//===-- llvm/Target/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the target machine instruction set to the code generator. // //===----------------------------------------------------------------------===// #ifndef LLVM_TARGET_TARGETINSTRINFO_H #define LLVM_TARGET_TARGETINSTRINFO_H #include "llvm/Target/TargetInstrDesc.h" #include "llvm/CodeGen/MachineFunction.h" namespace llvm { class MCAsmInfo; class TargetRegisterClass; class TargetRegisterInfo; class LiveVariables; class CalleeSavedInfo; class SDNode; class SelectionDAG; template class SmallVectorImpl; //--------------------------------------------------------------------------- /// /// TargetInstrInfo - Interface to description of machine instruction set /// class TargetInstrInfo { const TargetInstrDesc *Descriptors; // Raw array to allow static init'n unsigned NumOpcodes; // Number of entries in the desc array TargetInstrInfo(const TargetInstrInfo &); // DO NOT IMPLEMENT void operator=(const TargetInstrInfo &); // DO NOT IMPLEMENT public: TargetInstrInfo(const TargetInstrDesc *desc, unsigned NumOpcodes); virtual ~TargetInstrInfo(); // Invariant opcodes: All instruction sets have these as their low opcodes. enum { PHI = 0, INLINEASM = 1, DBG_LABEL = 2, EH_LABEL = 3, GC_LABEL = 4, // FIXME: DECLARE is removed. Readjust enum values ? /// EXTRACT_SUBREG - This instruction takes two operands: a register /// that has subregisters, and a subregister index. It returns the /// extracted subregister value. This is commonly used to implement /// truncation operations on target architectures which support it. EXTRACT_SUBREG = 6, /// INSERT_SUBREG - This instruction takes three operands: a register /// that has subregisters, a register providing an insert value, and a /// subregister index. It returns the value of the first register with /// the value of the second register inserted. The first register is /// often defined by an IMPLICIT_DEF, as is commonly used to implement /// anyext operations on target architectures which support it. INSERT_SUBREG = 7, /// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef. IMPLICIT_DEF = 8, /// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except /// that the first operand is an immediate integer constant. This constant /// is often zero, as is commonly used to implement zext operations on /// target architectures which support it, such as with x86-64 (with /// zext from i32 to i64 via implicit zero-extension). SUBREG_TO_REG = 9, /// COPY_TO_REGCLASS - This instruction is a placeholder for a plain /// register-to-register copy into a specific register class. This is only /// used between instruction selection and MachineInstr creation, before /// virtual registers have been created for all the instructions, and it's /// only needed in cases where the register classes implied by the /// instructions are insufficient. The actual MachineInstrs to perform /// the copy are emitted with the TargetInstrInfo::copyRegToReg hook. COPY_TO_REGCLASS = 10 }; unsigned getNumOpcodes() const { return NumOpcodes; } /// get - Return the machine instruction descriptor that corresponds to the /// specified instruction opcode. /// const TargetInstrDesc &get(unsigned Opcode) const { assert(Opcode < NumOpcodes && "Invalid opcode!"); return Descriptors[Opcode]; } /// isTriviallyReMaterializable - Return true if the instruction is trivially /// rematerializable, meaning it has no side effects and requires no operands /// that aren't always available. bool isTriviallyReMaterializable(const MachineInstr *MI) const { return MI->getDesc().isRematerializable() && isReallyTriviallyReMaterializable(MI); } protected: /// isReallyTriviallyReMaterializable - For instructions with opcodes for /// which the M_REMATERIALIZABLE flag is set, this function tests whether the /// instruction itself is actually trivially rematerializable, considering /// its operands. This is used for targets that have instructions that are /// only trivially rematerializable for specific uses. This predicate must /// return false if the instruction has any side effects other than /// producing a value, or if it requres any address registers that are not /// always available. virtual bool isReallyTriviallyReMaterializable(const MachineInstr *MI) const { return true; } public: /// Return true if the instruction is a register to register move and return /// the source and dest operands and their sub-register indices by reference. virtual bool isMoveInstr(const MachineInstr& MI, unsigned& SrcReg, unsigned& DstReg, unsigned& SrcSubIdx, unsigned& DstSubIdx) const { return false; } /// isLoadFromStackSlot - If the specified machine instruction is a direct /// load from a stack slot, return the virtual or physical register number of /// the destination along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than loading from the stack slot. virtual unsigned isLoadFromStackSlot(const MachineInstr *MI, int &FrameIndex) const { return 0; } /// isStoreToStackSlot - If the specified machine instruction is a direct /// store to a stack slot, return the virtual or physical register number of /// the source reg along with the FrameIndex of the loaded stack slot. If /// not, return 0. This predicate must return 0 if the instruction has /// any side effects other than storing to the stack slot. virtual unsigned isStoreToStackSlot(const MachineInstr *MI, int &FrameIndex) const { return 0; } /// reMaterialize - Re-issue the specified 'original' instruction at the /// specific location targeting a new destination register. virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubIdx, const MachineInstr *Orig) const = 0; /// isInvariantLoad - Return true if the specified instruction (which is /// marked mayLoad) is loading from a location whose value is invariant across /// the function. For example, loading a value from the constant pool or from /// from the argument area of a function if it does not change. This should /// only return true of *all* loads the instruction does are invariant (if it /// does multiple loads). virtual bool isInvariantLoad(const MachineInstr *MI) const { return false; } /// convertToThreeAddress - This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into one or more true /// three-address instructions on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the last new instruction. /// virtual MachineInstr * convertToThreeAddress(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI, LiveVariables *LV) const { return 0; } /// commuteInstruction - If a target has any instructions that are commutable, /// but require converting to a different instruction or making non-trivial /// changes to commute them, this method can overloaded to do this. The /// default implementation of this method simply swaps the first two operands /// of MI and returns it. /// /// If a target wants to make more aggressive changes, they can construct and /// return a new machine instruction. If an instruction cannot commute, it /// can also return null. /// /// If NewMI is true, then a new machine instruction must be created. /// virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI = false) const = 0; /// findCommutedOpIndices - If specified MI is commutable, return the two /// operand indices that would swap value. Return true if the instruction /// is not in a form which this routine understands. virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const = 0; /// AnalyzeBranch - Analyze the branching code at the end of MBB, returning /// true if it cannot be understood (e.g. it's a switch dispatch or isn't /// implemented for a target). Upon success, this returns false and returns /// with the following information in various cases: /// /// 1. If this block ends with no branches (it just falls through to its succ) /// just return false, leaving TBB/FBB null. /// 2. If this block ends with only an unconditional branch, it sets TBB to be /// the destination block. /// 3. If this block ends with an conditional branch and it falls through to /// a successor block, it sets TBB to be the branch destination block and /// a list of operands that evaluate the condition. These /// operands can be passed to other TargetInstrInfo methods to create new /// branches. /// 4. If this block ends with a conditional branch followed by an /// unconditional branch, it returns the 'true' destination in TBB, the /// 'false' destination in FBB, and a list of operands that evaluate the /// condition. These operands can be passed to other TargetInstrInfo /// methods to create new branches. /// /// Note that RemoveBranch and InsertBranch must be implemented to support /// cases where this method returns success. /// /// If AllowModify is true, then this routine is allowed to modify the basic /// block (e.g. delete instructions after the unconditional branch). /// virtual bool AnalyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify = false) const { return true; } /// RemoveBranch - Remove the branching code at the end of the specific MBB. /// This is only invoked in cases where AnalyzeBranch returns success. It /// returns the number of instructions that were removed. virtual unsigned RemoveBranch(MachineBasicBlock &MBB) const { assert(0 && "Target didn't implement TargetInstrInfo::RemoveBranch!"); return 0; } /// InsertBranch - Insert branch code into the end of the specified /// MachineBasicBlock. The operands to this method are the same as those /// returned by AnalyzeBranch. This is only invoked in cases where /// AnalyzeBranch returns success. It returns the number of instructions /// inserted. /// /// It is also invoked by tail merging to add unconditional branches in /// cases where AnalyzeBranch doesn't apply because there was no original /// branch to analyze. At least this much must be implemented, else tail /// merging needs to be disabled. virtual unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, const SmallVectorImpl &Cond) const { assert(0 && "Target didn't implement TargetInstrInfo::InsertBranch!"); return 0; } /// copyRegToReg - Emit instructions to copy between a pair of registers. It /// returns false if the target does not how to copy between the specified /// registers. virtual bool copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SrcReg, const TargetRegisterClass *DestRC, const TargetRegisterClass *SrcRC) const { assert(0 && "Target didn't implement TargetInstrInfo::copyRegToReg!"); return false; } /// storeRegToStackSlot - Store the specified register of the given register /// class to the specified stack frame index. The store instruction is to be /// added to the given machine basic block before the specified machine /// instruction. If isKill is true, the register operand is the last use and /// must be marked kill. virtual void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC) const { assert(0 && "Target didn't implement TargetInstrInfo::storeRegToStackSlot!"); } /// loadRegFromStackSlot - Load the specified register of the given register /// class from the specified stack frame index. The load instruction is to be /// added to the given machine basic block before the specified machine /// instruction. virtual void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, int FrameIndex, const TargetRegisterClass *RC) const { assert(0 && "Target didn't implement TargetInstrInfo::loadRegFromStackSlot!"); } /// spillCalleeSavedRegisters - Issues instruction(s) to spill all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of store instructions via /// storeRegToStackSlot(). Returns false otherwise. virtual bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { return false; } /// restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee /// saved registers and returns true if it isn't possible / profitable to do /// so by issuing a series of load instructions via loadRegToStackSlot(). /// Returns false otherwise. virtual bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const std::vector &CSI) const { return false; } /// foldMemoryOperand - Attempt to fold a load or store of the specified stack /// slot into the specified machine instruction for the specified operand(s). /// If this is possible, a new instruction is returned with the specified /// operand folded, otherwise NULL is returned. The client is responsible for /// removing the old instruction and adding the new one in the instruction /// stream. MachineInstr* foldMemoryOperand(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FrameIndex) const; /// foldMemoryOperand - Same as the previous version except it allows folding /// of any load and store from / to any address, not just from a specific /// stack slot. MachineInstr* foldMemoryOperand(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const; protected: /// foldMemoryOperandImpl - Target-dependent implementation for /// foldMemoryOperand. Target-independent code in foldMemoryOperand will /// take care of adding a MachineMemOperand to the newly created instruction. virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, int FrameIndex) const { return 0; } /// foldMemoryOperandImpl - Target-dependent implementation for /// foldMemoryOperand. Target-independent code in foldMemoryOperand will /// take care of adding a MachineMemOperand to the newly created instruction. virtual MachineInstr* foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, const SmallVectorImpl &Ops, MachineInstr* LoadMI) const { return 0; } public: /// canFoldMemoryOperand - Returns true for the specified load / store if /// folding is possible. virtual bool canFoldMemoryOperand(const MachineInstr *MI, const SmallVectorImpl &Ops) const { return false; } /// unfoldMemoryOperand - Separate a single instruction which folded a load or /// a store or a load and a store into two or more instruction. If this is /// possible, returns true as well as the new instructions by reference. virtual bool unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const{ return false; } virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { return false; } /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new /// instruction after load / store are unfolded from an instruction of the /// specified opcode. It returns zero if the specified unfolding is not /// possible. virtual unsigned getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore) const { return 0; } /// BlockHasNoFallThrough - Return true if the specified block does not /// fall-through into its successor block. This is primarily used when a /// branch is unanalyzable. It is useful for things like unconditional /// indirect branches (jump tables). virtual bool BlockHasNoFallThrough(const MachineBasicBlock &MBB) const { return false; } /// ReverseBranchCondition - Reverses the branch condition of the specified /// condition list, returning false on success and true if it cannot be /// reversed. virtual bool ReverseBranchCondition(SmallVectorImpl &Cond) const { return true; } /// insertNoop - Insert a noop into the instruction stream at the specified /// point. virtual void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const; /// isPredicated - Returns true if the instruction is already predicated. /// virtual bool isPredicated(const MachineInstr *MI) const { return false; } /// isUnpredicatedTerminator - Returns true if the instruction is a /// terminator instruction that has not been predicated. virtual bool isUnpredicatedTerminator(const MachineInstr *MI) const; /// PredicateInstruction - Convert the instruction into a predicated /// instruction. It returns true if the operation was successful. virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const = 0; /// SubsumesPredicate - Returns true if the first specified predicate /// subsumes the second, e.g. GE subsumes GT. virtual bool SubsumesPredicate(const SmallVectorImpl &Pred1, const SmallVectorImpl &Pred2) const { return false; } /// DefinesPredicate - If the specified instruction defines any predicate /// or condition code register(s) used for predication, returns true as well /// as the definition predicate(s) by reference. virtual bool DefinesPredicate(MachineInstr *MI, std::vector &Pred) const { return false; } /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine /// instruction that defines the specified register class. virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { return true; } /// isDeadInstruction - Return true if the instruction is considered dead. /// This allows some late codegen passes to delete them. virtual bool isDeadInstruction(const MachineInstr *MI) const = 0; /// GetInstSize - Returns the size of the specified Instruction. /// virtual unsigned GetInstSizeInBytes(const MachineInstr *MI) const { assert(0 && "Target didn't implement TargetInstrInfo::GetInstSize!"); return 0; } /// GetFunctionSizeInBytes - Returns the size of the specified /// MachineFunction. /// virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const = 0; /// Measure the specified inline asm to determine an approximation of its /// length. virtual unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI) const; }; /// TargetInstrInfoImpl - This is the default implementation of /// TargetInstrInfo, which just provides a couple of default implementations /// for various methods. This separated out because it is implemented in /// libcodegen, not in libtarget. class TargetInstrInfoImpl : public TargetInstrInfo { protected: TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes) : TargetInstrInfo(desc, NumOpcodes) {} public: virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI = false) const; virtual bool findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const; virtual bool PredicateInstruction(MachineInstr *MI, const SmallVectorImpl &Pred) const; virtual void reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, unsigned SubReg, const MachineInstr *Orig) const; virtual bool isDeadInstruction(const MachineInstr *MI) const; virtual unsigned GetFunctionSizeInBytes(const MachineFunction &MF) const; }; } // End llvm namespace #endif