//===-- llvm/Type.h - Classes for handling data types -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the Type class. For more "Type" // stuff, look in DerivedTypes.h. // //===----------------------------------------------------------------------===// #ifndef LLVM_TYPE_H #define LLVM_TYPE_H #include "llvm/Support/Casting.h" namespace llvm { class PointerType; class IntegerType; class raw_ostream; class Module; class LLVMContext; class LLVMContextImpl; template struct GraphTraits; /// The instances of the Type class are immutable: once they are created, /// they are never changed. Also note that only one instance of a particular /// type is ever created. Thus seeing if two types are equal is a matter of /// doing a trivial pointer comparison. To enforce that no two equal instances /// are created, Type instances can only be created via static factory methods /// in class Type and in derived classes. Once allocated, Types are never /// free'd. /// class Type { public: //===--------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this /// value, you can cast to a class defined in DerivedTypes.h. /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. /// enum TypeID { // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date. VoidTyID = 0, ///< 0: type with no size FloatTyID, ///< 1: 32-bit floating point type DoubleTyID, ///< 2: 64-bit floating point type X86_FP80TyID, ///< 3: 80-bit floating point type (X87) FP128TyID, ///< 4: 128-bit floating point type (112-bit mantissa) PPC_FP128TyID, ///< 5: 128-bit floating point type (two 64-bits, PowerPC) LabelTyID, ///< 6: Labels MetadataTyID, ///< 7: Metadata X86_MMXTyID, ///< 8: MMX vectors (64 bits, X86 specific) // Derived types... see DerivedTypes.h file. // Make sure FirstDerivedTyID stays up to date! IntegerTyID, ///< 9: Arbitrary bit width integers FunctionTyID, ///< 10: Functions StructTyID, ///< 11: Structures ArrayTyID, ///< 12: Arrays PointerTyID, ///< 13: Pointers VectorTyID, ///< 14: SIMD 'packed' format, or other vector type NumTypeIDs, // Must remain as last defined ID LastPrimitiveTyID = X86_MMXTyID, FirstDerivedTyID = IntegerTyID }; private: /// Context - This refers to the LLVMContext in which this type was uniqued. LLVMContext &Context; TypeID ID : 8; // The current base type of this type. unsigned SubclassData : 24; // Space for subclasses to store data protected: friend class LLVMContextImpl; explicit Type(LLVMContext &C, TypeID tid) : Context(C), ID(tid), SubclassData(0), NumContainedTys(0), ContainedTys(0) {} ~Type() {} unsigned getSubclassData() const { return SubclassData; } void setSubclassData(unsigned val) { SubclassData = val; // Ensure we don't have any accidental truncation. assert(SubclassData == val && "Subclass data too large for field"); } /// NumContainedTys - Keeps track of how many Type*'s there are in the /// ContainedTys list. unsigned NumContainedTys; /// ContainedTys - A pointer to the array of Types contained by this Type. /// For example, this includes the arguments of a function type, the elements /// of a structure, the pointee of a pointer, the element type of an array, /// etc. This pointer may be 0 for types that don't contain other types /// (Integer, Double, Float). Type * const *ContainedTys; public: void print(raw_ostream &O) const; void dump() const; /// getContext - Return the LLVMContext in which this type was uniqued. LLVMContext &getContext() const { return Context; } //===--------------------------------------------------------------------===// // Accessors for working with types. // /// getTypeID - Return the type id for the type. This will return one /// of the TypeID enum elements defined above. /// TypeID getTypeID() const { return ID; } /// isVoidTy - Return true if this is 'void'. bool isVoidTy() const { return ID == VoidTyID; } /// isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type. bool isFloatTy() const { return ID == FloatTyID; } /// isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type. bool isDoubleTy() const { return ID == DoubleTyID; } /// isX86_FP80Ty - Return true if this is x86 long double. bool isX86_FP80Ty() const { return ID == X86_FP80TyID; } /// isFP128Ty - Return true if this is 'fp128'. bool isFP128Ty() const { return ID == FP128TyID; } /// isPPC_FP128Ty - Return true if this is powerpc long double. bool isPPC_FP128Ty() const { return ID == PPC_FP128TyID; } /// isFloatingPointTy - Return true if this is one of the five floating point /// types bool isFloatingPointTy() const { return ID == FloatTyID || ID == DoubleTyID || ID == X86_FP80TyID || ID == FP128TyID || ID == PPC_FP128TyID; } /// isX86_MMXTy - Return true if this is X86 MMX. bool isX86_MMXTy() const { return ID == X86_MMXTyID; } /// isFPOrFPVectorTy - Return true if this is a FP type or a vector of FP. /// bool isFPOrFPVectorTy() const; /// isLabelTy - Return true if this is 'label'. bool isLabelTy() const { return ID == LabelTyID; } /// isMetadataTy - Return true if this is 'metadata'. bool isMetadataTy() const { return ID == MetadataTyID; } /// isIntegerTy - True if this is an instance of IntegerType. /// bool isIntegerTy() const { return ID == IntegerTyID; } /// isIntegerTy - Return true if this is an IntegerType of the given width. bool isIntegerTy(unsigned Bitwidth) const; /// isIntOrIntVectorTy - Return true if this is an integer type or a vector of /// integer types. /// bool isIntOrIntVectorTy() const; /// isFunctionTy - True if this is an instance of FunctionType. /// bool isFunctionTy() const { return ID == FunctionTyID; } /// isStructTy - True if this is an instance of StructType. /// bool isStructTy() const { return ID == StructTyID; } /// isArrayTy - True if this is an instance of ArrayType. /// bool isArrayTy() const { return ID == ArrayTyID; } /// isPointerTy - True if this is an instance of PointerType. /// bool isPointerTy() const { return ID == PointerTyID; } /// isVectorTy - True if this is an instance of VectorType. /// bool isVectorTy() const { return ID == VectorTyID; } /// canLosslesslyBitCastTo - Return true if this type could be converted /// with a lossless BitCast to type 'Ty'. For example, i8* to i32*. BitCasts /// are valid for types of the same size only where no re-interpretation of /// the bits is done. /// @brief Determine if this type could be losslessly bitcast to Ty bool canLosslesslyBitCastTo(const Type *Ty) const; /// isEmptyTy - Return true if this type is empty, that is, it has no /// elements or all its elements are empty. bool isEmptyTy() const; /// Here are some useful little methods to query what type derived types are /// Note that all other types can just compare to see if this == Type::xxxTy; /// bool isPrimitiveType() const { return ID <= LastPrimitiveTyID; } bool isDerivedType() const { return ID >= FirstDerivedTyID; } /// isFirstClassType - Return true if the type is "first class", meaning it /// is a valid type for a Value. /// bool isFirstClassType() const { return ID != FunctionTyID && ID != VoidTyID; } /// isSingleValueType - Return true if the type is a valid type for a /// register in codegen. This includes all first-class types except struct /// and array types. /// bool isSingleValueType() const { return (ID != VoidTyID && isPrimitiveType()) || ID == IntegerTyID || ID == PointerTyID || ID == VectorTyID; } /// isAggregateType - Return true if the type is an aggregate type. This /// means it is valid as the first operand of an insertvalue or /// extractvalue instruction. This includes struct and array types, but /// does not include vector types. /// bool isAggregateType() const { return ID == StructTyID || ID == ArrayTyID; } /// isSized - Return true if it makes sense to take the size of this type. To /// get the actual size for a particular target, it is reasonable to use the /// TargetData subsystem to do this. /// bool isSized() const { // If it's a primitive, it is always sized. if (ID == IntegerTyID || isFloatingPointTy() || ID == PointerTyID || ID == X86_MMXTyID) return true; // If it is not something that can have a size (e.g. a function or label), // it doesn't have a size. if (ID != StructTyID && ID != ArrayTyID && ID != VectorTyID) return false; // Otherwise we have to try harder to decide. return isSizedDerivedType(); } /// getPrimitiveSizeInBits - Return the basic size of this type if it is a /// primitive type. These are fixed by LLVM and are not target dependent. /// This will return zero if the type does not have a size or is not a /// primitive type. /// /// Note that this may not reflect the size of memory allocated for an /// instance of the type or the number of bytes that are written when an /// instance of the type is stored to memory. The TargetData class provides /// additional query functions to provide this information. /// unsigned getPrimitiveSizeInBits() const; /// getScalarSizeInBits - If this is a vector type, return the /// getPrimitiveSizeInBits value for the element type. Otherwise return the /// getPrimitiveSizeInBits value for this type. unsigned getScalarSizeInBits() const; /// getFPMantissaWidth - Return the width of the mantissa of this type. This /// is only valid on floating point types. If the FP type does not /// have a stable mantissa (e.g. ppc long double), this method returns -1. int getFPMantissaWidth() const; /// getScalarType - If this is a vector type, return the element type, /// otherwise return 'this'. const Type *getScalarType() const; //===--------------------------------------------------------------------===// // Type Iteration support. // typedef Type * const *subtype_iterator; subtype_iterator subtype_begin() const { return ContainedTys; } subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} /// getContainedType - This method is used to implement the type iterator /// (defined a the end of the file). For derived types, this returns the /// types 'contained' in the derived type. /// Type *getContainedType(unsigned i) const { assert(i < NumContainedTys && "Index out of range!"); return ContainedTys[i]; } /// getNumContainedTypes - Return the number of types in the derived type. /// unsigned getNumContainedTypes() const { return NumContainedTys; } //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting // instances of Type. // /// getPrimitiveType - Return a type based on an identifier. static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); //===--------------------------------------------------------------------===// // These are the builtin types that are always available. // static Type *getVoidTy(LLVMContext &C); static Type *getLabelTy(LLVMContext &C); static Type *getFloatTy(LLVMContext &C); static Type *getDoubleTy(LLVMContext &C); static Type *getMetadataTy(LLVMContext &C); static Type *getX86_FP80Ty(LLVMContext &C); static Type *getFP128Ty(LLVMContext &C); static Type *getPPC_FP128Ty(LLVMContext &C); static Type *getX86_MMXTy(LLVMContext &C); static IntegerType *getIntNTy(LLVMContext &C, unsigned N); static IntegerType *getInt1Ty(LLVMContext &C); static IntegerType *getInt8Ty(LLVMContext &C); static IntegerType *getInt16Ty(LLVMContext &C); static IntegerType *getInt32Ty(LLVMContext &C); static IntegerType *getInt64Ty(LLVMContext &C); //===--------------------------------------------------------------------===// // Convenience methods for getting pointer types with one of the above builtin // types as pointee. // static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); /// Methods for support type inquiry through isa, cast, and dyn_cast: static inline bool classof(const Type *) { return true; } /// getPointerTo - Return a pointer to the current type. This is equivalent /// to PointerType::get(Foo, AddrSpace). PointerType *getPointerTo(unsigned AddrSpace = 0) const; private: /// isSizedDerivedType - Derived types like structures and arrays are sized /// iff all of the members of the type are sized as well. Since asking for /// their size is relatively uncommon, move this operation out of line. bool isSizedDerivedType() const; }; // Printing of types. static inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { T.print(OS); return OS; } // allow isa(x) to work without DerivedTypes.h included. template <> struct isa_impl { static inline bool doit(const Type &Ty) { return Ty.getTypeID() == Type::PointerTyID; } }; //===----------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types. template <> struct GraphTraits { typedef Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(Type *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; template <> struct GraphTraits { typedef const Type NodeType; typedef Type::subtype_iterator ChildIteratorType; static inline NodeType *getEntryNode(const Type *T) { return T; } static inline ChildIteratorType child_begin(NodeType *N) { return N->subtype_begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->subtype_end(); } }; } // End llvm namespace #endif