//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes Mips64 instructions. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Mips Operand, Complex Patterns and Transformations Definitions. //===----------------------------------------------------------------------===// // Unsigned Operand def uimm16_64 : Operand { let PrintMethod = "printUnsignedImm"; } // Signed Operand def simm10_64 : Operand; // Transformation Function - get Imm - 32. def Subtract32 : SDNodeXFormgetZExtValue() - 32); }]>; // shamt must fit in 6 bits. def immZExt6 : ImmLeaf; // Node immediate fits as 10-bit sign extended on target immediate. // e.g. seqi, snei def immSExt10_64 : PatLeaf<(i64 imm), [{ return isInt<10>(N->getSExtValue()); }]>; //===----------------------------------------------------------------------===// // Instructions specific format //===----------------------------------------------------------------------===// let usesCustomInserter = 1 in { def ATOMIC_LOAD_ADD_I64 : Atomic2Ops; def ATOMIC_LOAD_SUB_I64 : Atomic2Ops; def ATOMIC_LOAD_AND_I64 : Atomic2Ops; def ATOMIC_LOAD_OR_I64 : Atomic2Ops; def ATOMIC_LOAD_XOR_I64 : Atomic2Ops; def ATOMIC_LOAD_NAND_I64 : Atomic2Ops; def ATOMIC_SWAP_I64 : Atomic2Ops; def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap; } /// Pseudo instructions for loading and storing accumulator registers. let isPseudo = 1, isCodeGenOnly = 1 in { def LOAD_ACC128 : Load<"", ACC128>; def STORE_ACC128 : Store<"", ACC128>; } //===----------------------------------------------------------------------===// // Instruction definition //===----------------------------------------------------------------------===// let DecoderNamespace = "Mips64" in { /// Arithmetic Instructions (ALU Immediate) def DADDi : ArithLogicI<"daddi", simm16_64, GPR64Opnd>, ADDI_FM<0x18>; def DADDiu : ArithLogicI<"daddiu", simm16_64, GPR64Opnd, II_DADDIU, immSExt16, add>, ADDI_FM<0x19>, IsAsCheapAsAMove; let isCodeGenOnly = 1 in { def SLTi64 : SetCC_I<"slti", setlt, simm16_64, immSExt16, GPR64Opnd>, SLTI_FM<0xa>; def SLTiu64 : SetCC_I<"sltiu", setult, simm16_64, immSExt16, GPR64Opnd>, SLTI_FM<0xb>; def ANDi64 : ArithLogicI<"andi", uimm16_64, GPR64Opnd, II_AND, immZExt16, and>, ADDI_FM<0xc>; def ORi64 : ArithLogicI<"ori", uimm16_64, GPR64Opnd, II_OR, immZExt16, or>, ADDI_FM<0xd>; def XORi64 : ArithLogicI<"xori", uimm16_64, GPR64Opnd, II_XOR, immZExt16, xor>, ADDI_FM<0xe>; def LUi64 : LoadUpper<"lui", GPR64Opnd, uimm16_64>, LUI_FM; } /// Arithmetic Instructions (3-Operand, R-Type) def DADD : ArithLogicR<"dadd", GPR64Opnd, 1, II_DADD>, ADD_FM<0, 0x2c>; def DADDu : ArithLogicR<"daddu", GPR64Opnd, 1, II_DADDU, add>, ADD_FM<0, 0x2d>; def DSUBu : ArithLogicR<"dsubu", GPR64Opnd, 0, II_DSUBU, sub>, ADD_FM<0, 0x2f>; def DSUB : ArithLogicR<"dsub", GPR64Opnd, 0, II_DSUB>, ADD_FM<0, 0x2e>; let isCodeGenOnly = 1 in { def SLT64 : SetCC_R<"slt", setlt, GPR64Opnd>, ADD_FM<0, 0x2a>; def SLTu64 : SetCC_R<"sltu", setult, GPR64Opnd>, ADD_FM<0, 0x2b>; def AND64 : ArithLogicR<"and", GPR64Opnd, 1, II_AND, and>, ADD_FM<0, 0x24>; def OR64 : ArithLogicR<"or", GPR64Opnd, 1, II_OR, or>, ADD_FM<0, 0x25>; def XOR64 : ArithLogicR<"xor", GPR64Opnd, 1, II_XOR, xor>, ADD_FM<0, 0x26>; def NOR64 : LogicNOR<"nor", GPR64Opnd>, ADD_FM<0, 0x27>; } /// Shift Instructions def DSLL : shift_rotate_imm<"dsll", uimm6, GPR64Opnd, II_DSLL, shl, immZExt6>, SRA_FM<0x38, 0>; def DSRL : shift_rotate_imm<"dsrl", uimm6, GPR64Opnd, II_DSRL, srl, immZExt6>, SRA_FM<0x3a, 0>; def DSRA : shift_rotate_imm<"dsra", uimm6, GPR64Opnd, II_DSRA, sra, immZExt6>, SRA_FM<0x3b, 0>; def DSLLV : shift_rotate_reg<"dsllv", GPR64Opnd, II_DSLLV, shl>, SRLV_FM<0x14, 0>; def DSRLV : shift_rotate_reg<"dsrlv", GPR64Opnd, II_DSRLV, srl>, SRLV_FM<0x16, 0>; def DSRAV : shift_rotate_reg<"dsrav", GPR64Opnd, II_DSRAV, sra>, SRLV_FM<0x17, 0>; def DSLL32 : shift_rotate_imm<"dsll32", uimm5, GPR64Opnd, II_DSLL32>, SRA_FM<0x3c, 0>; def DSRL32 : shift_rotate_imm<"dsrl32", uimm5, GPR64Opnd, II_DSRL32>, SRA_FM<0x3e, 0>; def DSRA32 : shift_rotate_imm<"dsra32", uimm5, GPR64Opnd, II_DSRA32>, SRA_FM<0x3f, 0>; // Rotate Instructions def DROTR : shift_rotate_imm<"drotr", uimm6, GPR64Opnd, II_DROTR, rotr, immZExt6>, SRA_FM<0x3a, 1>, ISA_MIPS64R2; def DROTRV : shift_rotate_reg<"drotrv", GPR64Opnd, II_DROTRV, rotr>, SRLV_FM<0x16, 1>, ISA_MIPS64R2; def DROTR32 : shift_rotate_imm<"drotr32", uimm5, GPR64Opnd, II_DROTR32>, SRA_FM<0x3e, 1>, ISA_MIPS64R2; /// Load and Store Instructions /// aligned let isCodeGenOnly = 1 in { def LB64 : Load<"lb", GPR64Opnd, sextloadi8, II_LB>, LW_FM<0x20>; def LBu64 : Load<"lbu", GPR64Opnd, zextloadi8, II_LBU>, LW_FM<0x24>; def LH64 : Load<"lh", GPR64Opnd, sextloadi16, II_LH>, LW_FM<0x21>; def LHu64 : Load<"lhu", GPR64Opnd, zextloadi16, II_LHU>, LW_FM<0x25>; def LW64 : Load<"lw", GPR64Opnd, sextloadi32, II_LW>, LW_FM<0x23>; def SB64 : Store<"sb", GPR64Opnd, truncstorei8, II_SB>, LW_FM<0x28>; def SH64 : Store<"sh", GPR64Opnd, truncstorei16, II_SH>, LW_FM<0x29>; def SW64 : Store<"sw", GPR64Opnd, truncstorei32, II_SW>, LW_FM<0x2b>; } def LWu : Load<"lwu", GPR64Opnd, zextloadi32, II_LWU>, LW_FM<0x27>; def LD : Load<"ld", GPR64Opnd, load, II_LD>, LW_FM<0x37>; def SD : Store<"sd", GPR64Opnd, store, II_SD>, LW_FM<0x3f>; /// load/store left/right let isCodeGenOnly = 1 in { def LWL64 : LoadLeftRight<"lwl", MipsLWL, GPR64Opnd, II_LWL>, LW_FM<0x22>; def LWR64 : LoadLeftRight<"lwr", MipsLWR, GPR64Opnd, II_LWR>, LW_FM<0x26>; def SWL64 : StoreLeftRight<"swl", MipsSWL, GPR64Opnd, II_SWL>, LW_FM<0x2a>; def SWR64 : StoreLeftRight<"swr", MipsSWR, GPR64Opnd, II_SWR>, LW_FM<0x2e>; } def LDL : LoadLeftRight<"ldl", MipsLDL, GPR64Opnd, II_LDL>, LW_FM<0x1a>; def LDR : LoadLeftRight<"ldr", MipsLDR, GPR64Opnd, II_LDR>, LW_FM<0x1b>; def SDL : StoreLeftRight<"sdl", MipsSDL, GPR64Opnd, II_SDL>, LW_FM<0x2c>; def SDR : StoreLeftRight<"sdr", MipsSDR, GPR64Opnd, II_SDR>, LW_FM<0x2d>; /// Load-linked, Store-conditional def LLD : LLBase<"lld", GPR64Opnd>, LW_FM<0x34>; def SCD : SCBase<"scd", GPR64Opnd>, LW_FM<0x3c>; /// Jump and Branch Instructions let isCodeGenOnly = 1 in { def JR64 : IndirectBranch<"jr", GPR64Opnd>, MTLO_FM<8>; def BEQ64 : CBranch<"beq", brtarget, seteq, GPR64Opnd>, BEQ_FM<4>; def BNE64 : CBranch<"bne", brtarget, setne, GPR64Opnd>, BEQ_FM<5>; def BGEZ64 : CBranchZero<"bgez", brtarget, setge, GPR64Opnd>, BGEZ_FM<1, 1>; def BGTZ64 : CBranchZero<"bgtz", brtarget, setgt, GPR64Opnd>, BGEZ_FM<7, 0>; def BLEZ64 : CBranchZero<"blez", brtarget, setle, GPR64Opnd>, BGEZ_FM<6, 0>; def BLTZ64 : CBranchZero<"bltz", brtarget, setlt, GPR64Opnd>, BGEZ_FM<1, 0>; def JALR64 : JumpLinkReg<"jalr", GPR64Opnd>, JALR_FM; def JALR64Pseudo : JumpLinkRegPseudo; def TAILCALL64_R : TailCallReg; } /// Multiply and Divide Instructions. def DMULT : Mult<"dmult", II_DMULT, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1c>; def DMULTu : Mult<"dmultu", II_DMULTU, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1d>; def PseudoDMULT : MultDivPseudo; def PseudoDMULTu : MultDivPseudo; def DSDIV : Div<"ddiv", II_DDIV, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1e>; def DUDIV : Div<"ddivu", II_DDIVU, GPR64Opnd, [HI0_64, LO0_64]>, MULT_FM<0, 0x1f>; def PseudoDSDIV : MultDivPseudo; def PseudoDUDIV : MultDivPseudo; let isCodeGenOnly = 1 in { def MTHI64 : MoveToLOHI<"mthi", GPR64Opnd, [HI0_64]>, MTLO_FM<0x11>; def MTLO64 : MoveToLOHI<"mtlo", GPR64Opnd, [LO0_64]>, MTLO_FM<0x13>; def MFHI64 : MoveFromLOHI<"mfhi", GPR64Opnd, AC0_64>, MFLO_FM<0x10>; def MFLO64 : MoveFromLOHI<"mflo", GPR64Opnd, AC0_64>, MFLO_FM<0x12>; def PseudoMFHI64 : PseudoMFLOHI; def PseudoMFLO64 : PseudoMFLOHI; def PseudoMTLOHI64 : PseudoMTLOHI; /// Sign Ext In Register Instructions. def SEB64 : SignExtInReg<"seb", i8, GPR64Opnd, II_SEB>, SEB_FM<0x10, 0x20>; def SEH64 : SignExtInReg<"seh", i16, GPR64Opnd, II_SEH>, SEB_FM<0x18, 0x20>; } /// Count Leading def DCLZ : CountLeading0<"dclz", GPR64Opnd>, CLO_FM<0x24>; def DCLO : CountLeading1<"dclo", GPR64Opnd>, CLO_FM<0x25>; /// Double Word Swap Bytes/HalfWords def DSBH : SubwordSwap<"dsbh", GPR64Opnd>, SEB_FM<2, 0x24>; def DSHD : SubwordSwap<"dshd", GPR64Opnd>, SEB_FM<5, 0x24>; def LEA_ADDiu64 : EffectiveAddress<"daddiu", GPR64Opnd>, LW_FM<0x19>; let isCodeGenOnly = 1 in def RDHWR64 : ReadHardware, RDHWR_FM; def DEXT : ExtBase<"dext", GPR64Opnd, uimm6, MipsExt>, EXT_FM<3>; def DEXTU : ExtBase<"dextu", GPR64Opnd, uimm6>, EXT_FM<2>; def DEXTM : ExtBase<"dextm", GPR64Opnd, uimm5>, EXT_FM<1>; def DINS : InsBase<"dins", GPR64Opnd, uimm6, MipsIns>, EXT_FM<7>; def DINSU : InsBase<"dinsu", GPR64Opnd, uimm6>, EXT_FM<6>; def DINSM : InsBase<"dinsm", GPR64Opnd, uimm5>, EXT_FM<5>; let isCodeGenOnly = 1, rs = 0, shamt = 0 in { def DSLL64_32 : FR<0x00, 0x3c, (outs GPR64:$rd), (ins GPR32:$rt), "dsll\t$rd, $rt, 32", [], II_DSLL>; def SLL64_32 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR32:$rt), "sll\t$rd, $rt, 0", [], II_SLL>; def SLL64_64 : FR<0x0, 0x00, (outs GPR64:$rd), (ins GPR64:$rt), "sll\t$rd, $rt, 0", [], II_SLL>; } // We need the following two pseudo instructions to avoid offset calculation for // long branches. See the comment in file MipsLongBranch.cpp for detailed // explanation. // Expands to: lui $dst, %highest($tgt - $baltgt) def LONG_BRANCH_LUi64 : PseudoSE<(outs GPR64Opnd:$dst), (ins brtarget:$tgt, brtarget:$baltgt), []>; // Expands to: daddiu $dst, $src, %PART($tgt - $baltgt) // where %PART may be %higher, %hi or %lo, depending on the relocation kind // that $tgt is annotated with. def LONG_BRANCH_DADDiu : PseudoSE<(outs GPR64Opnd:$dst), (ins GPR64Opnd:$src, brtarget:$tgt, brtarget:$baltgt), []>; // Cavium Octeon cmMIPS instructions let EncodingPredicates = [], // FIXME: The lack of HasStdEnc is probably a bug AdditionalPredicates = [HasCnMips] in { class Count1s: InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"), [(set RO:$rd, (ctpop RO:$rs))], II_POP, FrmR, opstr> { let TwoOperandAliasConstraint = "$rd = $rs"; } class ExtsCins: InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, uimm5:$pos, uimm5:$lenm1), !strconcat(opstr, " $rt, $rs, $pos, $lenm1"), [(set GPR64Opnd:$rt, (Op GPR64Opnd:$rs, imm:$pos, imm:$lenm1))], NoItinerary, FrmR, opstr> { let TwoOperandAliasConstraint = "$rt = $rs"; } class SetCC64_R : InstSE<(outs GPR64Opnd:$rd), (ins GPR64Opnd:$rs, GPR64Opnd:$rt), !strconcat(opstr, "\t$rd, $rs, $rt"), [(set GPR64Opnd:$rd, (cond_op GPR64Opnd:$rs, GPR64Opnd:$rt))], II_SEQ_SNE, FrmR, opstr> { let TwoOperandAliasConstraint = "$rd = $rs"; } class SetCC64_I: InstSE<(outs GPR64Opnd:$rt), (ins GPR64Opnd:$rs, simm10_64:$imm10), !strconcat(opstr, "\t$rt, $rs, $imm10"), [(set GPR64Opnd:$rt, (cond_op GPR64Opnd:$rs, immSExt10_64:$imm10))], II_SEQI_SNEI, FrmI, opstr> { let TwoOperandAliasConstraint = "$rt = $rs"; } // Unsigned Byte Add let Pattern = [(set GPR64Opnd:$rd, (and (add GPR64Opnd:$rs, GPR64Opnd:$rt), 255))] in def BADDu : ArithLogicR<"baddu", GPR64Opnd, 1, II_BADDU>, ADD_FM<0x1c, 0x28>; // Multiply Doubleword to GPR let Defs = [HI0, LO0, P0, P1, P2] in def DMUL : ArithLogicR<"dmul", GPR64Opnd, 1, II_DMUL, mul>, ADD_FM<0x1c, 0x03>; // Extract a signed bit field /+32 def EXTS : ExtsCins<"exts">, EXTS_FM<0x3a>; def EXTS32: ExtsCins<"exts32">, EXTS_FM<0x3b>; // Clear and insert a bit field /+32 def CINS : ExtsCins<"cins">, EXTS_FM<0x32>; def CINS32: ExtsCins<"cins32">, EXTS_FM<0x33>; // Move to multiplier/product register def MTM0 : MoveToLOHI<"mtm0", GPR64Opnd, [MPL0, P0, P1, P2]>, MTMR_FM<0x08>; def MTM1 : MoveToLOHI<"mtm1", GPR64Opnd, [MPL1, P0, P1, P2]>, MTMR_FM<0x0c>; def MTM2 : MoveToLOHI<"mtm2", GPR64Opnd, [MPL2, P0, P1, P2]>, MTMR_FM<0x0d>; def MTP0 : MoveToLOHI<"mtp0", GPR64Opnd, [P0]>, MTMR_FM<0x09>; def MTP1 : MoveToLOHI<"mtp1", GPR64Opnd, [P1]>, MTMR_FM<0x0a>; def MTP2 : MoveToLOHI<"mtp2", GPR64Opnd, [P2]>, MTMR_FM<0x0b>; // Count Ones in a Word/Doubleword def POP : Count1s<"pop", GPR32Opnd>, POP_FM<0x2c>; def DPOP : Count1s<"dpop", GPR64Opnd>, POP_FM<0x2d>; // Set on equal/not equal def SEQ : SetCC64_R<"seq", seteq>, SEQ_FM<0x2a>; def SEQi : SetCC64_I<"seqi", seteq>, SEQI_FM<0x2e>; def SNE : SetCC64_R<"sne", setne>, SEQ_FM<0x2b>; def SNEi : SetCC64_I<"snei", setne>, SEQI_FM<0x2f>; // 192-bit x 64-bit Unsigned Multiply and Add let Defs = [P0, P1, P2] in def V3MULU: ArithLogicR<"v3mulu", GPR64Opnd, 0, II_DMUL>, ADD_FM<0x1c, 0x11>; // 64-bit Unsigned Multiply and Add Move let Defs = [MPL0, P0, P1, P2] in def VMM0 : ArithLogicR<"vmm0", GPR64Opnd, 0, II_DMUL>, ADD_FM<0x1c, 0x10>; // 64-bit Unsigned Multiply and Add let Defs = [MPL1, MPL2, P0, P1, P2] in def VMULU : ArithLogicR<"vmulu", GPR64Opnd, 0, II_DMUL>, ADD_FM<0x1c, 0x0f>; } } //===----------------------------------------------------------------------===// // Arbitrary patterns that map to one or more instructions //===----------------------------------------------------------------------===// // extended loads def : MipsPat<(i64 (extloadi1 addr:$src)), (LB64 addr:$src)>; def : MipsPat<(i64 (extloadi8 addr:$src)), (LB64 addr:$src)>; def : MipsPat<(i64 (extloadi16 addr:$src)), (LH64 addr:$src)>; def : MipsPat<(i64 (extloadi32 addr:$src)), (LW64 addr:$src)>; // hi/lo relocs def : MipsPat<(MipsHi tglobaladdr:$in), (LUi64 tglobaladdr:$in)>; def : MipsPat<(MipsHi tblockaddress:$in), (LUi64 tblockaddress:$in)>; def : MipsPat<(MipsHi tjumptable:$in), (LUi64 tjumptable:$in)>; def : MipsPat<(MipsHi tconstpool:$in), (LUi64 tconstpool:$in)>; def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi64 tglobaltlsaddr:$in)>; def : MipsPat<(MipsHi texternalsym:$in), (LUi64 texternalsym:$in)>; def : MipsPat<(MipsLo tglobaladdr:$in), (DADDiu ZERO_64, tglobaladdr:$in)>; def : MipsPat<(MipsLo tblockaddress:$in), (DADDiu ZERO_64, tblockaddress:$in)>; def : MipsPat<(MipsLo tjumptable:$in), (DADDiu ZERO_64, tjumptable:$in)>; def : MipsPat<(MipsLo tconstpool:$in), (DADDiu ZERO_64, tconstpool:$in)>; def : MipsPat<(MipsLo tglobaltlsaddr:$in), (DADDiu ZERO_64, tglobaltlsaddr:$in)>; def : MipsPat<(MipsLo texternalsym:$in), (DADDiu ZERO_64, texternalsym:$in)>; def : MipsPat<(add GPR64:$hi, (MipsLo tglobaladdr:$lo)), (DADDiu GPR64:$hi, tglobaladdr:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tblockaddress:$lo)), (DADDiu GPR64:$hi, tblockaddress:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tjumptable:$lo)), (DADDiu GPR64:$hi, tjumptable:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tconstpool:$lo)), (DADDiu GPR64:$hi, tconstpool:$lo)>; def : MipsPat<(add GPR64:$hi, (MipsLo tglobaltlsaddr:$lo)), (DADDiu GPR64:$hi, tglobaltlsaddr:$lo)>; def : WrapperPat; def : WrapperPat; def : WrapperPat; def : WrapperPat; def : WrapperPat; def : WrapperPat; defm : BrcondPats; def : MipsPat<(brcond (i32 (setlt i64:$lhs, 1)), bb:$dst), (BLEZ64 i64:$lhs, bb:$dst)>; def : MipsPat<(brcond (i32 (setgt i64:$lhs, -1)), bb:$dst), (BGEZ64 i64:$lhs, bb:$dst)>; // setcc patterns defm : SeteqPats; defm : SetlePats; defm : SetgtPats; defm : SetgePats; defm : SetgeImmPats; // truncate def : MipsPat<(i32 (trunc GPR64:$src)), (SLL (EXTRACT_SUBREG GPR64:$src, sub_32), 0)>; // 32-to-64-bit extension def : MipsPat<(i64 (anyext GPR32:$src)), (SLL64_32 GPR32:$src)>; def : MipsPat<(i64 (zext GPR32:$src)), (DSRL (DSLL64_32 GPR32:$src), 32)>; def : MipsPat<(i64 (sext GPR32:$src)), (SLL64_32 GPR32:$src)>; // Sign extend in register def : MipsPat<(i64 (sext_inreg GPR64:$src, i32)), (SLL64_64 GPR64:$src)>; // bswap MipsPattern def : MipsPat<(bswap GPR64:$rt), (DSHD (DSBH GPR64:$rt))>; //===----------------------------------------------------------------------===// // Instruction aliases //===----------------------------------------------------------------------===// def : InstAlias<"move $dst, $src", (DADDu GPR64Opnd:$dst, GPR64Opnd:$src, ZERO_64), 1>, Requires<[IsGP64]>; def : InstAlias<"daddu $rs, $rt, $imm", (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm), 0>; def : InstAlias<"dadd $rs, $rt, $imm", (DADDi GPR64Opnd:$rs, GPR64Opnd:$rt, simm16_64:$imm), 0>; def : InstAlias<"daddu $rs, $imm", (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm), 0>; def : InstAlias<"dadd $rs, $imm", (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, simm16_64:$imm), 0>; def : InstAlias<"add $rs, $imm", (ADDi GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>; def : InstAlias<"addu $rs, $imm", (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rs, simm16:$imm), 0>; def : InstAlias<"dsll $rd, $rt, $rs", (DSLLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>; def : InstAlias<"dsubu $rt, $rs, $imm", (DADDiu GPR64Opnd:$rt, GPR64Opnd:$rs, InvertedImOperand64: $imm),0>; def : InstAlias<"dsub $rs, $imm", (DADDi GPR64Opnd:$rs, GPR64Opnd:$rs, InvertedImOperand64:$imm), 0>; def : InstAlias<"dsubu $rs, $imm", (DADDiu GPR64Opnd:$rs, GPR64Opnd:$rs, InvertedImOperand64:$imm), 0>; def : InstAlias<"dsrl $rd, $rt, $rs", (DSRLV GPR64Opnd:$rd, GPR64Opnd:$rt, GPR32Opnd:$rs), 0>; /// Move between CPU and coprocessor registers let DecoderNamespace = "Mips64", Predicates = [HasMips64] in { def DMFC0 : MFC3OP<"dmfc0", GPR64Opnd>, MFC3OP_FM<0x10, 1>; def DMTC0 : MFC3OP<"dmtc0", GPR64Opnd>, MFC3OP_FM<0x10, 5>; def DMFC2 : MFC3OP<"dmfc2", GPR64Opnd>, MFC3OP_FM<0x12, 1>; def DMTC2 : MFC3OP<"dmtc2", GPR64Opnd>, MFC3OP_FM<0x12, 5>; } // Two operand (implicit 0 selector) versions: def : InstAlias<"dmfc0 $rt, $rd", (DMFC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>; def : InstAlias<"dmtc0 $rt, $rd", (DMTC0 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>; def : InstAlias<"dmfc2 $rt, $rd", (DMFC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>; def : InstAlias<"dmtc2 $rt, $rd", (DMTC2 GPR64Opnd:$rt, GPR64Opnd:$rd, 0), 0>;