//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits information about intrinsic functions. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "IntrinsicEmitter.h" #include "Record.h" #include "llvm/ADT/StringExtras.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// void IntrinsicEmitter::run(raw_ostream &OS) { EmitSourceFileHeader("Intrinsic Function Source Fragment", OS); std::vector Ints = LoadIntrinsics(Records, TargetOnly); if (TargetOnly && !Ints.empty()) TargetPrefix = Ints[0].TargetPrefix; // Emit the enum information. EmitEnumInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); // Emit the intrinsic ID -> overload table. EmitIntrinsicToOverloadTable(Ints, OS); // Emit the function name recognizer. EmitFnNameRecognizer(Ints, OS); // Emit the intrinsic verifier. EmitVerifier(Ints, OS); // Emit the intrinsic declaration generator. EmitGenerator(Ints, OS); // Emit the intrinsic parameter attributes. EmitAttributes(Ints, OS); // Emit intrinsic alias analysis mod/ref behavior. EmitModRefBehavior(Ints, OS); // Emit a list of intrinsics with corresponding GCC builtins. EmitGCCBuiltinList(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToGCCBuiltinMap(Ints, OS); } void IntrinsicEmitter::EmitEnumInfo(const std::vector &Ints, raw_ostream &OS) { OS << "// Enum values for Intrinsics.h\n"; OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " " << Ints[i].EnumName; OS << ((i != e-1) ? ", " : " "); OS << std::string(40-Ints[i].EnumName.size(), ' ') << "// " << Ints[i].Name << "\n"; } OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitFnNameRecognizer(const std::vector &Ints, raw_ostream &OS) { // Build a function name -> intrinsic name mapping. std::map IntMapping; for (unsigned i = 0, e = Ints.size(); i != e; ++i) IntMapping[Ints[i].Name] = i; OS << "// Function name -> enum value recognizer code.\n"; OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; OS << " switch (Name[5]) {\n"; OS << " default:\n"; // Emit the intrinsics in sorted order. char LastChar = 0; for (std::map::iterator I = IntMapping.begin(), E = IntMapping.end(); I != E; ++I) { if (I->first[5] != LastChar) { LastChar = I->first[5]; OS << " break;\n"; OS << " case '" << LastChar << "':\n"; } // For overloaded intrinsics, only the prefix needs to match if (Ints[I->second].isOverloaded) OS << " if (Len > " << I->first.size() << " && !memcmp(Name, \"" << I->first << ".\", " << (I->first.size() + 1) << ")) return " << TargetPrefix << "Intrinsic::" << Ints[I->second].EnumName << ";\n"; else OS << " if (Len == " << I->first.size() << " && !memcmp(Name, \"" << I->first << "\", " << I->first.size() << ")) return " << TargetPrefix << "Intrinsic::" << Ints[I->second].EnumName << ";\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToNameTable(const std::vector &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) OS << " \"" << Ints[i].Name << "\",\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToOverloadTable(const std::vector &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to overload table\n"; OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " "; if (Ints[i].isOverloaded) OS << "true"; else OS << "false"; OS << ",\n"; } OS << "#endif\n\n"; } static void EmitTypeForValueType(raw_ostream &OS, MVT::SimpleValueType VT) { if (EVT(VT).isInteger()) { unsigned BitWidth = EVT(VT).getSizeInBits(); OS << "IntegerType::get(" << BitWidth << ")"; } else if (VT == MVT::Other) { // MVT::OtherVT is used to mean the empty struct type here. OS << "StructType::get(Context)"; } else if (VT == MVT::f32) { OS << "Type::FloatTy"; } else if (VT == MVT::f64) { OS << "Type::DoubleTy"; } else if (VT == MVT::f80) { OS << "Type::X86_FP80Ty"; } else if (VT == MVT::f128) { OS << "Type::FP128Ty"; } else if (VT == MVT::ppcf128) { OS << "Type::PPC_FP128Ty"; } else if (VT == MVT::isVoid) { OS << "Type::VoidTy"; } else if (VT == MVT::Metadata) { OS << "Type::MetadataTy"; } else { assert(false && "Unsupported ValueType!"); } } static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType, unsigned &ArgNo); static void EmitTypeGenerate(raw_ostream &OS, const std::vector &ArgTypes, unsigned &ArgNo) { if (ArgTypes.size() == 1) { EmitTypeGenerate(OS, ArgTypes.front(), ArgNo); return; } OS << "StructType::get(Context, "; for (std::vector::const_iterator I = ArgTypes.begin(), E = ArgTypes.end(); I != E; ++I) { EmitTypeGenerate(OS, *I, ArgNo); OS << ", "; } OS << " NULL)"; } static void EmitTypeGenerate(raw_ostream &OS, const Record *ArgType, unsigned &ArgNo) { MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < ArgNo && "Invalid matching number!"); if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) OS << "VectorType::getExtendedElementVectorType" << "(dyn_cast(Tys[" << Number << "]))"; else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) OS << "VectorType::getTruncatedElementVectorType" << "(dyn_cast(Tys[" << Number << "]))"; else OS << "Tys[" << Number << "]"; } else if (VT == MVT::iAny || VT == MVT::fAny || VT == MVT::vAny) { // NOTE: The ArgNo variable here is not the absolute argument number, it is // the index of the "arbitrary" type in the Tys array passed to the // Intrinsic::getDeclaration function. Consequently, we only want to // increment it when we actually hit an overloaded type. Getting this wrong // leads to very subtle bugs! OS << "Tys[" << ArgNo++ << "]"; } else if (EVT(VT).isVector()) { EVT VVT = VT; OS << "VectorType::get("; EmitTypeForValueType(OS, VVT.getVectorElementType().getSimpleVT().SimpleTy); OS << ", " << VVT.getVectorNumElements() << ")"; } else if (VT == MVT::iPTR) { OS << "PointerType::getUnqual("; EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo); OS << ")"; } else if (VT == MVT::iPTRAny) { // Make sure the user has passed us an argument type to overload. If not, // treat it as an ordinary (not overloaded) intrinsic. OS << "(" << ArgNo << " < numTys) ? Tys[" << ArgNo << "] : PointerType::getUnqual("; EmitTypeGenerate(OS, ArgType->getValueAsDef("ElTy"), ArgNo); OS << ")"; ++ArgNo; } else if (VT == MVT::isVoid) { if (ArgNo == 0) OS << "Type::VoidTy"; else // MVT::isVoid is used to mean varargs here. OS << "..."; } else { EmitTypeForValueType(OS, VT); } } /// RecordListComparator - Provide a deterministic comparator for lists of /// records. namespace { typedef std::pair, std::vector > RecPair; struct RecordListComparator { bool operator()(const RecPair &LHS, const RecPair &RHS) const { unsigned i = 0; const std::vector *LHSVec = &LHS.first; const std::vector *RHSVec = &RHS.first; unsigned RHSSize = RHSVec->size(); unsigned LHSSize = LHSVec->size(); do { if (i == RHSSize) return false; // RHS is shorter than LHS. if ((*LHSVec)[i] != (*RHSVec)[i]) return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName(); } while (++i != LHSSize); if (i != RHSSize) return true; i = 0; LHSVec = &LHS.second; RHSVec = &RHS.second; RHSSize = RHSVec->size(); LHSSize = LHSVec->size(); for (i = 0; i != LHSSize; ++i) { if (i == RHSSize) return false; // RHS is shorter than LHS. if ((*LHSVec)[i] != (*RHSVec)[i]) return (*LHSVec)[i]->getName() < (*RHSVec)[i]->getName(); } return i != RHSSize; } }; } void IntrinsicEmitter::EmitVerifier(const std::vector &Ints, raw_ostream &OS) { OS << "// Verifier::visitIntrinsicFunctionCall code.\n"; OS << "#ifdef GET_INTRINSIC_VERIFIER\n"; OS << " switch (ID) {\n"; OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; // This checking can emit a lot of very common code. To reduce the amount of // code that we emit, batch up cases that have identical types. This avoids // problems where GCC can run out of memory compiling Verifier.cpp. typedef std::map, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs, Ints[i].IS.ParamTypeDefs)].push_back(i); // Loop through the array, emitting one comparison for each batch. for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) OS << " case Intrinsic::" << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; const RecPair &ArgTypes = I->first; const std::vector &RetTys = ArgTypes.first; const std::vector &ParamTys = ArgTypes.second; std::vector OverloadedTypeIndices; OS << " VerifyIntrinsicPrototype(ID, IF, " << RetTys.size() << ", " << ParamTys.size(); // Emit return types. for (unsigned j = 0, je = RetTys.size(); j != je; ++j) { Record *ArgType = RetTys[j]; OS << ", "; if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < OverloadedTypeIndices.size() && "Invalid matching number!"); Number = OverloadedTypeIndices[Number]; if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) OS << "~(ExtendedElementVectorType | " << Number << ")"; else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) OS << "~(TruncatedElementVectorType | " << Number << ")"; else OS << "~" << Number; } else { MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); OS << getEnumName(VT); if (EVT(VT).isOverloaded()) OverloadedTypeIndices.push_back(j); if (VT == MVT::isVoid && j != 0 && j != je - 1) throw "Var arg type not last argument"; } } // Emit the parameter types. for (unsigned j = 0, je = ParamTys.size(); j != je; ++j) { Record *ArgType = ParamTys[j]; OS << ", "; if (ArgType->isSubClassOf("LLVMMatchType")) { unsigned Number = ArgType->getValueAsInt("Number"); assert(Number < OverloadedTypeIndices.size() && "Invalid matching number!"); Number = OverloadedTypeIndices[Number]; if (ArgType->isSubClassOf("LLVMExtendedElementVectorType")) OS << "~(ExtendedElementVectorType | " << Number << ")"; else if (ArgType->isSubClassOf("LLVMTruncatedElementVectorType")) OS << "~(TruncatedElementVectorType | " << Number << ")"; else OS << "~" << Number; } else { MVT::SimpleValueType VT = getValueType(ArgType->getValueAsDef("VT")); OS << getEnumName(VT); if (EVT(VT).isOverloaded()) OverloadedTypeIndices.push_back(j + RetTys.size()); if (VT == MVT::isVoid && j != 0 && j != je - 1) throw "Var arg type not last argument"; } } OS << ");\n"; OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitGenerator(const std::vector &Ints, raw_ostream &OS) { OS << "// Code for generating Intrinsic function declarations.\n"; OS << "#ifdef GET_INTRINSIC_GENERATOR\n"; OS << " switch (id) {\n"; OS << " default: assert(0 && \"Invalid intrinsic!\");\n"; // Similar to GET_INTRINSIC_VERIFIER, batch up cases that have identical // types. typedef std::map, RecordListComparator> MapTy; MapTy UniqueArgInfos; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) UniqueArgInfos[make_pair(Ints[i].IS.RetTypeDefs, Ints[i].IS.ParamTypeDefs)].push_back(i); // Loop through the array, emitting one generator for each batch. std::string IntrinsicStr = TargetPrefix + "Intrinsic::"; for (MapTy::iterator I = UniqueArgInfos.begin(), E = UniqueArgInfos.end(); I != E; ++I) { for (unsigned i = 0, e = I->second.size(); i != e; ++i) OS << " case " << IntrinsicStr << Ints[I->second[i]].EnumName << ":\t\t// " << Ints[I->second[i]].Name << "\n"; const RecPair &ArgTypes = I->first; const std::vector &RetTys = ArgTypes.first; const std::vector &ParamTys = ArgTypes.second; unsigned N = ParamTys.size(); if (N > 1 && getValueType(ParamTys[N - 1]->getValueAsDef("VT")) == MVT::isVoid) { OS << " IsVarArg = true;\n"; --N; } unsigned ArgNo = 0; OS << " ResultTy = "; EmitTypeGenerate(OS, RetTys, ArgNo); OS << ";\n"; for (unsigned j = 0; j != N; ++j) { OS << " ArgTys.push_back("; EmitTypeGenerate(OS, ParamTys[j], ArgNo); OS << ");\n"; } OS << " break;\n"; } OS << " }\n"; OS << "#endif\n\n"; } /// EmitAttributes - This emits the Intrinsic::getAttributes method. void IntrinsicEmitter:: EmitAttributes(const std::vector &Ints, raw_ostream &OS) { OS << "// Add parameter attributes that are not common to all intrinsics.\n"; OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; if (TargetOnly) OS << "static AttrListPtr getAttributes(" << TargetPrefix << "Intrinsic::ID id) {"; else OS << "AttrListPtr Intrinsic::getAttributes(ID id) {"; OS << " // No intrinsic can throw exceptions.\n"; OS << " Attributes Attr = Attribute::NoUnwind;\n"; OS << " switch (id) {\n"; OS << " default: break;\n"; unsigned MaxArgAttrs = 0; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { MaxArgAttrs = std::max(MaxArgAttrs, unsigned(Ints[i].ArgumentAttributes.size())); switch (Ints[i].ModRef) { default: break; case CodeGenIntrinsic::NoMem: OS << " case " << TargetPrefix << "Intrinsic::" << Ints[i].EnumName << ":\n"; break; } } OS << " Attr |= Attribute::ReadNone; // These do not access memory.\n"; OS << " break;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { switch (Ints[i].ModRef) { default: break; case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: OS << " case " << TargetPrefix << "Intrinsic::" << Ints[i].EnumName << ":\n"; break; } } OS << " Attr |= Attribute::ReadOnly; // These do not write memory.\n"; OS << " break;\n"; OS << " }\n"; OS << " AttributeWithIndex AWI[" << MaxArgAttrs+1 << "];\n"; OS << " unsigned NumAttrs = 0;\n"; OS << " switch (id) {\n"; OS << " default: break;\n"; // Add argument attributes for any intrinsics that have them. for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (Ints[i].ArgumentAttributes.empty()) continue; OS << " case " << TargetPrefix << "Intrinsic::" << Ints[i].EnumName << ":\n"; std::vector > ArgAttrs = Ints[i].ArgumentAttributes; // Sort by argument index. std::sort(ArgAttrs.begin(), ArgAttrs.end()); unsigned NumArgsWithAttrs = 0; while (!ArgAttrs.empty()) { unsigned ArgNo = ArgAttrs[0].first; OS << " AWI[" << NumArgsWithAttrs++ << "] = AttributeWithIndex::get(" << ArgNo+1 << ", 0"; while (!ArgAttrs.empty() && ArgAttrs[0].first == ArgNo) { switch (ArgAttrs[0].second) { default: assert(0 && "Unknown arg attribute"); case CodeGenIntrinsic::NoCapture: OS << "|Attribute::NoCapture"; break; } ArgAttrs.erase(ArgAttrs.begin()); } OS << ");\n"; } OS << " NumAttrs = " << NumArgsWithAttrs << ";\n"; OS << " break;\n"; } OS << " }\n"; OS << " AWI[NumAttrs] = AttributeWithIndex::get(~0, Attr);\n"; OS << " return AttrListPtr::get(AWI, NumAttrs+1);\n"; OS << "}\n"; OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; } /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. void IntrinsicEmitter:: EmitModRefBehavior(const std::vector &Ints, raw_ostream &OS){ OS << "// Determine intrinsic alias analysis mod/ref behavior.\n"; OS << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n"; OS << "switch (id) {\n"; OS << "default:\n return UnknownModRefBehavior;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (Ints[i].ModRef == CodeGenIntrinsic::WriteMem) continue; OS << "case " << TargetPrefix << "Intrinsic::" << Ints[i].EnumName << ":\n"; switch (Ints[i].ModRef) { default: assert(false && "Unknown Mod/Ref type!"); case CodeGenIntrinsic::NoMem: OS << " return DoesNotAccessMemory;\n"; break; case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: OS << " return OnlyReadsMemory;\n"; break; case CodeGenIntrinsic::WriteArgMem: OS << " return AccessesArguments;\n"; break; } } OS << "}\n"; OS << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; } void IntrinsicEmitter:: EmitGCCBuiltinList(const std::vector &Ints, raw_ostream &OS){ OS << "// Get the GCC builtin that corresponds to an LLVM intrinsic.\n"; OS << "#ifdef GET_GCC_BUILTIN_NAME\n"; OS << " switch (F->getIntrinsicID()) {\n"; OS << " default: BuiltinName = \"\"; break;\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { OS << " case Intrinsic::" << Ints[i].EnumName << ": BuiltinName = \"" << Ints[i].GCCBuiltinName << "\"; break;\n"; } } OS << " }\n"; OS << "#endif\n\n"; } /// EmitBuiltinComparisons - Emit comparisons to determine whether the specified /// sorted range of builtin names is equal to the current builtin. This breaks /// it down into a simple tree. /// /// At this point, we know that all the builtins in the range have the same name /// for the first 'CharStart' characters. Only the end of the name needs to be /// discriminated. typedef std::map::const_iterator StrMapIterator; static void EmitBuiltinComparisons(StrMapIterator Start, StrMapIterator End, unsigned CharStart, unsigned Indent, std::string TargetPrefix, raw_ostream &OS) { if (Start == End) return; // empty range. // Determine what, if anything, is the same about all these strings. std::string CommonString = Start->first; unsigned NumInRange = 0; for (StrMapIterator I = Start; I != End; ++I, ++NumInRange) { // Find the first character that doesn't match. const std::string &ThisStr = I->first; unsigned NonMatchChar = CharStart; while (NonMatchChar < CommonString.size() && NonMatchChar < ThisStr.size() && CommonString[NonMatchChar] == ThisStr[NonMatchChar]) ++NonMatchChar; // Truncate off pieces that don't match. CommonString.resize(NonMatchChar); } // Just compare the rest of the string. if (NumInRange == 1) { if (CharStart != CommonString.size()) { OS << std::string(Indent*2, ' ') << "if (!memcmp(BuiltinName"; if (CharStart) OS << "+" << CharStart; OS << ", \"" << (CommonString.c_str()+CharStart) << "\", "; OS << CommonString.size() - CharStart << "))\n"; ++Indent; } OS << std::string(Indent*2, ' ') << "IntrinsicID = " << TargetPrefix << "Intrinsic::"; OS << Start->second << ";\n"; return; } // At this point, we potentially have a common prefix for these builtins, emit // a check for this common prefix. if (CommonString.size() != CharStart) { OS << std::string(Indent*2, ' ') << "if (!memcmp(BuiltinName"; if (CharStart) OS << "+" << CharStart; OS << ", \"" << (CommonString.c_str()+CharStart) << "\", "; OS << CommonString.size()-CharStart << ")) {\n"; EmitBuiltinComparisons(Start, End, CommonString.size(), Indent+1, TargetPrefix, OS); OS << std::string(Indent*2, ' ') << "}\n"; return; } // Output a switch on the character that differs across the set. OS << std::string(Indent*2, ' ') << "switch (BuiltinName[" << CharStart << "]) {"; if (CharStart) OS << " // \"" << std::string(Start->first.begin(), Start->first.begin()+CharStart) << "\""; OS << "\n"; for (StrMapIterator I = Start; I != End; ) { char ThisChar = I->first[CharStart]; OS << std::string(Indent*2, ' ') << "case '" << ThisChar << "':\n"; // Figure out the range that has this common character. StrMapIterator NextChar = I; for (++NextChar; NextChar != End && NextChar->first[CharStart] == ThisChar; ++NextChar) /*empty*/; EmitBuiltinComparisons(I, NextChar, CharStart+1, Indent+1, TargetPrefix,OS); OS << std::string(Indent*2, ' ') << " break;\n"; I = NextChar; } OS << std::string(Indent*2, ' ') << "}\n"; } /// EmitTargetBuiltins - All of the builtins in the specified map are for the /// same target, and we already checked it. static void EmitTargetBuiltins(const std::map &BIM, const std::string &TargetPrefix, raw_ostream &OS) { // Rearrange the builtins by length. std::vector > BuiltinsByLen; BuiltinsByLen.reserve(100); for (StrMapIterator I = BIM.begin(), E = BIM.end(); I != E; ++I) { if (I->first.size() >= BuiltinsByLen.size()) BuiltinsByLen.resize(I->first.size()+1); BuiltinsByLen[I->first.size()].insert(*I); } // Now that we have all the builtins by their length, emit a switch stmt. OS << " switch (strlen(BuiltinName)) {\n"; OS << " default: break;\n"; for (unsigned i = 0, e = BuiltinsByLen.size(); i != e; ++i) { if (BuiltinsByLen[i].empty()) continue; OS << " case " << i << ":\n"; EmitBuiltinComparisons(BuiltinsByLen[i].begin(), BuiltinsByLen[i].end(), 0, 3, TargetPrefix, OS); OS << " break;\n"; } OS << " }\n"; } void IntrinsicEmitter:: EmitIntrinsicToGCCBuiltinMap(const std::vector &Ints, raw_ostream &OS) { typedef std::map > BIMTy; BIMTy BuiltinMap; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { // Get the map for this target prefix. std::map &BIM =BuiltinMap[Ints[i].TargetPrefix]; if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, Ints[i].EnumName)).second) throw "Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate GCC builtin name!"; } } OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; if (TargetOnly) { OS << "static " << TargetPrefix << "Intrinsic::ID " << "getIntrinsicForGCCBuiltin(const char " << "*TargetPrefix, const char *BuiltinName) {\n"; OS << " " << TargetPrefix << "Intrinsic::ID IntrinsicID = "; } else { OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " << "*TargetPrefix, const char *BuiltinName) {\n"; OS << " Intrinsic::ID IntrinsicID = "; } if (TargetOnly) OS << "(" << TargetPrefix<< "Intrinsic::ID)"; OS << "Intrinsic::not_intrinsic;\n"; // Note: this could emit significantly better code if we cared. for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ OS << " "; if (!I->first.empty()) OS << "if (!strcmp(TargetPrefix, \"" << I->first << "\")) "; else OS << "/* Target Independent Builtins */ "; OS << "{\n"; // Emit the comparisons for this target prefix. EmitTargetBuiltins(I->second, TargetPrefix, OS); OS << " }\n"; } OS << " return IntrinsicID;\n"; OS << "}\n"; OS << "#endif\n\n"; }