//===------------ ARMDecoderEmitter.cpp - Decoder Generator ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is part of the ARM Disassembler. // It contains the tablegen backend that emits the decoder functions for ARM and // Thumb. The disassembler core includes the auto-generated file, invokes the // decoder functions, and builds up the MCInst based on the decoded Opcode. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "arm-decoder-emitter" #include "ARMDecoderEmitter.h" #include "CodeGenTarget.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; ///////////////////////////////////////////////////// // // // Enums and Utilities for ARM Instruction Format // // // ///////////////////////////////////////////////////// #define ARM_FORMATS \ ENTRY(ARM_FORMAT_PSEUDO, 0) \ ENTRY(ARM_FORMAT_MULFRM, 1) \ ENTRY(ARM_FORMAT_BRFRM, 2) \ ENTRY(ARM_FORMAT_BRMISCFRM, 3) \ ENTRY(ARM_FORMAT_DPFRM, 4) \ ENTRY(ARM_FORMAT_DPSOREGFRM, 5) \ ENTRY(ARM_FORMAT_LDFRM, 6) \ ENTRY(ARM_FORMAT_STFRM, 7) \ ENTRY(ARM_FORMAT_LDMISCFRM, 8) \ ENTRY(ARM_FORMAT_STMISCFRM, 9) \ ENTRY(ARM_FORMAT_LDSTMULFRM, 10) \ ENTRY(ARM_FORMAT_LDSTEXFRM, 11) \ ENTRY(ARM_FORMAT_ARITHMISCFRM, 12) \ ENTRY(ARM_FORMAT_EXTFRM, 13) \ ENTRY(ARM_FORMAT_VFPUNARYFRM, 14) \ ENTRY(ARM_FORMAT_VFPBINARYFRM, 15) \ ENTRY(ARM_FORMAT_VFPCONV1FRM, 16) \ ENTRY(ARM_FORMAT_VFPCONV2FRM, 17) \ ENTRY(ARM_FORMAT_VFPCONV3FRM, 18) \ ENTRY(ARM_FORMAT_VFPCONV4FRM, 19) \ ENTRY(ARM_FORMAT_VFPCONV5FRM, 20) \ ENTRY(ARM_FORMAT_VFPLDSTFRM, 21) \ ENTRY(ARM_FORMAT_VFPLDSTMULFRM, 22) \ ENTRY(ARM_FORMAT_VFPMISCFRM, 23) \ ENTRY(ARM_FORMAT_THUMBFRM, 24) \ ENTRY(ARM_FORMAT_NEONFRM, 25) \ ENTRY(ARM_FORMAT_NEONGETLNFRM, 26) \ ENTRY(ARM_FORMAT_NEONSETLNFRM, 27) \ ENTRY(ARM_FORMAT_NEONDUPFRM, 28) \ ENTRY(ARM_FORMAT_MISCFRM, 29) \ ENTRY(ARM_FORMAT_THUMBMISCFRM, 30) \ ENTRY(ARM_FORMAT_NLdSt, 31) \ ENTRY(ARM_FORMAT_N1RegModImm, 32) \ ENTRY(ARM_FORMAT_N2Reg, 33) \ ENTRY(ARM_FORMAT_NVCVT, 34) \ ENTRY(ARM_FORMAT_NVecDupLn, 35) \ ENTRY(ARM_FORMAT_N2RegVecShL, 36) \ ENTRY(ARM_FORMAT_N2RegVecShR, 37) \ ENTRY(ARM_FORMAT_N3Reg, 38) \ ENTRY(ARM_FORMAT_N3RegVecSh, 39) \ ENTRY(ARM_FORMAT_NVecExtract, 40) \ ENTRY(ARM_FORMAT_NVecMulScalar, 41) \ ENTRY(ARM_FORMAT_NVTBL, 42) // ARM instruction format specifies the encoding used by the instruction. #define ENTRY(n, v) n = v, typedef enum { ARM_FORMATS ARM_FORMAT_NA } ARMFormat; #undef ENTRY // Converts enum to const char*. static const char *stringForARMFormat(ARMFormat form) { #define ENTRY(n, v) case n: return #n; switch(form) { ARM_FORMATS case ARM_FORMAT_NA: default: return ""; } #undef ENTRY } typedef enum { IndexModeNone = 0, IndexModePre = 1, IndexModePost = 2, IndexModeUpd = 3 }; ///////////////////////// // // // Utility functions // // // ///////////////////////// /// byteFromBitsInit - Return the byte value from a BitsInit. /// Called from getByteField(). static uint8_t byteFromBitsInit(BitsInit &init) { int width = init.getNumBits(); assert(width <= 8 && "Field is too large for uint8_t!"); int index; uint8_t mask = 0x01; uint8_t ret = 0; for (index = 0; index < width; index++) { if (static_cast(init.getBit(index))->getValue()) ret |= mask; mask <<= 1; } return ret; } static uint8_t getByteField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return byteFromBitsInit(*bits); } static BitsInit &getBitsField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return *bits; } /// sameStringExceptSuffix - Return true if the two strings differ only in RHS's /// suffix. ("VST4d8", "VST4d8_UPD", "_UPD") as input returns true. static bool sameStringExceptSuffix(const StringRef LHS, const StringRef RHS, const StringRef Suffix) { if (RHS.startswith(LHS) && RHS.endswith(Suffix)) return RHS.size() == LHS.size() + Suffix.size(); return false; } /// thumbInstruction - Determine whether we have a Thumb instruction. /// See also ARMInstrFormats.td. static bool thumbInstruction(uint8_t Form) { return Form == ARM_FORMAT_THUMBFRM; } // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system // for a bit value. // // BIT_UNFILTERED is used as the init value for a filter position. It is used // only for filter processings. typedef enum { BIT_TRUE, // '1' BIT_FALSE, // '0' BIT_UNSET, // '?' BIT_UNFILTERED // unfiltered } bit_value_t; static bool ValueSet(bit_value_t V) { return (V == BIT_TRUE || V == BIT_FALSE); } static bool ValueNotSet(bit_value_t V) { return (V == BIT_UNSET); } static int Value(bit_value_t V) { return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); } static bit_value_t bitFromBits(BitsInit &bits, unsigned index) { if (BitInit *bit = dynamic_cast(bits.getBit(index))) return bit->getValue() ? BIT_TRUE : BIT_FALSE; // The bit is uninitialized. return BIT_UNSET; } // Prints the bit value for each position. static void dumpBits(raw_ostream &o, BitsInit &bits) { unsigned index; for (index = bits.getNumBits(); index > 0; index--) { switch (bitFromBits(bits, index - 1)) { case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; case BIT_UNSET: o << "_"; break; default: assert(0 && "unexpected return value from bitFromBits"); } } } // Enums for the available target names. typedef enum { TARGET_ARM = 0, TARGET_THUMB } TARGET_NAME_t; // FIXME: Possibly auto-detected? #define BIT_WIDTH 32 // Forward declaration. class FilterChooser; // Representation of the instruction to work on. typedef bit_value_t insn_t[BIT_WIDTH]; /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflcit is /// /// Conflict: /// 111101000.00........00010000.... /// 111101000.00........0001........ /// 1111010...00........0001........ /// 1111010...00.................... /// 1111010......................... /// 1111............................ /// ................................ /// VST4q8a 111101000_00________00010000____ /// VST4q8b 111101000_00________00010000____ /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. class Filter { protected: FilterChooser *Owner; // points to the FilterChooser who owns this filter unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter bool Mixed; // a mixed region contains both set and unset bits // Map of well-known segment value to the set of uid's with that value. std::map > FilteredInstructions; // Set of uid's with non-constant segment values. std::vector VariableInstructions; // Map of well-known segment value to its delegate. std::map FilterChooserMap; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; // Keeps track of the last opcode in the filtered bucket. unsigned LastOpcFiltered; // Number of instructions which fall under VariableInstructions category. unsigned NumVariable; public: unsigned getNumFiltered() { return NumFiltered; } unsigned getNumVariable() { return NumVariable; } unsigned getSingletonOpc() { assert(NumFiltered == 1); return LastOpcFiltered; } // Return the filter chooser for the group of instructions without constant // segment values. FilterChooser &getVariableFC() { assert(NumFiltered == 1); assert(FilterChooserMap.size() == 1); return *(FilterChooserMap.find((unsigned)-1)->second); } Filter(const Filter &f); Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); ~Filter(); // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse(); // Emit code to decode instructions given a segment or segments of bits. void emit(raw_ostream &o, unsigned &Indentation); // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // End of class Filter // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. typedef enum { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED } bitAttr_t; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. class FilterChooser { static TARGET_NAME_t TargetName; protected: friend class Filter; // Vector of codegen instructions to choose our filter. const std::vector &AllInstructions; // Vector of uid's for this filter chooser to work on. const std::vector Opcodes; // Vector of candidate filters. std::vector Filters; // Array of bit values passed down from our parent. // Set to all BIT_UNFILTERED's for Parent == NULL. bit_value_t FilterBitValues[BIT_WIDTH]; // Links to the FilterChooser above us in the decoding tree. FilterChooser *Parent; // Index of the best filter from Filters. int BestIndex; public: static void setTargetName(TARGET_NAME_t tn) { TargetName = tn; } FilterChooser(const FilterChooser &FC) : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), Filters(FC.Filters), Parent(FC.Parent), BestIndex(FC.BestIndex) { memcpy(FilterBitValues, FC.FilterBitValues, sizeof(FilterBitValues)); } FilterChooser(const std::vector &Insts, const std::vector &IDs) : AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(NULL), BestIndex(-1) { for (unsigned i = 0; i < BIT_WIDTH; ++i) FilterBitValues[i] = BIT_UNFILTERED; doFilter(); } FilterChooser(const std::vector &Insts, const std::vector &IDs, bit_value_t (&ParentFilterBitValues)[BIT_WIDTH], FilterChooser &parent) : AllInstructions(Insts), Opcodes(IDs), Filters(), Parent(&parent), BestIndex(-1) { for (unsigned i = 0; i < BIT_WIDTH; ++i) FilterBitValues[i] = ParentFilterBitValues[i]; doFilter(); } // The top level filter chooser has NULL as its parent. bool isTopLevel() { return Parent == NULL; } // This provides an opportunity for target specific code emission. void emitTopHook(raw_ostream &o); // Emit the top level typedef and decodeInstruction() function. void emitTop(raw_ostream &o, unsigned &Indentation); // This provides an opportunity for target specific code emission after // emitTop(). void emitBot(raw_ostream &o, unsigned &Indentation); protected: // Populates the insn given the uid. void insnWithID(insn_t &Insn, unsigned Opcode) const { BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); for (unsigned i = 0; i < BIT_WIDTH; ++i) Insn[i] = bitFromBits(Bits, i); // Set Inst{21} to 1 (wback) when IndexModeBits == IndexModeUpd. if (getByteField(*AllInstructions[Opcode]->TheDef, "IndexModeBits") == IndexModeUpd) Insn[21] = BIT_TRUE; } // Returns the record name. const std::string &nameWithID(unsigned Opcode) const { return AllInstructions[Opcode]->TheDef->getName(); } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if there exists any uninitialized bit value in the range. // Returns true, otherwise. bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const; /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]); /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &o, const char *prefix); Filter &bestFilter() { assert(BestIndex != -1 && "BestIndex not set"); return Filters[BestIndex]; } // Called from Filter::recurse() when singleton exists. For debug purpose. void SingletonExists(unsigned Opc); bool PositionFiltered(unsigned i) { return ValueSet(FilterBitValues[i]); } // Calculates the island(s) needed to decode the instruction. // This returns a lit of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned getIslands(std::vector &StartBits, std::vector &EndBits, std::vector &FieldVals, insn_t &Insn); // The purpose of this function is for the API client to detect possible // Load/Store Coprocessor instructions. If the coprocessor number is of // the instruction is either 10 or 11, the decoder should not report the // instruction as LDC/LDC2/STC/STC2, but should match against Advanced SIMD or // VFP instructions. bool LdStCopEncoding1(unsigned Opc) { const std::string &Name = nameWithID(Opc); if (Name == "LDC_OFFSET" || Name == "LDC_OPTION" || Name == "LDC_POST" || Name == "LDC_PRE" || Name == "LDCL_OFFSET" || Name == "LDCL_OPTION" || Name == "LDCL_POST" || Name == "LDCL_PRE" || Name == "STC_OFFSET" || Name == "STC_OPTION" || Name == "STC_POST" || Name == "STC_PRE" || Name == "STCL_OFFSET" || Name == "STCL_OPTION" || Name == "STCL_POST" || Name == "STCL_PRE") return true; else return false; } // Emits code to decode the singleton. Return true if we have matched all the // well-known bits. bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc); // Emits code to decode the singleton, and then to decode the rest. void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best); // Assign a single filter and run with it. void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, bool mixed); // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed); // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool filterProcessor(bool AllowMixed, bool Greedy = true); // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); // Emits code to decode our share of instructions. Returns true if the // emitted code causes a return, which occurs if we know how to decode // the instruction at this level or the instruction is not decodeable. bool emit(raw_ostream &o, unsigned &Indentation); }; /////////////////////////// // // // Filter Implmenetation // // // /////////////////////////// Filter::Filter(const Filter &f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), FilteredInstructions(f.FilteredInstructions), VariableInstructions(f.VariableInstructions), FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) { } Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { assert(StartBit + NumBits - 1 < BIT_WIDTH); NumFiltered = 0; LastOpcFiltered = 0; NumVariable = 0; for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { insn_t Insn; // Populates the insn given the uid. Owner->insnWithID(Insn, Owner->Opcodes[i]); uint64_t Field; // Scans the segment for possibly well-specified encoding bits. bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); if (ok) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. LastOpcFiltered = Owner->Opcodes[i]; FilteredInstructions[Field].push_back(LastOpcFiltered); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecfied. This contributes to // one additional member of "Variable" instructions. VariableInstructions.push_back(Owner->Opcodes[i]); ++NumVariable; } } assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && "Filter returns no instruction categories"); } Filter::~Filter() { std::map::iterator filterIterator; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { delete filterIterator->second; } } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void Filter::recurse() { std::map >::const_iterator mapIterator; bit_value_t BitValueArray[BIT_WIDTH]; // Starts by inheriting our parent filter chooser's filter bit values. memcpy(BitValueArray, Owner->FilterBitValues, sizeof(BitValueArray)); unsigned bitIndex; if (VariableInstructions.size()) { // Conservatively marks each segment position as BIT_UNSET. for (bitIndex = 0; bitIndex < NumBits; bitIndex++) BitValueArray[StartBit + bitIndex] = BIT_UNSET; // Delegates to an inferior filter chooser for futher processing on this // group of instructions whose segment values are variable. FilterChooserMap.insert(std::pair( (unsigned)-1, new FilterChooser(Owner->AllInstructions, VariableInstructions, BitValueArray, *Owner) )); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit(). if (getNumFiltered() == 1) { //Owner->SingletonExists(LastOpcFiltered); assert(FilterChooserMap.size() == 1); return; } // Otherwise, create sub choosers. for (mapIterator = FilteredInstructions.begin(); mapIterator != FilteredInstructions.end(); mapIterator++) { // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. for (bitIndex = 0; bitIndex < NumBits; bitIndex++) { if (mapIterator->first & (1 << bitIndex)) BitValueArray[StartBit + bitIndex] = BIT_TRUE; else BitValueArray[StartBit + bitIndex] = BIT_FALSE; } // Delegates to an inferior filter chooser for futher processing on this // category of instructions. FilterChooserMap.insert(std::pair( mapIterator->first, new FilterChooser(Owner->AllInstructions, mapIterator->second, BitValueArray, *Owner) )); } } // Emit code to decode instructions given a segment or segments of bits. void Filter::emit(raw_ostream &o, unsigned &Indentation) { o.indent(Indentation) << "// Check Inst{"; if (NumBits > 1) o << (StartBit + NumBits - 1) << '-'; o << StartBit << "} ...\n"; o.indent(Indentation) << "switch (fieldFromInstruction(insn, " << StartBit << ", " << NumBits << ")) {\n"; std::map::iterator filterIterator; bool DefaultCase = false; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { // Field value -1 implies a non-empty set of variable instructions. // See also recurse(). if (filterIterator->first == (unsigned)-1) { DefaultCase = true; o.indent(Indentation) << "default:\n"; o.indent(Indentation) << " break; // fallthrough\n"; // Closing curly brace for the switch statement. // This is unconventional because we want the default processing to be // performed for the fallthrough cases as well, i.e., when the "cases" // did not prove a decoded instruction. o.indent(Indentation) << "}\n"; } else o.indent(Indentation) << "case " << filterIterator->first << ":\n"; // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. if (!DefaultCase) { ++Indentation; ++Indentation; } bool finished = filterIterator->second->emit(o, Indentation); // For top level default case, there's no need for a break statement. if (Owner->isTopLevel() && DefaultCase) break; if (!finished) o.indent(Indentation) << "break;\n"; if (!DefaultCase) { --Indentation; --Indentation; } } // If there is no default case, we still need to supply a closing brace. if (!DefaultCase) { // Closing curly brace for the switch statement. o.indent(Indentation) << "}\n"; } } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { if (VariableInstructions.size()) return FilteredInstructions.size(); else return FilteredInstructions.size() + 1; } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// // Define the symbol here. TARGET_NAME_t FilterChooser::TargetName; // This provides an opportunity for target specific code emission. void FilterChooser::emitTopHook(raw_ostream &o) { if (TargetName == TARGET_ARM) { // Emit code that references the ARMFormat data type. o << "static const ARMFormat ARMFormats[] = {\n"; for (unsigned i = 0, e = AllInstructions.size(); i != e; ++i) { const Record &Def = *(AllInstructions[i]->TheDef); const std::string &Name = Def.getName(); if (Def.isSubClassOf("InstARM") || Def.isSubClassOf("InstThumb")) o.indent(2) << stringForARMFormat((ARMFormat)getByteField(Def, "Form")); else o << " ARM_FORMAT_NA"; o << ",\t// Inst #" << i << " = " << Name << '\n'; } o << " ARM_FORMAT_NA\t// Unreachable.\n"; o << "};\n\n"; } } // Emit the top level typedef and decodeInstruction() function. void FilterChooser::emitTop(raw_ostream &o, unsigned &Indentation) { // Run the target specific emit hook. emitTopHook(o); switch (BIT_WIDTH) { case 8: o.indent(Indentation) << "typedef uint8_t field_t;\n"; break; case 16: o.indent(Indentation) << "typedef uint16_t field_t;\n"; break; case 32: o.indent(Indentation) << "typedef uint32_t field_t;\n"; break; case 64: o.indent(Indentation) << "typedef uint64_t field_t;\n"; break; default: assert(0 && "Unexpected instruction size!"); } o << '\n'; o.indent(Indentation) << "static field_t " << "fieldFromInstruction(field_t insn, unsigned startBit, unsigned numBits)\n"; o.indent(Indentation) << "{\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "assert(startBit + numBits <= " << BIT_WIDTH << " && \"Instruction field out of bounds!\");\n"; o << '\n'; o.indent(Indentation) << "field_t fieldMask;\n"; o << '\n'; o.indent(Indentation) << "if (numBits == " << BIT_WIDTH << ")\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "fieldMask = (field_t)-1;\n"; --Indentation; --Indentation; o.indent(Indentation) << "else\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n"; --Indentation; --Indentation; o << '\n'; o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n"; --Indentation; --Indentation; o.indent(Indentation) << "}\n"; o << '\n'; o.indent(Indentation) << "static uint16_t decodeInstruction(field_t insn) {\n"; ++Indentation; ++Indentation; // Emits code to decode the instructions. emit(o, Indentation); o << '\n'; o.indent(Indentation) << "return 0;\n"; --Indentation; --Indentation; o.indent(Indentation) << "}\n"; o << '\n'; } // This provides an opportunity for target specific code emission after // emitTop(). void FilterChooser::emitBot(raw_ostream &o, unsigned &Indentation) { if (TargetName != TARGET_THUMB) return; // Emit code that decodes the Thumb ISA. o.indent(Indentation) << "static uint16_t decodeThumbInstruction(field_t insn) {\n"; ++Indentation; ++Indentation; // Emits code to decode the instructions. emit(o, Indentation); o << '\n'; o.indent(Indentation) << "return 0;\n"; --Indentation; --Indentation; o.indent(Indentation) << "}\n"; } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if and on the first uninitialized bit value encountered. // Returns true, otherwise. bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const { Field = 0; for (unsigned i = 0; i < NumBits; ++i) { if (Insn[StartBit + i] == BIT_UNSET) return false; if (Insn[StartBit + i] == BIT_TRUE) Field = Field | (1 << i); } return true; } /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void FilterChooser::dumpFilterArray(raw_ostream &o, bit_value_t (&filter)[BIT_WIDTH]) { unsigned bitIndex; for (bitIndex = BIT_WIDTH; bitIndex > 0; bitIndex--) { switch (filter[bitIndex - 1]) { case BIT_UNFILTERED: o << "."; break; case BIT_UNSET: o << "_"; break; case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; } } } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) { FilterChooser *current = this; while (current) { o << prefix; dumpFilterArray(o, current->FilterBitValues); o << '\n'; current = current->Parent; } } // Called from Filter::recurse() when singleton exists. For debug purpose. void FilterChooser::SingletonExists(unsigned Opc) { insn_t Insn0; insnWithID(Insn0, Opc); errs() << "Singleton exists: " << nameWithID(Opc) << " with its decoding dominating "; for (unsigned i = 0; i < Opcodes.size(); ++i) { if (Opcodes[i] == Opc) continue; errs() << nameWithID(Opcodes[i]) << ' '; } errs() << '\n'; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); i++) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned FilterChooser::getIslands(std::vector &StartBits, std::vector &EndBits, std::vector &FieldVals, insn_t &Insn) { unsigned Num, BitNo; Num = BitNo = 0; uint64_t FieldVal = 0; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) int State = 0; int Val = -1; for (unsigned i = 0; i < BIT_WIDTH; ++i) { Val = Value(Insn[i]); bool Filtered = PositionFiltered(i); switch (State) { default: assert(0 && "Unreachable code!"); break; case 0: case 1: if (Filtered || Val == -1) State = 1; // Still in Water else { State = 2; // Into the Island BitNo = 0; StartBits.push_back(i); FieldVal = Val; } break; case 2: if (Filtered || Val == -1) { State = 1; // Into the Water EndBits.push_back(i - 1); FieldVals.push_back(FieldVal); ++Num; } else { State = 2; // Still in Island ++BitNo; FieldVal = FieldVal | Val << BitNo; } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) { EndBits.push_back(BIT_WIDTH - 1); FieldVals.push_back(FieldVal); ++Num; } assert(StartBits.size() == Num && EndBits.size() == Num && FieldVals.size() == Num); return Num; } // Emits code to decode the singleton. Return true if we have matched all the // well-known bits. bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, unsigned Opc) { std::vector StartBits; std::vector EndBits; std::vector FieldVals; insn_t Insn; insnWithID(Insn, Opc); // This provides a good opportunity to check for possible Ld/St Coprocessor // Opcode and escapes if the coproc # is either 10 or 11. It is a NEON/VFP // instruction is disguise. if (TargetName == TARGET_ARM && LdStCopEncoding1(Opc)) { o.indent(Indentation); // A8.6.51 & A8.6.188 // If coproc = 0b101?, i.e, slice(insn, 11, 8) = 10 or 11, escape. o << "if (fieldFromInstruction(insn, 9, 3) == 5) break; // fallthrough\n"; } // Look for islands of undecoded bits of the singleton. getIslands(StartBits, EndBits, FieldVals, Insn); unsigned Size = StartBits.size(); unsigned I, NumBits; // If we have matched all the well-known bits, just issue a return. if (Size == 0) { o.indent(Indentation) << "return " << Opc << "; // " << nameWithID(Opc) << '\n'; return true; } // Otherwise, there are more decodings to be done! // Emit code to match the island(s) for the singleton. o.indent(Indentation) << "// Check "; for (I = Size; I != 0; --I) { o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} "; if (I > 1) o << "&& "; else o << "for singleton decoding...\n"; } o.indent(Indentation) << "if ("; for (I = Size; I != 0; --I) { NumBits = EndBits[I-1] - StartBits[I-1] + 1; o << "fieldFromInstruction(insn, " << StartBits[I-1] << ", " << NumBits << ") == " << FieldVals[I-1]; if (I > 1) o << " && "; else o << ")\n"; } o.indent(Indentation) << " return " << Opc << "; // " << nameWithID(Opc) << '\n'; return false; } // Emits code to decode the singleton, and then to decode the rest. void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation, Filter &Best) { unsigned Opc = Best.getSingletonOpc(); emitSingletonDecoder(o, Indentation, Opc); // Emit code for the rest. o.indent(Indentation) << "else\n"; Indentation += 2; Best.getVariableFC().emit(o, Indentation); Indentation -= 2; } // Assign a single filter and run with it. Top level API client can initialize // with a single filter to start the filtering process. void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit, bool mixed) { Filters.clear(); Filter F(*this, startBit, numBit, true); Filters.push_back(F); BestIndex = 0; // Sole Filter instance to choose from. bestFilter().recurse(); } // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed) { if (RA == ATTR_MIXED && AllowMixed) Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true)); else if (RA == ATTR_ALL_SET && !AllowMixed) Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false)); } // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { Filters.clear(); BestIndex = -1; unsigned numInstructions = Opcodes.size(); assert(numInstructions && "Filter created with no instructions"); // No further filtering is necessary. if (numInstructions == 1) return true; // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(numInstructions == 3); for (unsigned i = 0; i < Opcodes.size(); ++i) { std::vector StartBits; std::vector EndBits; std::vector FieldVals; insn_t Insn; insnWithID(Insn, Opcodes[i]); // Look for islands of undecoded bits of any instruction. if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1, true); return true; } } } unsigned BitIndex, InsnIndex; // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, and _ (unset). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) bitAttr_t bitAttrs[BIT_WIDTH]; // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) if (FilterBitValues[BitIndex] == BIT_TRUE || FilterBitValues[BitIndex] == BIT_FALSE) bitAttrs[BitIndex] = ATTR_FILTERED; else bitAttrs[BitIndex] = ATTR_NONE; for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { insn_t insn; insnWithID(insn, Opcodes[InsnIndex]); for (BitIndex = 0; BitIndex < BIT_WIDTH; ++BitIndex) { switch (bitAttrs[BitIndex]) { case ATTR_NONE: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_ALL_UNSET; else bitAttrs[BitIndex] = ATTR_ALL_SET; break; case ATTR_ALL_SET: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (insn[BitIndex] != BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; for (BitIndex = 0; BitIndex < BIT_WIDTH; BitIndex++) { bitAttr_t bitAttr = bitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_MIXED; break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: break; default: assert(0 && "Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: assert(0 && "regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: assert(0 && "regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (unsigned i = 0, e = Filters.size(); i != e; ++i) { unsigned Usefulness = Filters[i].usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = i; BestScore = Usefulness; } } if (!AllUseless) bestFilter().recurse(); return !AllUseless; } // end of FilterChooser::filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { unsigned Num = Opcodes.size(); assert(Num && "FilterChooser created with no instructions"); // Heuristics: Use Inst{31-28} as the top level filter for ARM ISA. if (TargetName == TARGET_ARM && Parent == NULL) { runSingleFilter(*this, 28, 4, false); return; } // Try regions of consecutive known bit values first. if (filterProcessor(false)) return; // Then regions of mixed bits (both known and unitialized bit values allowed). if (filterProcessor(true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (Num == 3 && filterProcessor(true, false)) return; // If we come to here, the instruction decoding has failed. // Print out the instructions in the conflict set... BestIndex = -1; DEBUG({ errs() << "Conflict:\n"; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Num; i++) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } }); } // Emits code to decode our share of instructions. Returns true if the // emitted code causes a return, which occurs if we know how to decode // the instruction at this level or the instruction is not decodeable. bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) { if (Opcodes.size() == 1) // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. return emitSingletonDecoder(o, Indentation, Opcodes[0]); // Choose the best filter to do the decodings! if (BestIndex != -1) { Filter &Best = bestFilter(); if (Best.getNumFiltered() == 1) emitSingletonDecoder(o, Indentation, Best); else bestFilter().emit(o, Indentation); return false; } // If we reach here, there is a conflict in decoding. Let's resolve the known // conflicts! if ((TargetName == TARGET_ARM || TargetName == TARGET_THUMB) && Opcodes.size() == 2) { // Resolve the known conflict sets: // // 1. source registers are identical => VMOVDneon; otherwise => VORRd // 2. source registers are identical => VMOVQ; otherwise => VORRq // 3. LDR, LDRcp => return LDR for now. // FIXME: How can we distinguish between LDR and LDRcp? Do we need to? // 4. tLDM, tLDM_UPD => Rn = Inst{10-8}, reglist = Inst{7-0}, // wback = registers = 0 // NOTE: (tLDM, tLDM_UPD) resolution must come before Advanced SIMD // addressing mode resolution!!! // 5. VLD[234]LN*/VST[234]LN* vs. VLD[234]LN*_UPD/VST[234]LN*_UPD conflicts // are resolved returning the non-UPD versions of the instructions if the // Rm field, i.e., Inst{3-0} is 0b1111. This is specified in A7.7.1 // Advanced SIMD addressing mode. const std::string &name1 = nameWithID(Opcodes[0]); const std::string &name2 = nameWithID(Opcodes[1]); if ((name1 == "VMOVDneon" && name2 == "VORRd") || (name1 == "VMOVQ" && name2 == "VORRq")) { // Inserting the opening curly brace for this case block. --Indentation; --Indentation; o.indent(Indentation) << "{\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "field_t N = fieldFromInstruction(insn, 7, 1), " << "M = fieldFromInstruction(insn, 5, 1);\n"; o.indent(Indentation) << "field_t Vn = fieldFromInstruction(insn, 16, 4), " << "Vm = fieldFromInstruction(insn, 0, 4);\n"; o.indent(Indentation) << "return (N == M && Vn == Vm) ? " << Opcodes[0] << " /* " << name1 << " */ : " << Opcodes[1] << " /* " << name2 << " */ ;\n"; // Inserting the closing curly brace for this case block. --Indentation; --Indentation; o.indent(Indentation) << "}\n"; ++Indentation; ++Indentation; return true; } if (name1 == "LDR" && name2 == "LDRcp") { o.indent(Indentation) << "return " << Opcodes[0] << "; // Returning LDR for {LDR, LDRcp}\n"; return true; } if (name1 == "tLDM" && name2 == "tLDM_UPD") { // Inserting the opening curly brace for this case block. --Indentation; --Indentation; o.indent(Indentation) << "{\n"; ++Indentation; ++Indentation; o.indent(Indentation) << "unsigned Rn = fieldFromInstruction(insn, 8, 3), " << "list = fieldFromInstruction(insn, 0, 8);\n"; o.indent(Indentation) << "return ((list >> Rn) & 1) == 0 ? " << Opcodes[1] << " /* " << name2 << " */ : " << Opcodes[0] << " /* " << name1 << " */ ;\n"; // Inserting the closing curly brace for this case block. --Indentation; --Indentation; o.indent(Indentation) << "}\n"; ++Indentation; ++Indentation; return true; } if (sameStringExceptSuffix(name1, name2, "_UPD")) { o.indent(Indentation) << "return fieldFromInstruction(insn, 0, 4) == 15 ? " << Opcodes[0] << " /* " << name1 << " */ : " << Opcodes[1] << "/* " << name2 << " */ ; // Advanced SIMD addressing mode\n"; return true; } // Otherwise, it does not belong to the known conflict sets. } // We don't know how to decode these instructions! Dump the conflict set! o.indent(Indentation) << "return 0;" << " // Conflict set: "; for (int i = 0, N = Opcodes.size(); i < N; ++i) { o << nameWithID(Opcodes[i]); if (i < (N - 1)) o << ", "; else o << '\n'; } return true; } //////////////////////////////////////////// // // // ARMDEBackend // // (Helper class for ARMDecoderEmitter) // // // //////////////////////////////////////////// class ARMDecoderEmitter::ARMDEBackend { public: ARMDEBackend(ARMDecoderEmitter &frontend) : NumberedInstructions(), Opcodes(), Frontend(frontend), Target(), FC(NULL) { if (Target.getName() == "ARM") TargetName = TARGET_ARM; else { errs() << "Target name " << Target.getName() << " not recognized\n"; assert(0 && "Unknown target"); } // Populate the instructions for our TargetName. populateInstructions(); } ~ARMDEBackend() { if (FC) { delete FC; FC = NULL; } } void getInstructionsByEnumValue(std::vector &NumberedInstructions) { // We must emit the PHI opcode first... std::string Namespace = Target.getInstNamespace(); assert(!Namespace.empty() && "No instructions defined."); NumberedInstructions = Target.getInstructionsByEnumValue(); } bool populateInstruction(const CodeGenInstruction &CGI, TARGET_NAME_t TN); void populateInstructions(); // Emits disassembler code for instruction decoding. This delegates to the // FilterChooser instance to do the heavy lifting. void emit(raw_ostream &o); protected: std::vector NumberedInstructions; std::vector Opcodes; // Special case for the ARM chip, which supports ARM and Thumb ISAs. // Opcodes2 will be populated with the Thumb opcodes. std::vector Opcodes2; ARMDecoderEmitter &Frontend; CodeGenTarget Target; FilterChooser *FC; TARGET_NAME_t TargetName; }; bool ARMDecoderEmitter::ARMDEBackend::populateInstruction( const CodeGenInstruction &CGI, TARGET_NAME_t TN) { const Record &Def = *CGI.TheDef; const StringRef Name = Def.getName(); uint8_t Form = getByteField(Def, "Form"); if (TN == TARGET_ARM) { // FIXME: what about Int_MemBarrierV6 and Int_SyncBarrierV6? if ((Name != "Int_MemBarrierV7" && Name != "Int_SyncBarrierV7") && Form == ARM_FORMAT_PSEUDO) return false; if (thumbInstruction(Form)) return false; if (Name.find("CMPz") != std::string::npos /* || Name.find("CMNz") != std::string::npos */) return false; // Ignore pseudo instructions. if (Name == "BXr9" || Name == "BMOVPCRX" || Name == "BMOVPCRXr9") return false; // VLDMQ/VSTMQ can be hanlded with the more generic VLDMD/VSTMD. if (Name == "VLDMQ" || Name == "VLDMQ_UPD" || Name == "VSTMQ" || Name == "VSTMQ_UPD") return false; // // The following special cases are for conflict resolutions. // // NEON NLdStFrm conflict resolutions: // // 1. Ignore suffix "odd" and "odd_UPD", prefer the "even" register- // numbered ones which have the same Asm format string. // 2. Ignore VST2d64_UPD, which conflicts with VST1q64_UPD. // 3. Ignore VLD2d64_UPD, which conflicts with VLD1q64_UPD. // 4. Ignore VLD1q[_UPD], which conflicts with VLD1q64[_UPD]. // 5. Ignore VST1q[_UPD], which conflicts with VST1q64[_UPD]. if (Name.endswith("odd") || Name.endswith("odd_UPD") || Name == "VST2d64_UPD" || Name == "VLD2d64_UPD" || Name == "VLD1q" || Name == "VLD1q_UPD" || Name == "VST1q" || Name == "VST1q_UPD") return false; // RSCSri and RSCSrs set the 's' bit, but are not predicated. We are // better off using the generic RSCri and RSCrs instructions. if (Name == "RSCSri" || Name == "RSCSrs") return false; // MOVCCr, MOVCCs, MOVCCi, FCYPScc, FCYPDcc, FNEGScc, and FNEGDcc are used // in the compiler to implement conditional moves. We can ignore them in // favor of their more generic versions of instructions. // See also SDNode *ARMDAGToDAGISel::Select(SDValue Op). if (Name == "MOVCCr" || Name == "MOVCCs" || Name == "MOVCCi" || Name == "FCPYScc" || Name == "FCPYDcc" || Name == "FNEGScc" || Name == "FNEGDcc") return false; // Ditto for VMOVDcc, VMOVScc, VNEGDcc, and VNEGScc. if (Name == "VMOVDcc" || Name == "VMOVScc" || Name == "VNEGDcc" || Name == "VNEGScc") return false; // Ignore the *_sfp instructions when decoding. They are used by the // compiler to implement scalar floating point operations using vector // operations in order to work around some performance issues. if (Name.find("_sfp") != std::string::npos) return false; // LDM_RET is a special case of LDM (Load Multiple) where the registers // loaded include the PC, causing a branch to a loaded address. Ignore // the LDM_RET instruction when decoding. if (Name == "LDM_RET") return false; // Bcc is in a more generic form than B. Ignore B when decoding. if (Name == "B") return false; // Ignore the non-Darwin BL instructions and the TPsoft (TLS) instruction. if (Name == "BL" || Name == "BL_pred" || Name == "BLX" || Name == "BX" || Name == "TPsoft") return false; // Ignore VDUPf[d|q] instructions known to conflict with VDUP32[d-q] for // decoding. The instruction duplicates an element from an ARM core // register into every element of the destination vector. There is no // distinction between data types. if (Name == "VDUPfd" || Name == "VDUPfq") return false; // A8-598: VEXT // Vector Extract extracts elements from the bottom end of the second // operand vector and the top end of the first, concatenates them and // places the result in the destination vector. The elements of the // vectors are treated as being 8-bit bitfields. There is no distinction // between data types. The size of the operation can be specified in // assembler as vext.size. If the value is 16, 32, or 64, the syntax is // a pseudo-instruction for a VEXT instruction specifying the equivalent // number of bytes. // // Variants VEXTd16, VEXTd32, VEXTd8, and VEXTdf are reduced to VEXTd8; // variants VEXTq16, VEXTq32, VEXTq8, and VEXTqf are reduced to VEXTq8. if (Name == "VEXTd16" || Name == "VEXTd32" || Name == "VEXTdf" || Name == "VEXTq16" || Name == "VEXTq32" || Name == "VEXTqf") return false; // Vector Reverse is similar to Vector Extract. There is no distinction // between data types, other than size. // // VREV64df is equivalent to VREV64d32. // VREV64qf is equivalent to VREV64q32. if (Name == "VREV64df" || Name == "VREV64qf") return false; // VDUPLNfd is equivalent to VDUPLN32d; VDUPfdf is specialized VDUPLN32d. // VDUPLNfq is equivalent to VDUPLN32q; VDUPfqf is specialized VDUPLN32q. // VLD1df is equivalent to VLD1d32. // VLD1qf is equivalent to VLD1q32. // VLD2d64 is equivalent to VLD1q64. // VST1df is equivalent to VST1d32. // VST1qf is equivalent to VST1q32. // VST2d64 is equivalent to VST1q64. if (Name == "VDUPLNfd" || Name == "VDUPfdf" || Name == "VDUPLNfq" || Name == "VDUPfqf" || Name == "VLD1df" || Name == "VLD1qf" || Name == "VLD2d64" || Name == "VST1df" || Name == "VST1qf" || Name == "VST2d64") return false; } else if (TN == TARGET_THUMB) { if (!thumbInstruction(Form)) return false; // Ignore pseudo instructions. if (Name == "tInt_eh_sjlj_setjmp" || Name == "t2Int_eh_sjlj_setjmp" || Name == "t2MOVi32imm" || Name == "tBX" || Name == "tBXr9") return false; // On Darwin R9 is call-clobbered. Ignore the non-Darwin counterparts. if (Name == "tBL" || Name == "tBLXi" || Name == "tBLXr") return false; // Ignore the TPsoft (TLS) instructions, which conflict with tBLr9. if (Name == "tTPsoft" || Name == "t2TPsoft") return false; // Ignore tLEApcrel and tLEApcrelJT, prefer tADDrPCi. if (Name == "tLEApcrel" || Name == "tLEApcrelJT") return false; // Ignore t2LEApcrel, prefer the generic t2ADD* for disassembly printing. if (Name == "t2LEApcrel") return false; // Ignore tADDrSP, tADDspr, and tPICADD, prefer the generic tADDhirr. // Ignore t2SUBrSPs, prefer the t2SUB[S]r[r|s]. // Ignore t2ADDrSPs, prefer the t2ADD[S]r[r|s]. if (Name == "tADDrSP" || Name == "tADDspr" || Name == "tPICADD" || Name == "t2SUBrSPs" || Name == "t2ADDrSPs") return false; // Ignore t2LDRDpci, prefer the generic t2LDRDi8, t2LDRD_PRE, t2LDRD_POST. if (Name == "t2LDRDpci") return false; // Ignore t2TBB, t2TBH and prefer the generic t2TBBgen, t2TBHgen. if (Name == "t2TBB" || Name == "t2TBH") return false; // Resolve conflicts: // // tBfar conflicts with tBLr9 // tCMNz conflicts with tCMN (with assembly format strings being equal) // tPOP_RET/t2LDM_RET conflict with tPOP/t2LDM (ditto) // tMOVCCi conflicts with tMOVi8 // tMOVCCr conflicts with tMOVgpr2gpr // tBR_JTr conflicts with tBRIND // tSpill conflicts with tSTRspi // tLDRcp conflicts with tLDRspi // tRestore conflicts with tLDRspi // t2LEApcrelJT conflicts with t2LEApcrel // t2ADDrSPi/t2SUBrSPi have more generic couterparts if (Name == "tBfar" || /* Name == "tCMNz" || */ Name == "tCMPzi8" || Name == "tCMPzr" || Name == "tCMPzhir" || /* Name == "t2CMNzrr" || Name == "t2CMNzrs" || Name == "t2CMNzri" || */ Name == "t2CMPzrr" || Name == "t2CMPzrs" || Name == "t2CMPzri" || Name == "tPOP_RET" || Name == "t2LDM_RET" || Name == "tMOVCCi" || Name == "tMOVCCr" || Name == "tBR_JTr" || Name == "tSpill" || Name == "tLDRcp" || Name == "tRestore" || Name == "t2LEApcrelJT" || Name == "t2ADDrSPi" || Name == "t2SUBrSPi") return false; } // Dumps the instruction encoding format. switch (TargetName) { case TARGET_ARM: case TARGET_THUMB: DEBUG(errs() << Name << " " << stringForARMFormat((ARMFormat)Form)); break; } DEBUG({ BitsInit &Bits = getBitsField(Def, "Inst"); errs() << " "; // Dumps the instruction encoding bits. dumpBits(errs(), Bits); errs() << '\n'; // Dumps the list of operand info. for (unsigned i = 0, e = CGI.OperandList.size(); i != e; ++i) { CodeGenInstruction::OperandInfo Info = CGI.OperandList[i]; const std::string &OperandName = Info.Name; const Record &OperandDef = *Info.Rec; errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; } }); return true; } void ARMDecoderEmitter::ARMDEBackend::populateInstructions() { getInstructionsByEnumValue(NumberedInstructions); uint16_t numUIDs = NumberedInstructions.size(); uint16_t uid; const char *instClass = NULL; switch (TargetName) { case TARGET_ARM: instClass = "InstARM"; break; default: assert(0 && "Unreachable code!"); } for (uid = 0; uid < numUIDs; uid++) { // filter out intrinsics if (!NumberedInstructions[uid]->TheDef->isSubClassOf(instClass)) continue; if (populateInstruction(*NumberedInstructions[uid], TargetName)) Opcodes.push_back(uid); } // Special handling for the ARM chip, which supports two modes of execution. // This branch handles the Thumb opcodes. if (TargetName == TARGET_ARM) { for (uid = 0; uid < numUIDs; uid++) { // filter out intrinsics if (!NumberedInstructions[uid]->TheDef->isSubClassOf("InstARM") && !NumberedInstructions[uid]->TheDef->isSubClassOf("InstThumb")) continue; if (populateInstruction(*NumberedInstructions[uid], TARGET_THUMB)) Opcodes2.push_back(uid); } } } // Emits disassembler code for instruction decoding. This delegates to the // FilterChooser instance to do the heavy lifting. void ARMDecoderEmitter::ARMDEBackend::emit(raw_ostream &o) { switch (TargetName) { case TARGET_ARM: Frontend.EmitSourceFileHeader("ARM/Thumb Decoders", o); break; default: assert(0 && "Unreachable code!"); } o << "#include \"llvm/System/DataTypes.h\"\n"; o << "#include \n"; o << '\n'; o << "namespace llvm {\n\n"; FilterChooser::setTargetName(TargetName); switch (TargetName) { case TARGET_ARM: { // Emit common utility and ARM ISA decoder. FC = new FilterChooser(NumberedInstructions, Opcodes); // Reset indentation level. unsigned Indentation = 0; FC->emitTop(o, Indentation); delete FC; // Emit Thumb ISA decoder as well. FilterChooser::setTargetName(TARGET_THUMB); FC = new FilterChooser(NumberedInstructions, Opcodes2); // Reset indentation level. Indentation = 0; FC->emitBot(o, Indentation); break; } default: assert(0 && "Unreachable code!"); } o << "\n} // End llvm namespace \n"; } ///////////////////////// // Backend interface // ///////////////////////// void ARMDecoderEmitter::initBackend() { Backend = new ARMDEBackend(*this); } void ARMDecoderEmitter::run(raw_ostream &o) { Backend->emit(o); } void ARMDecoderEmitter::shutdownBackend() { delete Backend; Backend = NULL; }