//===- SimplifyCFG.cpp - CFG Simplification Routines -------------*- C++ -*--=// // // This file provides several routines that are useful for simplifying CFGs in // various ways... // //===----------------------------------------------------------------------===// #include "llvm/Transforms/UnifyMethodExitNodes.h" #include "llvm/BasicBlock.h" #include "llvm/Method.h" #include "llvm/iTerminators.h" #include "llvm/iPHINode.h" #include "llvm/Type.h" using std::vector; AnalysisID UnifyMethodExitNodes::ID(AnalysisID::create()); // UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new // BasicBlock, and converting all returns to unconditional branches to this // new basic block. The singular exit node is returned. // // If there are no return stmts in the Method, a null pointer is returned. // bool UnifyMethodExitNodes::doit(Method *M, BasicBlock *&ExitNode) { // Loop over all of the blocks in a method, tracking all of the blocks that // return. // vector ReturningBlocks; for(Method::iterator I = M->begin(), E = M->end(); I != E; ++I) if (isa((*I)->getTerminator())) ReturningBlocks.push_back(*I); if (ReturningBlocks.empty()) { ExitNode = 0; return false; // No blocks return } else if (ReturningBlocks.size() == 1) { ExitNode = ReturningBlocks.front(); // Already has a single return block return false; } // Otherwise, we need to insert a new basic block into the method, add a PHI // node (if the function returns a value), and convert all of the return // instructions into unconditional branches. // BasicBlock *NewRetBlock = new BasicBlock("UnifiedExitNode", M); if (M->getReturnType() != Type::VoidTy) { // If the method doesn't return void... add a PHI node to the block... PHINode *PN = new PHINode(M->getReturnType()); NewRetBlock->getInstList().push_back(PN); // Add an incoming element to the PHI node for every return instruction that // is merging into this new block... for (vector::iterator I = ReturningBlocks.begin(), E = ReturningBlocks.end(); I != E; ++I) PN->addIncoming((*I)->getTerminator()->getOperand(0), *I); // Add a return instruction to return the result of the PHI node... NewRetBlock->getInstList().push_back(new ReturnInst(PN)); } else { // If it returns void, just add a return void instruction to the block NewRetBlock->getInstList().push_back(new ReturnInst()); } // Loop over all of the blocks, replacing the return instruction with an // unconditional branch. // for (vector::iterator I = ReturningBlocks.begin(), E = ReturningBlocks.end(); I != E; ++I) { delete (*I)->getInstList().pop_back(); // Remove the return insn (*I)->getInstList().push_back(new BranchInst(NewRetBlock)); } ExitNode = NewRetBlock; return true; }