//===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Loop Index Splitting Pass. This pass handles three // kinds of loops. // // [1] A loop may be eliminated if the body is executed exactly once. // For example, // // for (i = 0; i < N; ++i) { // if (i == X) { // body; // } // } // // is transformed to // // i = X; // body; // // [2] A loop's iteration space may be shrunk if the loop body is executed // for a proper sub-range of the loop's iteration space. For example, // // for (i = 0; i < N; ++i) { // if (i > A && i < B) { // ... // } // } // // is transformed to iterators from A to B, if A > 0 and B < N. // // [3] A loop may be split if the loop body is dominated by a branch. // For example, // // for (i = LB; i < UB; ++i) { if (i < SV) A; else B; } // // is transformed into // // AEV = BSV = SV // for (i = LB; i < min(UB, AEV); ++i) // A; // for (i = max(LB, BSV); i < UB; ++i); // B; // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-index-split" #include "llvm/Transforms/Scalar.h" #include "llvm/IntrinsicInst.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/Statistic.h" using namespace llvm; STATISTIC(NumIndexSplit, "Number of loop index split"); STATISTIC(NumIndexSplitRemoved, "Number of loops eliminated by loop index split"); STATISTIC(NumRestrictBounds, "Number of loop iteration space restricted"); namespace { class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass { public: static char ID; // Pass ID, replacement for typeid LoopIndexSplit() : LoopPass(&ID) {} // Index split Loop L. Return true if loop is split. bool runOnLoop(Loop *L, LPPassManager &LPM); void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved(); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); AU.addRequired(); AU.addPreserved(); AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreserved(); } private: /// processOneIterationLoop -- Eliminate loop if loop body is executed /// only once. For example, /// for (i = 0; i < N; ++i) { /// if ( i == X) { /// ... /// } /// } /// bool processOneIterationLoop(); // -- Routines used by updateLoopIterationSpace(); /// updateLoopIterationSpace -- Update loop's iteration space if loop /// body is executed for certain IV range only. For example, /// /// for (i = 0; i < N; ++i) { /// if ( i > A && i < B) { /// ... /// } /// } /// is transformed to iterators from A to B, if A > 0 and B < N. /// bool updateLoopIterationSpace(); /// restrictLoopBound - Op dominates loop body. Op compares an IV based value /// with a loop invariant value. Update loop's lower and upper bound based on /// the loop invariant value. bool restrictLoopBound(ICmpInst &Op); // --- Routines used by splitLoop(). --- / bool splitLoop(); /// removeBlocks - Remove basic block DeadBB and all blocks dominated by /// DeadBB. This routine is used to remove split condition's dead branch, /// dominated by DeadBB. LiveBB dominates split conidition's other branch. void removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB); /// moveExitCondition - Move exit condition EC into split condition block. void moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB, BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC, PHINode *IV, Instruction *IVAdd, Loop *LP, unsigned); /// updatePHINodes - CFG has been changed. /// Before /// - ExitBB's single predecessor was Latch /// - Latch's second successor was Header /// Now /// - ExitBB's single predecessor was Header /// - Latch's one and only successor was Header /// /// Update ExitBB PHINodes' to reflect this change. void updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, BasicBlock *Header, PHINode *IV, Instruction *IVIncrement, Loop *LP); // --- Utility routines --- / /// cleanBlock - A block is considered clean if all non terminal /// instructions are either PHINodes or IV based values. bool cleanBlock(BasicBlock *BB); /// IVisLT - If Op is comparing IV based value with an loop invariant and /// IV based value is less than the loop invariant then return the loop /// invariant. Otherwise return NULL. Value * IVisLT(ICmpInst &Op); /// IVisLE - If Op is comparing IV based value with an loop invariant and /// IV based value is less than or equal to the loop invariant then /// return the loop invariant. Otherwise return NULL. Value * IVisLE(ICmpInst &Op); /// IVisGT - If Op is comparing IV based value with an loop invariant and /// IV based value is greater than the loop invariant then return the loop /// invariant. Otherwise return NULL. Value * IVisGT(ICmpInst &Op); /// IVisGE - If Op is comparing IV based value with an loop invariant and /// IV based value is greater than or equal to the loop invariant then /// return the loop invariant. Otherwise return NULL. Value * IVisGE(ICmpInst &Op); private: // Current Loop information. Loop *L; LPPassManager *LPM; LoopInfo *LI; DominatorTree *DT; DominanceFrontier *DF; PHINode *IndVar; ICmpInst *ExitCondition; ICmpInst *SplitCondition; Value *IVStartValue; Value *IVExitValue; Instruction *IVIncrement; SmallPtrSet IVBasedValues; }; } char LoopIndexSplit::ID = 0; static RegisterPass X("loop-index-split", "Index Split Loops"); Pass *llvm::createLoopIndexSplitPass() { return new LoopIndexSplit(); } // Index split Loop L. Return true if loop is split. bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) { L = IncomingLoop; LPM = &LPM_Ref; // FIXME - Nested loops make dominator info updates tricky. if (!L->getSubLoops().empty()) return false; DT = &getAnalysis(); LI = &getAnalysis(); DF = &getAnalysis(); // Initialize loop data. IndVar = L->getCanonicalInductionVariable(); if (!IndVar) return false; bool P1InLoop = L->contains(IndVar->getIncomingBlock(1)); IVStartValue = IndVar->getIncomingValue(!P1InLoop); IVIncrement = dyn_cast(IndVar->getIncomingValue(P1InLoop)); if (!IVIncrement) return false; IVBasedValues.clear(); IVBasedValues.insert(IndVar); IVBasedValues.insert(IVIncrement); for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) for(BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); BI != BE; ++BI) { if (BinaryOperator *BO = dyn_cast(BI)) if (BO != IVIncrement && (BO->getOpcode() == Instruction::Add || BO->getOpcode() == Instruction::Sub)) if (IVBasedValues.count(BO->getOperand(0)) && L->isLoopInvariant(BO->getOperand(1))) IVBasedValues.insert(BO); } // Reject loop if loop exit condition is not suitable. BasicBlock *ExitingBlock = L->getExitingBlock(); if (!ExitingBlock) return false; BranchInst *EBR = dyn_cast(ExitingBlock->getTerminator()); if (!EBR) return false; ExitCondition = dyn_cast(EBR->getCondition()); if (!ExitCondition) return false; if (ExitingBlock != L->getLoopLatch()) return false; IVExitValue = ExitCondition->getOperand(1); if (!L->isLoopInvariant(IVExitValue)) IVExitValue = ExitCondition->getOperand(0); if (!L->isLoopInvariant(IVExitValue)) return false; // If start value is more then exit value where induction variable // increments by 1 then we are potentially dealing with an infinite loop. // Do not index split this loop. if (ConstantInt *SV = dyn_cast(IVStartValue)) if (ConstantInt *EV = dyn_cast(IVExitValue)) if (SV->getSExtValue() > EV->getSExtValue()) return false; if (processOneIterationLoop()) return true; if (updateLoopIterationSpace()) return true; if (splitLoop()) return true; return false; } // --- Helper routines --- // isUsedOutsideLoop - Returns true iff V is used outside the loop L. static bool isUsedOutsideLoop(Value *V, Loop *L) { for(Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) if (!L->contains(cast(*UI)->getParent())) return true; return false; } // Return V+1 static Value *getPlusOne(Value *V, bool Sign, Instruction *InsertPt) { ConstantInt *One = ConstantInt::get(V->getType(), 1, Sign); return BinaryOperator::CreateAdd(V, One, "lsp", InsertPt); } // Return V-1 static Value *getMinusOne(Value *V, bool Sign, Instruction *InsertPt) { ConstantInt *One = ConstantInt::get(V->getType(), 1, Sign); return BinaryOperator::CreateSub(V, One, "lsp", InsertPt); } // Return min(V1, V1) static Value *getMin(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) { Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, V1, V2, "lsp", InsertPt); return SelectInst::Create(C, V1, V2, "lsp", InsertPt); } // Return max(V1, V2) static Value *getMax(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) { Value *C = new ICmpInst(Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, V1, V2, "lsp", InsertPt); return SelectInst::Create(C, V2, V1, "lsp", InsertPt); } /// processOneIterationLoop -- Eliminate loop if loop body is executed /// only once. For example, /// for (i = 0; i < N; ++i) { /// if ( i == X) { /// ... /// } /// } /// bool LoopIndexSplit::processOneIterationLoop() { SplitCondition = NULL; BasicBlock *Latch = L->getLoopLatch(); BasicBlock *Header = L->getHeader(); BranchInst *BR = dyn_cast(Header->getTerminator()); if (!BR) return false; if (!isa(Latch->getTerminator())) return false; if (BR->isUnconditional()) return false; SplitCondition = dyn_cast(BR->getCondition()); if (!SplitCondition) return false; if (SplitCondition == ExitCondition) return false; if (SplitCondition->getPredicate() != ICmpInst::ICMP_EQ) return false; if (BR->getOperand(1) != Latch) return false; if (!IVBasedValues.count(SplitCondition->getOperand(0)) && !IVBasedValues.count(SplitCondition->getOperand(1))) return false; // If IV is used outside the loop then this loop traversal is required. // FIXME: Calculate and use last IV value. if (isUsedOutsideLoop(IVIncrement, L)) return false; // If BR operands are not IV or not loop invariants then skip this loop. Value *OPV = SplitCondition->getOperand(0); Value *SplitValue = SplitCondition->getOperand(1); if (!L->isLoopInvariant(SplitValue)) { Value *T = SplitValue; SplitValue = OPV; OPV = T; } if (!L->isLoopInvariant(SplitValue)) return false; Instruction *OPI = dyn_cast(OPV); if (!OPI) return false; if (OPI->getParent() != Header || isUsedOutsideLoop(OPI, L)) return false; Value *StartValue = IVStartValue; Value *ExitValue = IVExitValue;; if (OPV != IndVar) { // If BR operand is IV based then use this operand to calculate // effective conditions for loop body. BinaryOperator *BOPV = dyn_cast(OPV); if (!BOPV) return false; if (BOPV->getOpcode() != Instruction::Add) return false; StartValue = BinaryOperator::CreateAdd(OPV, StartValue, "" , BR); ExitValue = BinaryOperator::CreateAdd(OPV, ExitValue, "" , BR); } if (!cleanBlock(Header)) return false; if (!cleanBlock(Latch)) return false; // If the merge point for BR is not loop latch then skip this loop. if (BR->getSuccessor(0) != Latch) { DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0)); assert (DF0 != DF->end() && "Unable to find dominance frontier"); if (!DF0->second.count(Latch)) return false; } if (BR->getSuccessor(1) != Latch) { DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1)); assert (DF1 != DF->end() && "Unable to find dominance frontier"); if (!DF1->second.count(Latch)) return false; } // Now, Current loop L contains compare instruction // that compares induction variable, IndVar, against loop invariant. And // entire (i.e. meaningful) loop body is dominated by this compare // instruction. In such case eliminate // loop structure surrounding this loop body. For example, // for (int i = start; i < end; ++i) { // if ( i == somevalue) { // loop_body // } // } // can be transformed into // if (somevalue >= start && somevalue < end) { // i = somevalue; // loop_body // } // Replace index variable with split value in loop body. Loop body is executed // only when index variable is equal to split value. IndVar->replaceAllUsesWith(SplitValue); // Replace split condition in header. // Transform // SplitCondition : icmp eq i32 IndVar, SplitValue // into // c1 = icmp uge i32 SplitValue, StartValue // c2 = icmp ult i32 SplitValue, ExitValue // and i32 c1, c2 Instruction *C1 = new ICmpInst(ExitCondition->isSignedPredicate() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, SplitValue, StartValue, "lisplit", BR); CmpInst::Predicate C2P = ExitCondition->getPredicate(); BranchInst *LatchBR = cast(Latch->getTerminator()); if (LatchBR->getOperand(0) != Header) C2P = CmpInst::getInversePredicate(C2P); Instruction *C2 = new ICmpInst(C2P, SplitValue, ExitValue, "lisplit", BR); Instruction *NSplitCond = BinaryOperator::CreateAnd(C1, C2, "lisplit", BR); SplitCondition->replaceAllUsesWith(NSplitCond); SplitCondition->eraseFromParent(); // Remove Latch to Header edge. BasicBlock *LatchSucc = NULL; Header->removePredecessor(Latch); for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch); SI != E; ++SI) { if (Header != *SI) LatchSucc = *SI; } // Clean up latch block. Value *LatchBRCond = LatchBR->getCondition(); LatchBR->setUnconditionalDest(LatchSucc); RecursivelyDeleteTriviallyDeadInstructions(LatchBRCond); LPM->deleteLoopFromQueue(L); // Update Dominator Info. // Only CFG change done is to remove Latch to Header edge. This // does not change dominator tree because Latch did not dominate // Header. if (DF) { DominanceFrontier::iterator HeaderDF = DF->find(Header); if (HeaderDF != DF->end()) DF->removeFromFrontier(HeaderDF, Header); DominanceFrontier::iterator LatchDF = DF->find(Latch); if (LatchDF != DF->end()) DF->removeFromFrontier(LatchDF, Header); } ++NumIndexSplitRemoved; return true; } /// restrictLoopBound - Op dominates loop body. Op compares an IV based value /// with a loop invariant value. Update loop's lower and upper bound based on /// the loop invariant value. bool LoopIndexSplit::restrictLoopBound(ICmpInst &Op) { bool Sign = Op.isSignedPredicate(); Instruction *PHTerm = L->getLoopPreheader()->getTerminator(); if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) { BranchInst *EBR = cast(ExitCondition->getParent()->getTerminator()); ExitCondition->setPredicate(ExitCondition->getInversePredicate()); BasicBlock *T = EBR->getSuccessor(0); EBR->setSuccessor(0, EBR->getSuccessor(1)); EBR->setSuccessor(1, T); } // New upper and lower bounds. Value *NLB = NULL; Value *NUB = NULL; if (Value *V = IVisLT(Op)) { // Restrict upper bound. if (IVisLE(*ExitCondition)) V = getMinusOne(V, Sign, PHTerm); NUB = getMin(V, IVExitValue, Sign, PHTerm); } else if (Value *V = IVisLE(Op)) { // Restrict upper bound. if (IVisLT(*ExitCondition)) V = getPlusOne(V, Sign, PHTerm); NUB = getMin(V, IVExitValue, Sign, PHTerm); } else if (Value *V = IVisGT(Op)) { // Restrict lower bound. V = getPlusOne(V, Sign, PHTerm); NLB = getMax(V, IVStartValue, Sign, PHTerm); } else if (Value *V = IVisGE(Op)) // Restrict lower bound. NLB = getMax(V, IVStartValue, Sign, PHTerm); if (!NLB && !NUB) return false; if (NLB) { unsigned i = IndVar->getBasicBlockIndex(L->getLoopPreheader()); IndVar->setIncomingValue(i, NLB); } if (NUB) { unsigned i = (ExitCondition->getOperand(0) != IVExitValue); ExitCondition->setOperand(i, NUB); } return true; } /// updateLoopIterationSpace -- Update loop's iteration space if loop /// body is executed for certain IV range only. For example, /// /// for (i = 0; i < N; ++i) { /// if ( i > A && i < B) { /// ... /// } /// } /// is transformed to iterators from A to B, if A > 0 and B < N. /// bool LoopIndexSplit::updateLoopIterationSpace() { SplitCondition = NULL; if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ) return false; BasicBlock *Latch = L->getLoopLatch(); BasicBlock *Header = L->getHeader(); BranchInst *BR = dyn_cast(Header->getTerminator()); if (!BR) return false; if (!isa(Latch->getTerminator())) return false; if (BR->isUnconditional()) return false; BinaryOperator *AND = dyn_cast(BR->getCondition()); if (!AND) return false; if (AND->getOpcode() != Instruction::And) return false; ICmpInst *Op0 = dyn_cast(AND->getOperand(0)); ICmpInst *Op1 = dyn_cast(AND->getOperand(1)); if (!Op0 || !Op1) return false; IVBasedValues.insert(AND); IVBasedValues.insert(Op0); IVBasedValues.insert(Op1); if (!cleanBlock(Header)) return false; BasicBlock *ExitingBlock = ExitCondition->getParent(); if (!cleanBlock(ExitingBlock)) return false; // If the merge point for BR is not loop latch then skip this loop. if (BR->getSuccessor(0) != Latch) { DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0)); assert (DF0 != DF->end() && "Unable to find dominance frontier"); if (!DF0->second.count(Latch)) return false; } if (BR->getSuccessor(1) != Latch) { DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1)); assert (DF1 != DF->end() && "Unable to find dominance frontier"); if (!DF1->second.count(Latch)) return false; } // Verify that loop exiting block has only two predecessor, where one pred // is split condition block. The other predecessor will become exiting block's // dominator after CFG is updated. TODO : Handle CFG's where exiting block has // more then two predecessors. This requires extra work in updating dominator // information. BasicBlock *ExitingBBPred = NULL; for (pred_iterator PI = pred_begin(ExitingBlock), PE = pred_end(ExitingBlock); PI != PE; ++PI) { BasicBlock *BB = *PI; if (Header == BB) continue; if (ExitingBBPred) return false; else ExitingBBPred = BB; } if (!restrictLoopBound(*Op0)) return false; if (!restrictLoopBound(*Op1)) return false; // Update CFG. if (BR->getSuccessor(0) == ExitingBlock) BR->setUnconditionalDest(BR->getSuccessor(1)); else BR->setUnconditionalDest(BR->getSuccessor(0)); AND->eraseFromParent(); if (Op0->use_empty()) Op0->eraseFromParent(); if (Op1->use_empty()) Op1->eraseFromParent(); // Update domiantor info. Now, ExitingBlock has only one predecessor, // ExitingBBPred, and it is ExitingBlock's immediate domiantor. DT->changeImmediateDominator(ExitingBlock, ExitingBBPred); BasicBlock *ExitBlock = ExitingBlock->getTerminator()->getSuccessor(1); if (L->contains(ExitBlock)) ExitBlock = ExitingBlock->getTerminator()->getSuccessor(0); // If ExitingBlock is a member of the loop basic blocks' DF list then // replace ExitingBlock with header and exit block in the DF list DominanceFrontier::iterator ExitingBlockDF = DF->find(ExitingBlock); for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BasicBlock *BB = *I; if (BB == Header || BB == ExitingBlock) continue; DominanceFrontier::iterator BBDF = DF->find(BB); DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin(); DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end(); while (DomSetI != DomSetE) { DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI; ++DomSetI; BasicBlock *DFBB = *CurrentItr; if (DFBB == ExitingBlock) { BBDF->second.erase(DFBB); for (DominanceFrontier::DomSetType::iterator EBI = ExitingBlockDF->second.begin(), EBE = ExitingBlockDF->second.end(); EBI != EBE; ++EBI) BBDF->second.insert(*EBI); } } } NumRestrictBounds++; return true; } /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB. /// This routine is used to remove split condition's dead branch, dominated by /// DeadBB. LiveBB dominates split conidition's other branch. void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB) { // First update DeadBB's dominance frontier. SmallVector FrontierBBs; DominanceFrontier::iterator DeadBBDF = DF->find(DeadBB); if (DeadBBDF != DF->end()) { SmallVector PredBlocks; DominanceFrontier::DomSetType DeadBBSet = DeadBBDF->second; for (DominanceFrontier::DomSetType::iterator DeadBBSetI = DeadBBSet.begin(), DeadBBSetE = DeadBBSet.end(); DeadBBSetI != DeadBBSetE; ++DeadBBSetI) { BasicBlock *FrontierBB = *DeadBBSetI; FrontierBBs.push_back(FrontierBB); // Rremove any PHI incoming edge from blocks dominated by DeadBB. PredBlocks.clear(); for(pred_iterator PI = pred_begin(FrontierBB), PE = pred_end(FrontierBB); PI != PE; ++PI) { BasicBlock *P = *PI; if (P == DeadBB || DT->dominates(DeadBB, P)) PredBlocks.push_back(P); } for(BasicBlock::iterator FBI = FrontierBB->begin(), FBE = FrontierBB->end(); FBI != FBE; ++FBI) { if (PHINode *PN = dyn_cast(FBI)) { for(SmallVector::iterator PI = PredBlocks.begin(), PE = PredBlocks.end(); PI != PE; ++PI) { BasicBlock *P = *PI; PN->removeIncomingValue(P); } } else break; } } } // Now remove DeadBB and all nodes dominated by DeadBB in df order. SmallVector WorkList; DomTreeNode *DN = DT->getNode(DeadBB); for (df_iterator DI = df_begin(DN), E = df_end(DN); DI != E; ++DI) { BasicBlock *BB = DI->getBlock(); WorkList.push_back(BB); BB->replaceAllUsesWith(UndefValue::get(Type::LabelTy)); } while (!WorkList.empty()) { BasicBlock *BB = WorkList.back(); WorkList.pop_back(); LPM->deleteSimpleAnalysisValue(BB, LP); for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); BBI != BBE; ) { Instruction *I = BBI; ++BBI; I->replaceAllUsesWith(UndefValue::get(I->getType())); LPM->deleteSimpleAnalysisValue(I, LP); I->eraseFromParent(); } DT->eraseNode(BB); DF->removeBlock(BB); LI->removeBlock(BB); BB->eraseFromParent(); } // Update Frontier BBs' dominator info. while (!FrontierBBs.empty()) { BasicBlock *FBB = FrontierBBs.back(); FrontierBBs.pop_back(); BasicBlock *NewDominator = FBB->getSinglePredecessor(); if (!NewDominator) { pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB); NewDominator = *PI; ++PI; if (NewDominator != LiveBB) { for(; PI != PE; ++PI) { BasicBlock *P = *PI; if (P == LiveBB) { NewDominator = LiveBB; break; } NewDominator = DT->findNearestCommonDominator(NewDominator, P); } } } assert (NewDominator && "Unable to fix dominator info."); DT->changeImmediateDominator(FBB, NewDominator); DF->changeImmediateDominator(FBB, NewDominator, DT); } } // moveExitCondition - Move exit condition EC into split condition block CondBB. void LoopIndexSplit::moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB, BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC, PHINode *IV, Instruction *IVAdd, Loop *LP, unsigned ExitValueNum) { BasicBlock *ExitingBB = EC->getParent(); Instruction *CurrentBR = CondBB->getTerminator(); // Move exit condition into split condition block. EC->moveBefore(CurrentBR); EC->setOperand(ExitValueNum == 0 ? 1 : 0, IV); // Move exiting block's branch into split condition block. Update its branch // destination. BranchInst *ExitingBR = cast(ExitingBB->getTerminator()); ExitingBR->moveBefore(CurrentBR); BasicBlock *OrigDestBB = NULL; if (ExitingBR->getSuccessor(0) == ExitBB) { OrigDestBB = ExitingBR->getSuccessor(1); ExitingBR->setSuccessor(1, ActiveBB); } else { OrigDestBB = ExitingBR->getSuccessor(0); ExitingBR->setSuccessor(0, ActiveBB); } // Remove split condition and current split condition branch. SC->eraseFromParent(); CurrentBR->eraseFromParent(); // Connect exiting block to original destination. BranchInst::Create(OrigDestBB, ExitingBB); // Update PHINodes updatePHINodes(ExitBB, ExitingBB, CondBB, IV, IVAdd, LP); // Fix dominator info. // ExitBB is now dominated by CondBB DT->changeImmediateDominator(ExitBB, CondBB); DF->changeImmediateDominator(ExitBB, CondBB, DT); // Basicblocks dominated by ActiveBB may have ExitingBB or // a basic block outside the loop in their DF list. If so, // replace it with CondBB. DomTreeNode *Node = DT->getNode(ActiveBB); for (df_iterator DI = df_begin(Node), DE = df_end(Node); DI != DE; ++DI) { BasicBlock *BB = DI->getBlock(); DominanceFrontier::iterator BBDF = DF->find(BB); DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin(); DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end(); while (DomSetI != DomSetE) { DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI; ++DomSetI; BasicBlock *DFBB = *CurrentItr; if (DFBB == ExitingBB || !L->contains(DFBB)) { BBDF->second.erase(DFBB); BBDF->second.insert(CondBB); } } } } /// updatePHINodes - CFG has been changed. /// Before /// - ExitBB's single predecessor was Latch /// - Latch's second successor was Header /// Now /// - ExitBB's single predecessor is Header /// - Latch's one and only successor is Header /// /// Update ExitBB PHINodes' to reflect this change. void LoopIndexSplit::updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, BasicBlock *Header, PHINode *IV, Instruction *IVIncrement, Loop *LP) { for (BasicBlock::iterator BI = ExitBB->begin(), BE = ExitBB->end(); BI != BE; ) { PHINode *PN = dyn_cast(BI); ++BI; if (!PN) break; Value *V = PN->getIncomingValueForBlock(Latch); if (PHINode *PHV = dyn_cast(V)) { // PHV is in Latch. PHV has one use is in ExitBB PHINode. And one use // in Header which is new incoming value for PN. Value *NewV = NULL; for (Value::use_iterator UI = PHV->use_begin(), E = PHV->use_end(); UI != E; ++UI) if (PHINode *U = dyn_cast(*UI)) if (LP->contains(U->getParent())) { NewV = U; break; } // Add incoming value from header only if PN has any use inside the loop. if (NewV) PN->addIncoming(NewV, Header); } else if (Instruction *PHI = dyn_cast(V)) { // If this instruction is IVIncrement then IV is new incoming value // from header otherwise this instruction must be incoming value from // header because loop is in LCSSA form. if (PHI == IVIncrement) PN->addIncoming(IV, Header); else PN->addIncoming(V, Header); } else // Otherwise this is an incoming value from header because loop is in // LCSSA form. PN->addIncoming(V, Header); // Remove incoming value from Latch. PN->removeIncomingValue(Latch); } } bool LoopIndexSplit::splitLoop() { SplitCondition = NULL; if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ) return false; BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); BranchInst *SBR = NULL; // Split Condition Branch BranchInst *EBR = cast(ExitCondition->getParent()->getTerminator()); // If Exiting block includes loop variant instructions then this // loop may not be split safely. BasicBlock *ExitingBlock = ExitCondition->getParent(); if (!cleanBlock(ExitingBlock)) return false; for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) { BranchInst *BR = dyn_cast((*I)->getTerminator()); if (!BR || BR->isUnconditional()) continue; ICmpInst *CI = dyn_cast(BR->getCondition()); if (!CI || CI == ExitCondition || CI->getPredicate() == ICmpInst::ICMP_NE || CI->getPredicate() == ICmpInst::ICMP_EQ) continue; // Unable to handle triangle loops at the moment. // In triangle loop, split condition is in header and one of the // the split destination is loop latch. If split condition is EQ // then such loops are already handle in processOneIterationLoop(). if (Header == (*I) && (Latch == BR->getSuccessor(0) || Latch == BR->getSuccessor(1))) continue; // If the block does not dominate the latch then this is not a diamond. // Such loop may not benefit from index split. if (!DT->dominates((*I), Latch)) continue; // If split condition branches heads do not have single predecessor, // SplitCondBlock, then is not possible to remove inactive branch. if (!BR->getSuccessor(0)->getSinglePredecessor() || !BR->getSuccessor(1)->getSinglePredecessor()) return false; // If the merge point for BR is not loop latch then skip this condition. if (BR->getSuccessor(0) != Latch) { DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0)); assert (DF0 != DF->end() && "Unable to find dominance frontier"); if (!DF0->second.count(Latch)) continue; } if (BR->getSuccessor(1) != Latch) { DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1)); assert (DF1 != DF->end() && "Unable to find dominance frontier"); if (!DF1->second.count(Latch)) continue; } SplitCondition = CI; SBR = BR; break; } if (!SplitCondition) return false; // If the predicate sign does not match then skip. if (ExitCondition->isSignedPredicate() != SplitCondition->isSignedPredicate()) return false; unsigned EVOpNum = (ExitCondition->getOperand(1) == IVExitValue); unsigned SVOpNum = IVBasedValues.count(SplitCondition->getOperand(0)); Value *SplitValue = SplitCondition->getOperand(SVOpNum); if (!L->isLoopInvariant(SplitValue)) return false; if (!IVBasedValues.count(SplitCondition->getOperand(!SVOpNum))) return false; // Normalize loop conditions so that it is easier to calculate new loop // bounds. if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) { ExitCondition->setPredicate(ExitCondition->getInversePredicate()); BasicBlock *T = EBR->getSuccessor(0); EBR->setSuccessor(0, EBR->getSuccessor(1)); EBR->setSuccessor(1, T); } if (IVisGT(*SplitCondition) || IVisGE(*SplitCondition)) { SplitCondition->setPredicate(SplitCondition->getInversePredicate()); BasicBlock *T = SBR->getSuccessor(0); SBR->setSuccessor(0, SBR->getSuccessor(1)); SBR->setSuccessor(1, T); } //[*] Calculate new loop bounds. Value *AEV = SplitValue; Value *BSV = SplitValue; bool Sign = SplitCondition->isSignedPredicate(); Instruction *PHTerm = L->getLoopPreheader()->getTerminator(); if (IVisLT(*ExitCondition)) { if (IVisLT(*SplitCondition)) { /* Do nothing */ } else if (IVisLE(*SplitCondition)) { AEV = getPlusOne(SplitValue, Sign, PHTerm); BSV = getPlusOne(SplitValue, Sign, PHTerm); } else { assert (0 && "Unexpected split condition!"); } } else if (IVisLE(*ExitCondition)) { if (IVisLT(*SplitCondition)) { AEV = getMinusOne(SplitValue, Sign, PHTerm); } else if (IVisLE(*SplitCondition)) { BSV = getPlusOne(SplitValue, Sign, PHTerm); } else { assert (0 && "Unexpected split condition!"); } } else { assert (0 && "Unexpected exit condition!"); } AEV = getMin(AEV, IVExitValue, Sign, PHTerm); BSV = getMax(BSV, IVStartValue, Sign, PHTerm); // [*] Clone Loop DenseMap ValueMap; Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this); Loop *ALoop = L; // [*] ALoop's exiting edge enters BLoop's header. // ALoop's original exit block becomes BLoop's exit block. PHINode *B_IndVar = cast(ValueMap[IndVar]); BasicBlock *A_ExitingBlock = ExitCondition->getParent(); BranchInst *A_ExitInsn = dyn_cast(A_ExitingBlock->getTerminator()); assert (A_ExitInsn && "Unable to find suitable loop exit branch"); BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1); BasicBlock *B_Header = BLoop->getHeader(); if (ALoop->contains(B_ExitBlock)) { B_ExitBlock = A_ExitInsn->getSuccessor(0); A_ExitInsn->setSuccessor(0, B_Header); } else A_ExitInsn->setSuccessor(1, B_Header); // [*] Update ALoop's exit value using new exit value. ExitCondition->setOperand(EVOpNum, AEV); // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from // original loop's preheader. Add incoming PHINode values from // ALoop's exiting block. Update BLoop header's domiantor info. // Collect inverse map of Header PHINodes. DenseMap InverseMap; for (BasicBlock::iterator BI = ALoop->getHeader()->begin(), BE = ALoop->getHeader()->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PHINode *PNClone = cast(ValueMap[PN]); InverseMap[PNClone] = PN; } else break; } BasicBlock *A_Preheader = ALoop->getLoopPreheader(); for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { // Remove incoming value from original preheader. PN->removeIncomingValue(A_Preheader); // Add incoming value from A_ExitingBlock. if (PN == B_IndVar) PN->addIncoming(BSV, A_ExitingBlock); else { PHINode *OrigPN = cast(InverseMap[PN]); Value *V2 = NULL; // If loop header is also loop exiting block then // OrigPN is incoming value for B loop header. if (A_ExitingBlock == ALoop->getHeader()) V2 = OrigPN; else V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock); PN->addIncoming(V2, A_ExitingBlock); } } else break; } DT->changeImmediateDominator(B_Header, A_ExitingBlock); DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT); // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit // block. Remove incoming PHINode values from ALoop's exiting block. // Add new incoming values from BLoop's incoming exiting value. // Update BLoop exit block's dominator info.. BasicBlock *B_ExitingBlock = cast(ValueMap[A_ExitingBlock]); for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)], B_ExitingBlock); PN->removeIncomingValue(A_ExitingBlock); } else break; } DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock); DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT); //[*] Split ALoop's exit edge. This creates a new block which // serves two purposes. First one is to hold PHINode defnitions // to ensure that ALoop's LCSSA form. Second use it to act // as a preheader for BLoop. BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this); //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes // in A_ExitBlock to redefine outgoing PHI definitions from ALoop. for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end(); BI != BE; ++BI) { if (PHINode *PN = dyn_cast(BI)) { Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock); PHINode *newPHI = PHINode::Create(PN->getType(), PN->getName()); newPHI->addIncoming(V1, A_ExitingBlock); A_ExitBlock->getInstList().push_front(newPHI); PN->removeIncomingValue(A_ExitBlock); PN->addIncoming(newPHI, A_ExitBlock); } else break; } //[*] Eliminate split condition's inactive branch from ALoop. BasicBlock *A_SplitCondBlock = SplitCondition->getParent(); BranchInst *A_BR = cast(A_SplitCondBlock->getTerminator()); BasicBlock *A_InactiveBranch = NULL; BasicBlock *A_ActiveBranch = NULL; A_ActiveBranch = A_BR->getSuccessor(0); A_InactiveBranch = A_BR->getSuccessor(1); A_BR->setUnconditionalDest(A_ActiveBranch); removeBlocks(A_InactiveBranch, L, A_ActiveBranch); //[*] Eliminate split condition's inactive branch in from BLoop. BasicBlock *B_SplitCondBlock = cast(ValueMap[A_SplitCondBlock]); BranchInst *B_BR = cast(B_SplitCondBlock->getTerminator()); BasicBlock *B_InactiveBranch = NULL; BasicBlock *B_ActiveBranch = NULL; B_ActiveBranch = B_BR->getSuccessor(1); B_InactiveBranch = B_BR->getSuccessor(0); B_BR->setUnconditionalDest(B_ActiveBranch); removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch); BasicBlock *A_Header = ALoop->getHeader(); if (A_ExitingBlock == A_Header) return true; //[*] Move exit condition into split condition block to avoid // executing dead loop iteration. ICmpInst *B_ExitCondition = cast(ValueMap[ExitCondition]); Instruction *B_IndVarIncrement = cast(ValueMap[IVIncrement]); ICmpInst *B_SplitCondition = cast(ValueMap[SplitCondition]); moveExitCondition(A_SplitCondBlock, A_ActiveBranch, A_ExitBlock, ExitCondition, cast(SplitCondition), IndVar, IVIncrement, ALoop, EVOpNum); moveExitCondition(B_SplitCondBlock, B_ActiveBranch, B_ExitBlock, B_ExitCondition, B_SplitCondition, B_IndVar, B_IndVarIncrement, BLoop, EVOpNum); NumIndexSplit++; return true; } /// cleanBlock - A block is considered clean if all non terminal instructions /// are either, PHINodes, IV based. bool LoopIndexSplit::cleanBlock(BasicBlock *BB) { Instruction *Terminator = BB->getTerminator(); for(BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { Instruction *I = BI; if (isa(I) || I == Terminator || I == ExitCondition || I == SplitCondition || IVBasedValues.count(I) || isa(I)) continue; if (I->mayHaveSideEffects()) return false; // I is used only inside this block then it is OK. bool usedOutsideBB = false; for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; ++UI) { Instruction *U = cast(UI); if (U->getParent() != BB) usedOutsideBB = true; } if (!usedOutsideBB) continue; // Otherwise we have a instruction that may not allow loop spliting. return false; } return true; } /// IVisLT - If Op is comparing IV based value with an loop invariant and /// IV based value is less than the loop invariant then return the loop /// invariant. Otherwise return NULL. Value * LoopIndexSplit::IVisLT(ICmpInst &Op) { ICmpInst::Predicate P = Op.getPredicate(); if ((P == ICmpInst::ICMP_SLT || P == ICmpInst::ICMP_ULT) && IVBasedValues.count(Op.getOperand(0)) && L->isLoopInvariant(Op.getOperand(1))) return Op.getOperand(1); if ((P == ICmpInst::ICMP_SGT || P == ICmpInst::ICMP_UGT) && IVBasedValues.count(Op.getOperand(1)) && L->isLoopInvariant(Op.getOperand(0))) return Op.getOperand(0); return NULL; } /// IVisLE - If Op is comparing IV based value with an loop invariant and /// IV based value is less than or equal to the loop invariant then /// return the loop invariant. Otherwise return NULL. Value * LoopIndexSplit::IVisLE(ICmpInst &Op) { ICmpInst::Predicate P = Op.getPredicate(); if ((P == ICmpInst::ICMP_SLE || P == ICmpInst::ICMP_ULE) && IVBasedValues.count(Op.getOperand(0)) && L->isLoopInvariant(Op.getOperand(1))) return Op.getOperand(1); if ((P == ICmpInst::ICMP_SGE || P == ICmpInst::ICMP_UGE) && IVBasedValues.count(Op.getOperand(1)) && L->isLoopInvariant(Op.getOperand(0))) return Op.getOperand(0); return NULL; } /// IVisGT - If Op is comparing IV based value with an loop invariant and /// IV based value is greater than the loop invariant then return the loop /// invariant. Otherwise return NULL. Value * LoopIndexSplit::IVisGT(ICmpInst &Op) { ICmpInst::Predicate P = Op.getPredicate(); if ((P == ICmpInst::ICMP_SGT || P == ICmpInst::ICMP_UGT) && IVBasedValues.count(Op.getOperand(0)) && L->isLoopInvariant(Op.getOperand(1))) return Op.getOperand(1); if ((P == ICmpInst::ICMP_SLT || P == ICmpInst::ICMP_ULT) && IVBasedValues.count(Op.getOperand(1)) && L->isLoopInvariant(Op.getOperand(0))) return Op.getOperand(0); return NULL; } /// IVisGE - If Op is comparing IV based value with an loop invariant and /// IV based value is greater than or equal to the loop invariant then /// return the loop invariant. Otherwise return NULL. Value * LoopIndexSplit::IVisGE(ICmpInst &Op) { ICmpInst::Predicate P = Op.getPredicate(); if ((P == ICmpInst::ICMP_SGE || P == ICmpInst::ICMP_UGE) && IVBasedValues.count(Op.getOperand(0)) && L->isLoopInvariant(Op.getOperand(1))) return Op.getOperand(1); if ((P == ICmpInst::ICMP_SLE || P == ICmpInst::ICMP_ULE) && IVBasedValues.count(Op.getOperand(1)) && L->isLoopInvariant(Op.getOperand(0))) return Op.getOperand(0); return NULL; }