }