//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Dominators.h" #include "llvm/Support/CFG.h" #include "llvm/Support/Compiler.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/DominatorInternals.h" #include "llvm/Instructions.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// // // Provide public access to DominatorTree information. Implementation details // can be found in DominatorCalculation.h. // //===----------------------------------------------------------------------===// TEMPLATE_INSTANTIATION(class DomTreeNodeBase); TEMPLATE_INSTANTIATION(class DominatorTreeBase); char DominatorTree::ID = 0; static RegisterPass E("domtree", "Dominator Tree Construction", true, true); bool DominatorTree::runOnFunction(Function &F) { DT->recalculate(F); return false; } void DominatorTree::print(raw_ostream &OS, const Module *) const { DT->print(OS); } // dominates - Return true if A dominates a use in B. This performs the // special checks necessary if A and B are in the same basic block. bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{ const BasicBlock *BBA = A->getParent(), *BBB = B->getParent(); // If A is an invoke instruction, its value is only available in this normal // successor block. if (const InvokeInst *II = dyn_cast(A)) BBA = II->getNormalDest(); if (BBA != BBB) return dominates(BBA, BBB); // It is not possible to determine dominance between two PHI nodes // based on their ordering. if (isa(A) && isa(B)) return false; // Loop through the basic block until we find A or B. BasicBlock::const_iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/; return &*I == A; } //===----------------------------------------------------------------------===// // DominanceFrontier Implementation //===----------------------------------------------------------------------===// char DominanceFrontier::ID = 0; static RegisterPass G("domfrontier", "Dominance Frontier Construction", true, true); // NewBB is split and now it has one successor. Update dominace frontier to // reflect this change. void DominanceFrontier::splitBlock(BasicBlock *NewBB) { assert(NewBB->getTerminator()->getNumSuccessors() == 1 && "NewBB should have a single successor!"); BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0); SmallVector PredBlocks; for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB); PI != PE; ++PI) PredBlocks.push_back(*PI); if (PredBlocks.empty()) // If NewBB does not have any predecessors then it is a entry block. // In this case, NewBB and its successor NewBBSucc dominates all // other blocks. return; // NewBBSucc inherits original NewBB frontier. DominanceFrontier::iterator NewBBI = find(NewBB); if (NewBBI != end()) { DominanceFrontier::DomSetType NewBBSet = NewBBI->second; DominanceFrontier::DomSetType NewBBSuccSet; NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end()); addBasicBlock(NewBBSucc, NewBBSuccSet); } // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the // DF(PredBlocks[0]) without the stuff that the new block does not dominate // a predecessor of. DominatorTree &DT = getAnalysis(); if (DT.dominates(NewBB, NewBBSucc)) { DominanceFrontier::iterator DFI = find(PredBlocks[0]); if (DFI != end()) { DominanceFrontier::DomSetType Set = DFI->second; // Filter out stuff in Set that we do not dominate a predecessor of. for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), E = Set.end(); SetI != E;) { bool DominatesPred = false; for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI); PI != E; ++PI) if (DT.dominates(NewBB, *PI)) DominatesPred = true; if (!DominatesPred) Set.erase(SetI++); else ++SetI; } if (NewBBI != end()) { for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(), E = Set.end(); SetI != E; ++SetI) { BasicBlock *SB = *SetI; addToFrontier(NewBBI, SB); } } else addBasicBlock(NewBB, Set); } } else { // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate // NewBBSucc, but it does dominate itself (and there is an edge (NewBB -> // NewBBSucc)). NewBBSucc is the single successor of NewBB. DominanceFrontier::DomSetType NewDFSet; NewDFSet.insert(NewBBSucc); addBasicBlock(NewBB, NewDFSet); } // Now we must loop over all of the dominance frontiers in the function, // replacing occurrences of NewBBSucc with NewBB in some cases. All // blocks that dominate a block in PredBlocks and contained NewBBSucc in // their dominance frontier must be updated to contain NewBB instead. // for (Function::iterator FI = NewBB->getParent()->begin(), FE = NewBB->getParent()->end(); FI != FE; ++FI) { DominanceFrontier::iterator DFI = find(FI); if (DFI == end()) continue; // unreachable block. // Only consider nodes that have NewBBSucc in their dominator frontier. if (!DFI->second.count(NewBBSucc)) continue; // Verify whether this block dominates a block in predblocks. If not, do // not update it. bool BlockDominatesAny = false; for (SmallVectorImpl::const_iterator BI = PredBlocks.begin(), BE = PredBlocks.end(); BI != BE; ++BI) { if (DT.dominates(FI, *BI)) { BlockDominatesAny = true; break; } } // If NewBBSucc should not stay in our dominator frontier, remove it. // We remove it unless there is a predecessor of NewBBSucc that we // dominate, but we don't strictly dominate NewBBSucc. bool ShouldRemove = true; if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) { // Okay, we know that PredDom does not strictly dominate NewBBSucc. // Check to see if it dominates any predecessors of NewBBSucc. for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc); PI != E; ++PI) if (DT.dominates(FI, *PI)) { ShouldRemove = false; break; } } if (ShouldRemove) removeFromFrontier(DFI, NewBBSucc); if (BlockDominatesAny && (&*FI == NewBB || !DT.dominates(FI, NewBB))) addToFrontier(DFI, NewBB); } } namespace { class DFCalculateWorkObject { public: DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, const DomTreeNode *N, const DomTreeNode *PN) : currentBB(B), parentBB(P), Node(N), parentNode(PN) {} BasicBlock *currentBB; BasicBlock *parentBB; const DomTreeNode *Node; const DomTreeNode *parentNode; }; } const DominanceFrontier::DomSetType & DominanceFrontier::calculate(const DominatorTree &DT, const DomTreeNode *Node) { BasicBlock *BB = Node->getBlock(); DomSetType *Result = NULL; std::vector workList; SmallPtrSet visited; workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL)); do { DFCalculateWorkObject *currentW = &workList.back(); assert (currentW && "Missing work object."); BasicBlock *currentBB = currentW->currentBB; BasicBlock *parentBB = currentW->parentBB; const DomTreeNode *currentNode = currentW->Node; const DomTreeNode *parentNode = currentW->parentNode; assert (currentBB && "Invalid work object. Missing current Basic Block"); assert (currentNode && "Invalid work object. Missing current Node"); DomSetType &S = Frontiers[currentBB]; // Visit each block only once. if (visited.count(currentBB) == 0) { visited.insert(currentBB); // Loop over CFG successors to calculate DFlocal[currentNode] for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB); SI != SE; ++SI) { // Does Node immediately dominate this successor? if (DT[*SI]->getIDom() != currentNode) S.insert(*SI); } } // At this point, S is DFlocal. Now we union in DFup's of our children... // Loop through and visit the nodes that Node immediately dominates (Node's // children in the IDomTree) bool visitChild = false; for (DomTreeNode::const_iterator NI = currentNode->begin(), NE = currentNode->end(); NI != NE; ++NI) { DomTreeNode *IDominee = *NI; BasicBlock *childBB = IDominee->getBlock(); if (visited.count(childBB) == 0) { workList.push_back(DFCalculateWorkObject(childBB, currentBB, IDominee, currentNode)); visitChild = true; } } // If all children are visited or there is any child then pop this block // from the workList. if (!visitChild) { if (!parentBB) { Result = &S; break; } DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end(); DomSetType &parentSet = Frontiers[parentBB]; for (; CDFI != CDFE; ++CDFI) { if (!DT.properlyDominates(parentNode, DT[*CDFI])) parentSet.insert(*CDFI); } workList.pop_back(); } } while (!workList.empty()); return *Result; } void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const { for (const_iterator I = begin(), E = end(); I != E; ++I) { OS << " DomFrontier for BB"; if (I->first) WriteAsOperand(OS, I->first, false); else OS << " <>"; OS << " is:\t"; const std::set &BBs = I->second; for (std::set::const_iterator I = BBs.begin(), E = BBs.end(); I != E; ++I) if (*I) WriteAsOperand(OS, *I, false); else OS << " <>"; OS << "\n"; } }