//===-- UltraSparcSchedInfo.cpp -------------------------------------------===// // // Describe the scheduling characteristics of the UltraSparc // //===----------------------------------------------------------------------===// #include "SparcInternals.h" /*--------------------------------------------------------------------------- Scheduling guidelines for SPARC IIi: I-Cache alignment rules (pg 326) -- Align a branch target instruction so that it's entire group is within the same cache line (may be 1-4 instructions). ** Don't let a branch that is predicted taken be the last instruction on an I-cache line: delay slot will need an entire line to be fetched -- Make a FP instruction or a branch be the 4th instruction in a group. For branches, there are tradeoffs in reordering to make this happen (see pg. 327). ** Don't put a branch in a group that crosses a 32-byte boundary! An artificial branch is inserted after every 32 bytes, and having another branch will force the group to be broken into 2 groups. iTLB rules: -- Don't let a loop span two memory pages, if possible Branch prediction performance: -- Don't make the branch in a delay slot the target of a branch -- Try not to have 2 predicted branches within a group of 4 instructions (because each such group has a single branch target field). -- Try to align branches in slots 0, 2, 4 or 6 of a cache line (to avoid the wrong prediction bits being used in some cases). D-Cache timing constraints: -- Signed int loads of less than 64 bits have 3 cycle latency, not 2 -- All other loads that hit in D-Cache have 2 cycle latency -- All loads are returned IN ORDER, so a D-Cache miss will delay a later hit -- Mis-aligned loads or stores cause a trap. In particular, replace mis-aligned FP double precision l/s with 2 single-precision l/s. -- Simulations of integer codes show increase in avg. group size of 33% when code (including esp. non-faulting loads) is moved across one branch, and 50% across 2 branches. E-Cache timing constraints: -- Scheduling for E-cache (D-Cache misses) is effective (due to load buffering) Store buffer timing constraints: -- Stores can be executed in same cycle as instruction producing the value -- Stores are buffered and have lower priority for E-cache until highwater mark is reached in the store buffer (5 stores) Pipeline constraints: -- Shifts can only use IEU0. -- CC setting instructions can only use IEU1. -- Several other instructions must only use IEU1: EDGE(?), ARRAY(?), CALL, JMPL, BPr, PST, and FCMP. -- Two instructions cannot store to the same register file in a single cycle (single write port per file). Issue and grouping constraints: -- FP and branch instructions must use slot 4. -- Shift instructions cannot be grouped with other IEU0-specific instructions. -- CC setting instructions cannot be grouped with other IEU1-specific instrs. -- Several instructions must be issued in a single-instruction group: MOVcc or MOVr, MULs/x and DIVs/x, SAVE/RESTORE, many others -- A CALL or JMPL breaks a group, ie, is not combined with subsequent instrs. -- -- Branch delay slot scheduling rules: -- A CTI couple (two back-to-back CTI instructions in the dynamic stream) has a 9-instruction penalty: the entire pipeline is flushed when the second instruction reaches stage 9 (W-Writeback). -- Avoid putting multicycle instructions, and instructions that may cause load misses, in the delay slot of an annulling branch. -- Avoid putting WR, SAVE..., RESTORE and RETURN instructions in the delay slot of an annulling branch. *--------------------------------------------------------------------------- */ //--------------------------------------------------------------------------- // List of CPUResources for UltraSPARC IIi. //--------------------------------------------------------------------------- static const CPUResource AllIssueSlots( "All Instr Slots", 4); static const CPUResource IntIssueSlots( "Int Instr Slots", 3); static const CPUResource First3IssueSlots("Instr Slots 0-3", 3); static const CPUResource LSIssueSlots( "Load-Store Instr Slot", 1); static const CPUResource CTIIssueSlots( "Ctrl Transfer Instr Slot", 1); static const CPUResource FPAIssueSlots( "Int Instr Slot 1", 1); static const CPUResource FPMIssueSlots( "Int Instr Slot 1", 1); // IEUN instructions can use either Alu and should use IAluN. // IEU0 instructions must use Alu 1 and should use both IAluN and IAlu0. // IEU1 instructions must use Alu 2 and should use both IAluN and IAlu1. static const CPUResource IAluN("Int ALU 1or2", 2); static const CPUResource IAlu0("Int ALU 1", 1); static const CPUResource IAlu1("Int ALU 2", 1); static const CPUResource LSAluC1("Load/Store Unit Addr Cycle", 1); static const CPUResource LSAluC2("Load/Store Unit Issue Cycle", 1); static const CPUResource LdReturn("Load Return Unit", 1); static const CPUResource FPMAluC1("FP Mul/Div Alu Cycle 1", 1); static const CPUResource FPMAluC2("FP Mul/Div Alu Cycle 2", 1); static const CPUResource FPMAluC3("FP Mul/Div Alu Cycle 3", 1); static const CPUResource FPAAluC1("FP Other Alu Cycle 1", 1); static const CPUResource FPAAluC2("FP Other Alu Cycle 2", 1); static const CPUResource FPAAluC3("FP Other Alu Cycle 3", 1); static const CPUResource IRegReadPorts("Int Reg ReadPorts", INT_MAX); // CHECK static const CPUResource IRegWritePorts("Int Reg WritePorts", 2); // CHECK static const CPUResource FPRegReadPorts("FP Reg Read Ports", INT_MAX);// CHECK static const CPUResource FPRegWritePorts("FP Reg Write Ports", 1); // CHECK static const CPUResource CTIDelayCycle( "CTI delay cycle", 1); static const CPUResource FCMPDelayCycle("FCMP delay cycle", 1); //--------------------------------------------------------------------------- // const InstrClassRUsage SparcRUsageDesc[] // // Purpose: // Resource usage information for instruction in each scheduling class. // The InstrRUsage Objects for individual classes are specified first. // Note that fetch and decode are decoupled from the execution pipelines // via an instr buffer, so they are not included in the cycles below. //--------------------------------------------------------------------------- static const InstrClassRUsage NoneClassRUsage = { SPARC_NONE, /*totCycles*/ 7, /* maxIssueNum */ 4, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 0, /* V[] */ { /*Cycle G */ /*Ccle E */ /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; static const InstrClassRUsage IEUNClassRUsage = { SPARC_IEUN, /*totCycles*/ 7, /* maxIssueNum */ 3, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 4, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { IntIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAluN.rid, 1, 1 }, /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; static const InstrClassRUsage IEU0ClassRUsage = { SPARC_IEU0, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 5, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { IntIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAluN.rid, 1, 1 }, { IAlu0.rid, 1, 1 }, /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; static const InstrClassRUsage IEU1ClassRUsage = { SPARC_IEU1, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 5, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { IntIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAluN.rid, 1, 1 }, { IAlu1.rid, 1, 1 }, /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; static const InstrClassRUsage FPMClassRUsage = { SPARC_FPM, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 7, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { FPMIssueSlots.rid, 0, 1 }, /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, /*Cycle C */ { FPMAluC1.rid, 2, 1 }, /*Cycle N1*/ { FPMAluC2.rid, 3, 1 }, /*Cycle N1*/ { FPMAluC3.rid, 4, 1 }, /*Cycle N1*/ /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } } }; static const InstrClassRUsage FPAClassRUsage = { SPARC_FPA, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 7, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { FPAIssueSlots.rid, 0, 1 }, /*Cycle E */ { FPRegReadPorts.rid, 1, 1 }, /*Cycle C */ { FPAAluC1.rid, 2, 1 }, /*Cycle N1*/ { FPAAluC2.rid, 3, 1 }, /*Cycle N1*/ { FPAAluC3.rid, 4, 1 }, /*Cycle N1*/ /*Cycle W */ { FPRegWritePorts.rid, 6, 1 } } }; static const InstrClassRUsage LDClassRUsage = { SPARC_LD, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2, }, /*numEntries*/ 6, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { First3IssueSlots.rid, 0, 1 }, { LSIssueSlots.rid, 0, 1 }, /*Cycle E */ { LSAluC1.rid, 1, 1 }, /*Cycle C */ { LSAluC2.rid, 2, 1 }, { LdReturn.rid, 2, 1 }, /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ { IRegWritePorts.rid, 6, 1 } } }; static const InstrClassRUsage STClassRUsage = { SPARC_ST, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 3, /* feasibleSlots[] */ { 0, 1, 2 }, /*numEntries*/ 4, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { First3IssueSlots.rid, 0, 1 }, { LSIssueSlots.rid, 0, 1 }, /*Cycle E */ { LSAluC1.rid, 1, 1 }, /*Cycle C */ { LSAluC2.rid, 2, 1 } /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; static const InstrClassRUsage CTIClassRUsage = { SPARC_CTI, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ false, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 4, /* feasibleSlots[] */ { 0, 1, 2, 3 }, /*numEntries*/ 4, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { CTIIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAlu0.rid, 1, 1 }, /*Cycles E-C */ { CTIDelayCycle.rid, 1, 2 } /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; static const InstrClassRUsage SingleClassRUsage = { SPARC_SINGLE, /*totCycles*/ 7, /* maxIssueNum */ 1, /* isSingleIssue */ true, /* breaksGroup */ false, /* numBubbles */ 0, /*numSlots*/ 1, /* feasibleSlots[] */ { 0 }, /*numEntries*/ 5, /* V[] */ { /*Cycle G */ { AllIssueSlots.rid, 0, 1 }, { AllIssueSlots.rid, 0, 1 }, { AllIssueSlots.rid, 0, 1 }, { AllIssueSlots.rid, 0, 1 }, /*Cycle E */ { IAlu0.rid, 1, 1 } /*Cycle C */ /*Cycle N1*/ /*Cycle N1*/ /*Cycle N1*/ /*Cycle W */ } }; static const InstrClassRUsage SparcRUsageDesc[] = { NoneClassRUsage, IEUNClassRUsage, IEU0ClassRUsage, IEU1ClassRUsage, FPMClassRUsage, FPAClassRUsage, CTIClassRUsage, LDClassRUsage, STClassRUsage, SingleClassRUsage }; //--------------------------------------------------------------------------- // const InstrIssueDelta SparcInstrIssueDeltas[] // // Purpose: // Changes to issue restrictions information in InstrClassRUsage for // instructions that differ from other instructions in their class. //--------------------------------------------------------------------------- static const InstrIssueDelta SparcInstrIssueDeltas[] = { // opCode, isSingleIssue, breaksGroup, numBubbles // Special cases for single-issue only // Other single issue cases are below. //{ LDDA, true, true, 0 }, //{ STDA, true, true, 0 }, //{ LDDF, true, true, 0 }, //{ LDDFA, true, true, 0 }, { ADDC, true, true, 0 }, { ADDCcc, true, true, 0 }, { SUBC, true, true, 0 }, { SUBCcc, true, true, 0 }, //{ LDSTUB, true, true, 0 }, //{ SWAP, true, true, 0 }, //{ SWAPA, true, true, 0 }, //{ CAS, true, true, 0 }, //{ CASA, true, true, 0 }, //{ CASX, true, true, 0 }, //{ CASXA, true, true, 0 }, //{ LDFSR, true, true, 0 }, //{ LDFSRA, true, true, 0 }, //{ LDXFSR, true, true, 0 }, //{ LDXFSRA, true, true, 0 }, //{ STFSR, true, true, 0 }, //{ STFSRA, true, true, 0 }, //{ STXFSR, true, true, 0 }, //{ STXFSRA, true, true, 0 }, //{ SAVED, true, true, 0 }, //{ RESTORED, true, true, 0 }, //{ FLUSH, true, true, 9 }, //{ FLUSHW, true, true, 9 }, //{ ALIGNADDR, true, true, 0 }, { RETURN, true, true, 0 }, //{ DONE, true, true, 0 }, //{ RETRY, true, true, 0 }, //{ TCC, true, true, 0 }, //{ SHUTDOWN, true, true, 0 }, // Special cases for breaking group *before* // CURRENTLY NOT SUPPORTED! { CALL, false, false, 0 }, { JMPLCALL, false, false, 0 }, { JMPLRET, false, false, 0 }, // Special cases for breaking the group *after* { MULX, true, true, (4+34)/2 }, { FDIVS, false, true, 0 }, { FDIVD, false, true, 0 }, { FDIVQ, false, true, 0 }, { FSQRTS, false, true, 0 }, { FSQRTD, false, true, 0 }, { FSQRTQ, false, true, 0 }, //{ FCMP{LE,GT,NE,EQ}, false, true, 0 }, // Instructions that introduce bubbles //{ MULScc, true, true, 2 }, //{ SMULcc, true, true, (4+18)/2 }, //{ UMULcc, true, true, (4+19)/2 }, { SDIVX, true, true, 68 }, { UDIVX, true, true, 68 }, //{ SDIVcc, true, true, 36 }, //{ UDIVcc, true, true, 37 }, { WRCCR, true, true, 4 }, //{ WRPR, true, true, 4 }, //{ RDCCR, true, true, 0 }, // no bubbles after, but see below //{ RDPR, true, true, 0 }, }; //--------------------------------------------------------------------------- // const InstrRUsageDelta SparcInstrUsageDeltas[] // // Purpose: // Changes to resource usage information in InstrClassRUsage for // instructions that differ from other instructions in their class. //--------------------------------------------------------------------------- static const InstrRUsageDelta SparcInstrUsageDeltas[] = { // MachineOpCode, Resource, Start cycle, Num cycles // // JMPL counts as a load/store instruction for issue! // { JMPLCALL, LSIssueSlots.rid, 0, 1 }, { JMPLRET, LSIssueSlots.rid, 0, 1 }, // // Many instructions cannot issue for the next 2 cycles after an FCMP // We model that with a fake resource FCMPDelayCycle. // { FCMPS, FCMPDelayCycle.rid, 1, 3 }, { FCMPD, FCMPDelayCycle.rid, 1, 3 }, { FCMPQ, FCMPDelayCycle.rid, 1, 3 }, { MULX, FCMPDelayCycle.rid, 1, 1 }, { SDIVX, FCMPDelayCycle.rid, 1, 1 }, { UDIVX, FCMPDelayCycle.rid, 1, 1 }, //{ SMULcc, FCMPDelayCycle.rid, 1, 1 }, //{ UMULcc, FCMPDelayCycle.rid, 1, 1 }, //{ SDIVcc, FCMPDelayCycle.rid, 1, 1 }, //{ UDIVcc, FCMPDelayCycle.rid, 1, 1 }, { STD, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSLEZ,FCMPDelayCycle.rid, 1, 1 }, { FMOVRSLZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSNZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSGZ, FCMPDelayCycle.rid, 1, 1 }, { FMOVRSGEZ,FCMPDelayCycle.rid, 1, 1 }, // // Some instructions are stalled in the GROUP stage if a CTI is in // the E or C stage. We model that with a fake resource CTIDelayCycle. // { LDD, CTIDelayCycle.rid, 1, 1 }, //{ LDDA, CTIDelayCycle.rid, 1, 1 }, //{ LDDSTUB, CTIDelayCycle.rid, 1, 1 }, //{ LDDSTUBA, CTIDelayCycle.rid, 1, 1 }, //{ SWAP, CTIDelayCycle.rid, 1, 1 }, //{ SWAPA, CTIDelayCycle.rid, 1, 1 }, //{ CAS, CTIDelayCycle.rid, 1, 1 }, //{ CASA, CTIDelayCycle.rid, 1, 1 }, //{ CASX, CTIDelayCycle.rid, 1, 1 }, //{ CASXA, CTIDelayCycle.rid, 1, 1 }, // // Signed int loads of less than dword size return data in cycle N1 (not C) // and put all loads in consecutive cycles into delayed load return mode. // { LDSB, LdReturn.rid, 2, -1 }, { LDSB, LdReturn.rid, 3, 1 }, { LDSH, LdReturn.rid, 2, -1 }, { LDSH, LdReturn.rid, 3, 1 }, { LDSW, LdReturn.rid, 2, -1 }, { LDSW, LdReturn.rid, 3, 1 }, // // RDPR from certain registers and RD from any register are not dispatchable // until four clocks after they reach the head of the instr. buffer. // Together with their single-issue requirement, this means all four issue // slots are effectively blocked for those cycles, plus the issue cycle. // This does not increase the latency of the instruction itself. // { RDCCR, AllIssueSlots.rid, 0, 5 }, { RDCCR, AllIssueSlots.rid, 0, 5 }, { RDCCR, AllIssueSlots.rid, 0, 5 }, { RDCCR, AllIssueSlots.rid, 0, 5 }, #undef EXPLICIT_BUBBLES_NEEDED #ifdef EXPLICIT_BUBBLES_NEEDED // // MULScc inserts one bubble. // This means it breaks the current group (captured in UltraSparcSchedInfo) // *and occupies all issue slots for the next cycle // //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, //{ MULScc, AllIssueSlots.rid, 2, 2-1 }, // // SMULcc inserts between 4 and 18 bubbles, depending on #leading 0s in rs1. // We just model this with a simple average. // //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, //{ SMULcc, AllIssueSlots.rid, 2, ((4+18)/2)-1 }, // SMULcc inserts between 4 and 19 bubbles, depending on #leading 0s in rs1. //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, //{ UMULcc, AllIssueSlots.rid, 2, ((4+19)/2)-1 }, // // MULX inserts between 4 and 34 bubbles, depending on #leading 0s in rs1. // { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, { MULX, AllIssueSlots.rid, 2, ((4+34)/2)-1 }, // // SDIVcc inserts 36 bubbles. // //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, //{ SDIVcc, AllIssueSlots.rid, 2, 36-1 }, // UDIVcc inserts 37 bubbles. //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, //{ UDIVcc, AllIssueSlots.rid, 2, 37-1 }, // // SDIVX inserts 68 bubbles. // { SDIVX, AllIssueSlots.rid, 2, 68-1 }, { SDIVX, AllIssueSlots.rid, 2, 68-1 }, { SDIVX, AllIssueSlots.rid, 2, 68-1 }, { SDIVX, AllIssueSlots.rid, 2, 68-1 }, // // UDIVX inserts 68 bubbles. // { UDIVX, AllIssueSlots.rid, 2, 68-1 }, { UDIVX, AllIssueSlots.rid, 2, 68-1 }, { UDIVX, AllIssueSlots.rid, 2, 68-1 }, { UDIVX, AllIssueSlots.rid, 2, 68-1 }, // // WR inserts 4 bubbles. // //{ WR, AllIssueSlots.rid, 2, 68-1 }, //{ WR, AllIssueSlots.rid, 2, 68-1 }, //{ WR, AllIssueSlots.rid, 2, 68-1 }, //{ WR, AllIssueSlots.rid, 2, 68-1 }, // // WRPR inserts 4 bubbles. // //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, //{ WRPR, AllIssueSlots.rid, 2, 68-1 }, // // DONE inserts 9 bubbles. // //{ DONE, AllIssueSlots.rid, 2, 9-1 }, //{ DONE, AllIssueSlots.rid, 2, 9-1 }, //{ DONE, AllIssueSlots.rid, 2, 9-1 }, //{ DONE, AllIssueSlots.rid, 2, 9-1 }, // // RETRY inserts 9 bubbles. // //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, //{ RETRY, AllIssueSlots.rid, 2, 9-1 }, #endif /*EXPLICIT_BUBBLES_NEEDED */ }; // Additional delays to be captured in code: // 1. RDPR from several state registers (page 349) // 2. RD from *any* register (page 349) // 3. Writes to TICK, PSTATE, TL registers and FLUSH{W} instr (page 349) // 4. Integer store can be in same group as instr producing value to store. // 5. BICC and BPICC can be in the same group as instr producing CC (pg 350) // 6. FMOVr cannot be in the same or next group as an IEU instr (pg 351). // 7. The second instr. of a CTI group inserts 9 bubbles (pg 351) // 8. WR{PR}, SVAE, SAVED, RESTORE, RESTORED, RETURN, RETRY, and DONE that // follow an annulling branch cannot be issued in the same group or in // the 3 groups following the branch. // 9. A predicted annulled load does not stall dependent instructions. // Other annulled delay slot instructions *do* stall dependents, so // nothing special needs to be done for them during scheduling. //10. Do not put a load use that may be annulled in the same group as the // branch. The group will stall until the load returns. //11. Single-prec. FP loads lock 2 registers, for dependency checking. // // // Additional delays we cannot or will not capture: // 1. If DCTI is last word of cache line, it is delayed until next line can be // fetched. Also, other DCTI alignment-related delays (pg 352) // 2. Load-after-store is delayed by 7 extra cycles if load hits in D-Cache. // Also, several other store-load and load-store conflicts (pg 358) // 3. MEMBAR, LD{X}FSR, LDD{A} and a bunch of other load stalls (pg 358) // 4. There can be at most 8 outstanding buffered store instructions // (including some others like MEMBAR, LDSTUB, CAS{AX}, and FLUSH) //--------------------------------------------------------------------------- // class UltraSparcSchedInfo // // Purpose: // Scheduling information for the UltraSPARC. // Primarily just initializes machine-dependent parameters in // class MachineSchedInfo. //--------------------------------------------------------------------------- /*ctor*/ UltraSparcSchedInfo::UltraSparcSchedInfo(const TargetMachine& tgt) : MachineSchedInfo(tgt, (unsigned int) SPARC_NUM_SCHED_CLASSES, SparcRUsageDesc, SparcInstrUsageDeltas, SparcInstrIssueDeltas, sizeof(SparcInstrUsageDeltas)/sizeof(InstrRUsageDelta), sizeof(SparcInstrIssueDeltas)/sizeof(InstrIssueDelta)) { maxNumIssueTotal = 4; longestIssueConflict = 0; // computed from issuesGaps[] branchMispredictPenalty = 4; // 4 for SPARC IIi branchTargetUnknownPenalty = 2; // 2 for SPARC IIi l1DCacheMissPenalty = 8; // 7 or 9 for SPARC IIi l1ICacheMissPenalty = 8; // ? for SPARC IIi inOrderLoads = true; // true for SPARC IIi inOrderIssue = true; // true for SPARC IIi inOrderExec = false; // false for most architectures inOrderRetire= true; // true for most architectures // must be called after above parameters are initialized. initializeResources(); } void UltraSparcSchedInfo::initializeResources() { // Compute MachineSchedInfo::instrRUsages and MachineSchedInfo::issueGaps MachineSchedInfo::initializeResources(); // Machine-dependent fixups go here. None for now. }