//===-- ARM64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // When profitable, replace GPR targeting i64 instructions with their // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined // as minimizing the number of cross-class register copies. //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // TODO: Graph based predicate heuristics. // Walking the instruction list linearly will get many, perhaps most, of // the cases, but to do a truly thorough job of this, we need a more // wholistic approach. // // This optimization is very similar in spirit to the register allocator's // spill placement, only here we're determining where to place cross-class // register copies rather than spills. As such, a similar approach is // called for. // // We want to build up a set of graphs of all instructions which are candidates // for transformation along with instructions which generate their inputs and // consume their outputs. For each edge in the graph, we assign a weight // based on whether there is a copy required there (weight zero if not) and // the block frequency of the block containing the defining or using // instruction, whichever is less. Our optimization is then a graph problem // to minimize the total weight of all the graphs, then transform instructions // and add or remove copy instructions as called for to implement the // solution. //===----------------------------------------------------------------------===// #include "ARM64.h" #include "ARM64InstrInfo.h" #include "ARM64RegisterInfo.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "arm64-simd-scalar" // Allow forcing all i64 operations with equivalent SIMD instructions to use // them. For stress-testing the transformation function. static cl::opt TransformAll("arm64-simd-scalar-force-all", cl::desc("Force use of AdvSIMD scalar instructions everywhere"), cl::init(false), cl::Hidden); STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used"); STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted"); STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted"); namespace { class ARM64AdvSIMDScalar : public MachineFunctionPass { MachineRegisterInfo *MRI; const ARM64InstrInfo *TII; private: // isProfitableToTransform - Predicate function to determine whether an // instruction should be transformed to its equivalent AdvSIMD scalar // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. bool isProfitableToTransform(const MachineInstr *MI) const; // transformInstruction - Perform the transformation of an instruction // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs // to be the correct register class, minimizing cross-class copies. void transformInstruction(MachineInstr *MI); // processMachineBasicBlock - Main optimzation loop. bool processMachineBasicBlock(MachineBasicBlock *MBB); public: static char ID; // Pass identification, replacement for typeid. explicit ARM64AdvSIMDScalar() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &F) override; const char *getPassName() const override { return "AdvSIMD Scalar Operation Optimization"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; char ARM64AdvSIMDScalar::ID = 0; } // end anonymous namespace static bool isGPR64(unsigned Reg, unsigned SubReg, const MachineRegisterInfo *MRI) { if (SubReg) return false; if (TargetRegisterInfo::isVirtualRegister(Reg)) return MRI->getRegClass(Reg)->hasSuperClassEq(&ARM64::GPR64RegClass); return ARM64::GPR64RegClass.contains(Reg); } static bool isFPR64(unsigned Reg, unsigned SubReg, const MachineRegisterInfo *MRI) { if (TargetRegisterInfo::isVirtualRegister(Reg)) return (MRI->getRegClass(Reg)->hasSuperClassEq(&ARM64::FPR64RegClass) && SubReg == 0) || (MRI->getRegClass(Reg)->hasSuperClassEq(&ARM64::FPR128RegClass) && SubReg == ARM64::dsub); // Physical register references just check the register class directly. return (ARM64::FPR64RegClass.contains(Reg) && SubReg == 0) || (ARM64::FPR128RegClass.contains(Reg) && SubReg == ARM64::dsub); } // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64 // copy instruction. Return zero_reg if the instruction is not a copy. static unsigned getSrcFromCopy(const MachineInstr *MI, const MachineRegisterInfo *MRI, unsigned &SubReg) { SubReg = 0; // The "FMOV Xd, Dn" instruction is the typical form. if (MI->getOpcode() == ARM64::FMOVDXr || MI->getOpcode() == ARM64::FMOVXDr) return MI->getOperand(1).getReg(); // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see // these at this stage, but it's easy to check for. if (MI->getOpcode() == ARM64::UMOVvi64 && MI->getOperand(2).getImm() == 0) { SubReg = ARM64::dsub; return MI->getOperand(1).getReg(); } // Or just a plain COPY instruction. This can be directly to/from FPR64, // or it can be a dsub subreg reference to an FPR128. if (MI->getOpcode() == ARM64::COPY) { if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), MRI) && isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) return MI->getOperand(1).getReg(); if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(), MRI) && isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI)) { SubReg = MI->getOperand(1).getSubReg(); return MI->getOperand(1).getReg(); } } // Otherwise, this is some other kind of instruction. return 0; } // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent // that we're considering transforming to, return that AdvSIMD opcode. For all // others, return the original opcode. static int getTransformOpcode(unsigned Opc) { switch (Opc) { default: break; // FIXME: Lots more possibilities. case ARM64::ADDXrr: return ARM64::ADDv1i64; case ARM64::SUBXrr: return ARM64::SUBv1i64; } // No AdvSIMD equivalent, so just return the original opcode. return Opc; } static bool isTransformable(const MachineInstr *MI) { int Opc = MI->getOpcode(); return Opc != getTransformOpcode(Opc); } // isProfitableToTransform - Predicate function to determine whether an // instruction should be transformed to its equivalent AdvSIMD scalar // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example. bool ARM64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const { // If this instruction isn't eligible to be transformed (no SIMD equivalent), // early exit since that's the common case. if (!isTransformable(MI)) return false; // Count the number of copies we'll need to add and approximate the number // of copies that a transform will enable us to remove. unsigned NumNewCopies = 3; unsigned NumRemovableCopies = 0; unsigned OrigSrc0 = MI->getOperand(1).getReg(); unsigned OrigSrc1 = MI->getOperand(2).getReg(); unsigned Src0 = 0, SubReg0; unsigned Src1 = 0, SubReg1; if (!MRI->def_empty(OrigSrc0)) { MachineRegisterInfo::def_instr_iterator Def = MRI->def_instr_begin(OrigSrc0); assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); Src0 = getSrcFromCopy(&*Def, MRI, SubReg0); // If the source was from a copy, we don't need to insert a new copy. if (Src0) --NumNewCopies; // If there are no other users of the original source, we can delete // that instruction. if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) ++NumRemovableCopies; } if (!MRI->def_empty(OrigSrc1)) { MachineRegisterInfo::def_instr_iterator Def = MRI->def_instr_begin(OrigSrc1); assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); Src1 = getSrcFromCopy(&*Def, MRI, SubReg1); if (Src1) --NumNewCopies; // If there are no other users of the original source, we can delete // that instruction. if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) ++NumRemovableCopies; } // If any of the uses of the original instructions is a cross class copy, // that's a copy that will be removable if we transform. Likewise, if // any of the uses is a transformable instruction, it's likely the tranforms // will chain, enabling us to save a copy there, too. This is an aggressive // heuristic that approximates the graph based cost analysis described above. unsigned Dst = MI->getOperand(0).getReg(); bool AllUsesAreCopies = true; for (MachineRegisterInfo::use_instr_nodbg_iterator Use = MRI->use_instr_nodbg_begin(Dst), E = MRI->use_instr_nodbg_end(); Use != E; ++Use) { unsigned SubReg; if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use)) ++NumRemovableCopies; // If the use is an INSERT_SUBREG, that's still something that can // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's // preferable to have it use the FPR64 in most cases, as if the source // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely. // Ditto for a lane insert. else if (Use->getOpcode() == ARM64::INSERT_SUBREG || Use->getOpcode() == ARM64::INSvi64gpr) ; else AllUsesAreCopies = false; } // If all of the uses of the original destination register are copies to // FPR64, then we won't end up having a new copy back to GPR64 either. if (AllUsesAreCopies) --NumNewCopies; // If a transform will not increase the number of cross-class copies required, // return true. if (NumNewCopies <= NumRemovableCopies) return true; // Finally, even if we otherwise wouldn't transform, check if we're forcing // transformation of everything. return TransformAll; } static MachineInstr *insertCopy(const ARM64InstrInfo *TII, MachineInstr *MI, unsigned Dst, unsigned Src, bool IsKill) { MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(ARM64::COPY), Dst) .addReg(Src, getKillRegState(IsKill)); DEBUG(dbgs() << " adding copy: " << *MIB); ++NumCopiesInserted; return MIB; } // transformInstruction - Perform the transformation of an instruction // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs // to be the correct register class, minimizing cross-class copies. void ARM64AdvSIMDScalar::transformInstruction(MachineInstr *MI) { DEBUG(dbgs() << "Scalar transform: " << *MI); MachineBasicBlock *MBB = MI->getParent(); int OldOpc = MI->getOpcode(); int NewOpc = getTransformOpcode(OldOpc); assert(OldOpc != NewOpc && "transform an instruction to itself?!"); // Check if we need a copy for the source registers. unsigned OrigSrc0 = MI->getOperand(1).getReg(); unsigned OrigSrc1 = MI->getOperand(2).getReg(); unsigned Src0 = 0, SubReg0; unsigned Src1 = 0, SubReg1; if (!MRI->def_empty(OrigSrc0)) { MachineRegisterInfo::def_instr_iterator Def = MRI->def_instr_begin(OrigSrc0); assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); Src0 = getSrcFromCopy(&*Def, MRI, SubReg0); // If there are no other users of the original source, we can delete // that instruction. if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) { assert(Src0 && "Can't delete copy w/o a valid original source!"); Def->eraseFromParent(); ++NumCopiesDeleted; } } if (!MRI->def_empty(OrigSrc1)) { MachineRegisterInfo::def_instr_iterator Def = MRI->def_instr_begin(OrigSrc1); assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!"); Src1 = getSrcFromCopy(&*Def, MRI, SubReg1); // If there are no other users of the original source, we can delete // that instruction. if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) { assert(Src1 && "Can't delete copy w/o a valid original source!"); Def->eraseFromParent(); ++NumCopiesDeleted; } } // If we weren't able to reference the original source directly, create a // copy. if (!Src0) { SubReg0 = 0; Src0 = MRI->createVirtualRegister(&ARM64::FPR64RegClass); insertCopy(TII, MI, Src0, OrigSrc0, true); } if (!Src1) { SubReg1 = 0; Src1 = MRI->createVirtualRegister(&ARM64::FPR64RegClass); insertCopy(TII, MI, Src1, OrigSrc1, true); } // Create a vreg for the destination. // FIXME: No need to do this if the ultimate user expects an FPR64. // Check for that and avoid the copy if possible. unsigned Dst = MRI->createVirtualRegister(&ARM64::FPR64RegClass); // For now, all of the new instructions have the same simple three-register // form, so no need to special case based on what instruction we're // building. BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst) .addReg(Src0, getKillRegState(true), SubReg0) .addReg(Src1, getKillRegState(true), SubReg1); // Now copy the result back out to a GPR. // FIXME: Try to avoid this if all uses could actually just use the FPR64 // directly. insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true); // Erase the old instruction. MI->eraseFromParent(); ++NumScalarInsnsUsed; } // processMachineBasicBlock - Main optimzation loop. bool ARM64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) { bool Changed = false; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) { MachineInstr *MI = I; ++I; if (isProfitableToTransform(MI)) { transformInstruction(MI); Changed = true; } } return Changed; } // runOnMachineFunction - Pass entry point from PassManager. bool ARM64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) { bool Changed = false; DEBUG(dbgs() << "***** ARM64AdvSIMDScalar *****\n"); const TargetMachine &TM = mf.getTarget(); MRI = &mf.getRegInfo(); TII = static_cast(TM.getInstrInfo()); // Just check things on a one-block-at-a-time basis. for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I) if (processMachineBasicBlock(I)) Changed = true; return Changed; } // createARM64AdvSIMDScalar - Factory function used by ARM64TargetMachine // to add the pass to the PassManager. FunctionPass *llvm::createARM64AdvSIMDScalar() { return new ARM64AdvSIMDScalar(); }