//===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Place garbage collection safepoints at appropriate locations in the IR. This // does not make relocation semantics or variable liveness explicit. That's // done by RewriteStatepointsForGC. // // Terminology: // - A call is said to be "parseable" if there is a stack map generated for the // return PC of the call. A runtime can determine where values listed in the // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located // on the stack when the code is suspended inside such a call. Every parse // point is represented by a call wrapped in an gc.statepoint intrinsic. // - A "poll" is an explicit check in the generated code to determine if the // runtime needs the generated code to cooperate by calling a helper routine // and thus suspending its execution at a known state. The call to the helper // routine will be parseable. The (gc & runtime specific) logic of a poll is // assumed to be provided in a function of the name "gc.safepoint_poll". // // We aim to insert polls such that running code can quickly be brought to a // well defined state for inspection by the collector. In the current // implementation, this is done via the insertion of poll sites at method entry // and the backedge of most loops. We try to avoid inserting more polls than // are neccessary to ensure a finite period between poll sites. This is not // because the poll itself is expensive in the generated code; it's not. Polls // do tend to impact the optimizer itself in negative ways; we'd like to avoid // perturbing the optimization of the method as much as we can. // // We also need to make most call sites parseable. The callee might execute a // poll (or otherwise be inspected by the GC). If so, the entire stack // (including the suspended frame of the current method) must be parseable. // // This pass will insert: // - Call parse points ("call safepoints") for any call which may need to // reach a safepoint during the execution of the callee function. // - Backedge safepoint polls and entry safepoint polls to ensure that // executing code reaches a safepoint poll in a finite amount of time. // // We do not currently support return statepoints, but adding them would not // be hard. They are not required for correctness - entry safepoints are an // alternative - but some GCs may prefer them. Patches welcome. // //===----------------------------------------------------------------------===// #include "llvm/Pass.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #define DEBUG_TYPE "safepoint-placement" STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted"); STATISTIC(NumCallSafepoints, "Number of call safepoints inserted"); STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted"); STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop"); STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution"); using namespace llvm; // Ignore oppurtunities to avoid placing safepoints on backedges, useful for // validation static cl::opt AllBackedges("spp-all-backedges", cl::Hidden, cl::init(false)); /// If true, do not place backedge safepoints in counted loops. static cl::opt SkipCounted("spp-counted", cl::Hidden, cl::init(true)); // If true, split the backedge of a loop when placing the safepoint, otherwise // split the latch block itself. Both are useful to support for // experimentation, but in practice, it looks like splitting the backedge // optimizes better. static cl::opt SplitBackedge("spp-split-backedge", cl::Hidden, cl::init(false)); // Print tracing output static cl::opt TraceLSP("spp-trace", cl::Hidden, cl::init(false)); namespace { /// An analysis pass whose purpose is to identify each of the backedges in /// the function which require a safepoint poll to be inserted. struct PlaceBackedgeSafepointsImpl : public FunctionPass { static char ID; /// The output of the pass - gives a list of each backedge (described by /// pointing at the branch) which need a poll inserted. std::vector PollLocations; /// True unless we're running spp-no-calls in which case we need to disable /// the call dependend placement opts. bool CallSafepointsEnabled; ScalarEvolution *SE = nullptr; DominatorTree *DT = nullptr; LoopInfo *LI = nullptr; PlaceBackedgeSafepointsImpl(bool CallSafepoints = false) : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) { initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry()); } bool runOnLoop(Loop *); void runOnLoopAndSubLoops(Loop *L) { // Visit all the subloops for (auto I = L->begin(), E = L->end(); I != E; I++) runOnLoopAndSubLoops(*I); runOnLoop(L); } bool runOnFunction(Function &F) override { SE = &getAnalysis(); DT = &getAnalysis().getDomTree(); LI = &getAnalysis().getLoopInfo(); for (auto I = LI->begin(), E = LI->end(); I != E; I++) { runOnLoopAndSubLoops(*I); } return false; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); // We no longer modify the IR at all in this pass. Thus all // analysis are preserved. AU.setPreservesAll(); } }; } static cl::opt NoEntry("spp-no-entry", cl::Hidden, cl::init(false)); static cl::opt NoCall("spp-no-call", cl::Hidden, cl::init(false)); static cl::opt NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false)); namespace { struct PlaceSafepoints : public FunctionPass { static char ID; // Pass identification, replacement for typeid PlaceSafepoints() : FunctionPass(ID) { initializePlaceSafepointsPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { // We modify the graph wholesale (inlining, block insertion, etc). We // preserve nothing at the moment. We could potentially preserve dom tree // if that was worth doing } }; } // Insert a safepoint poll immediately before the given instruction. Does // not handle the parsability of state at the runtime call, that's the // callers job. static void InsertSafepointPoll(Instruction *after, std::vector &ParsePointsNeeded /*rval*/); static bool isGCLeafFunction(const CallSite &CS); static bool needsStatepoint(const CallSite &CS) { if (isGCLeafFunction(CS)) return false; if (CS.isCall()) { CallInst *call = cast(CS.getInstruction()); if (call->isInlineAsm()) return false; } if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) { return false; } return true; } static Value *ReplaceWithStatepoint(const CallSite &CS, Pass *P); /// Returns true if this loop is known to contain a call safepoint which /// must unconditionally execute on any iteration of the loop which returns /// to the loop header via an edge from Pred. Returns a conservative correct /// answer; i.e. false is always valid. static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header, BasicBlock *Pred, DominatorTree &DT) { // In general, we're looking for any cut of the graph which ensures // there's a call safepoint along every edge between Header and Pred. // For the moment, we look only for the 'cuts' that consist of a single call // instruction in a block which is dominated by the Header and dominates the // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain // of such dominating blocks gets substaintially more occurences than just // checking the Pred and Header blocks themselves. This may be due to the // density of loop exit conditions caused by range and null checks. // TODO: structure this as an analysis pass, cache the result for subloops, // avoid dom tree recalculations assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?"); BasicBlock *Current = Pred; while (true) { for (Instruction &I : *Current) { if (auto CS = CallSite(&I)) // Note: Technically, needing a safepoint isn't quite the right // condition here. We should instead be checking if the target method // has an // unconditional poll. In practice, this is only a theoretical concern // since we don't have any methods with conditional-only safepoint // polls. if (needsStatepoint(CS)) return true; } if (Current == Header) break; Current = DT.getNode(Current)->getIDom()->getBlock(); } return false; } /// Returns true if this loop is known to terminate in a finite number of /// iterations. Note that this function may return false for a loop which /// does actual terminate in a finite constant number of iterations due to /// conservatism in the analysis. static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE, BasicBlock *Pred) { // Only used when SkipCounted is off const unsigned upperTripBound = 8192; // A conservative bound on the loop as a whole. const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L); if (MaxTrips != SE->getCouldNotCompute()) { if (SE->getUnsignedRange(MaxTrips).getUnsignedMax().ult(upperTripBound)) return true; if (SkipCounted && SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(32)) return true; } // If this is a conditional branch to the header with the alternate path // being outside the loop, we can ask questions about the execution frequency // of the exit block. if (L->isLoopExiting(Pred)) { // This returns an exact expression only. TODO: We really only need an // upper bound here, but SE doesn't expose that. const SCEV *MaxExec = SE->getExitCount(L, Pred); if (MaxExec != SE->getCouldNotCompute()) { if (SE->getUnsignedRange(MaxExec).getUnsignedMax().ult(upperTripBound)) return true; if (SkipCounted && SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(32)) return true; } } return /* not finite */ false; } static void scanOneBB(Instruction *start, Instruction *end, std::vector &calls, std::set &seen, std::vector &worklist) { for (BasicBlock::iterator itr(start); itr != start->getParent()->end() && itr != BasicBlock::iterator(end); itr++) { if (CallInst *CI = dyn_cast(&*itr)) { calls.push_back(CI); } // FIXME: This code does not handle invokes assert(!dyn_cast(&*itr) && "support for invokes in poll code needed"); // Only add the successor blocks if we reach the terminator instruction // without encountering end first if (itr->isTerminator()) { BasicBlock *BB = itr->getParent(); for (BasicBlock *Succ : successors(BB)) { if (seen.count(Succ) == 0) { worklist.push_back(Succ); seen.insert(Succ); } } } } } static void scanInlinedCode(Instruction *start, Instruction *end, std::vector &calls, std::set &seen) { calls.clear(); std::vector worklist; seen.insert(start->getParent()); scanOneBB(start, end, calls, seen, worklist); while (!worklist.empty()) { BasicBlock *BB = worklist.back(); worklist.pop_back(); scanOneBB(&*BB->begin(), end, calls, seen, worklist); } } bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) { // Loop through all loop latches (branches controlling backedges). We need // to place a safepoint on every backedge (potentially). // Note: In common usage, there will be only one edge due to LoopSimplify // having run sometime earlier in the pipeline, but this code must be correct // w.r.t. loops with multiple backedges. BasicBlock *header = L->getHeader(); SmallVector LoopLatches; L->getLoopLatches(LoopLatches); for (BasicBlock *pred : LoopLatches) { assert(L->contains(pred)); // Make a policy decision about whether this loop needs a safepoint or // not. Note that this is about unburdening the optimizer in loops, not // avoiding the runtime cost of the actual safepoint. if (!AllBackedges) { if (mustBeFiniteCountedLoop(L, SE, pred)) { if (TraceLSP) errs() << "skipping safepoint placement in finite loop\n"; FiniteExecution++; continue; } if (CallSafepointsEnabled && containsUnconditionalCallSafepoint(L, header, pred, *DT)) { // Note: This is only semantically legal since we won't do any further // IPO or inlining before the actual call insertion.. If we hadn't, we // might latter loose this call safepoint. if (TraceLSP) errs() << "skipping safepoint placement due to unconditional call\n"; CallInLoop++; continue; } } // TODO: We can create an inner loop which runs a finite number of // iterations with an outer loop which contains a safepoint. This would // not help runtime performance that much, but it might help our ability to // optimize the inner loop. // Safepoint insertion would involve creating a new basic block (as the // target of the current backedge) which does the safepoint (of all live // variables) and branches to the true header TerminatorInst *term = pred->getTerminator(); if (TraceLSP) { errs() << "[LSP] terminator instruction: "; term->dump(); } PollLocations.push_back(term); } return false; } static Instruction *findLocationForEntrySafepoint(Function &F, DominatorTree &DT) { // Conceptually, this poll needs to be on method entry, but in // practice, we place it as late in the entry block as possible. We // can place it as late as we want as long as it dominates all calls // that can grow the stack. This, combined with backedge polls, // give us all the progress guarantees we need. // Due to the way the frontend generates IR, we may have a couple of initial // basic blocks before the first bytecode. These will be single-entry // single-exit blocks which conceptually are just part of the first 'real // basic block'. Since we don't have deopt state until the first bytecode, // walk forward until we've found the first unconditional branch or merge. // hasNextInstruction and nextInstruction are used to iterate // through a "straight line" execution sequence. auto hasNextInstruction = [](Instruction *I) { if (!I->isTerminator()) { return true; } BasicBlock *nextBB = I->getParent()->getUniqueSuccessor(); return nextBB && (nextBB->getUniquePredecessor() != nullptr); }; auto nextInstruction = [&hasNextInstruction](Instruction *I) { assert(hasNextInstruction(I) && "first check if there is a next instruction!"); if (I->isTerminator()) { return I->getParent()->getUniqueSuccessor()->begin(); } else { return std::next(BasicBlock::iterator(I)); } }; Instruction *cursor = nullptr; for (cursor = F.getEntryBlock().begin(); hasNextInstruction(cursor); cursor = nextInstruction(cursor)) { // We need to stop going forward as soon as we see a call that can // grow the stack (i.e. the call target has a non-zero frame // size). if (CallSite(cursor)) { if (IntrinsicInst *II = dyn_cast(cursor)) { // llvm.assume(...) are not really calls. if (II->getIntrinsicID() == Intrinsic::assume) { continue; } // llvm.frameescape() intrinsic is not a real call. The intrinsic can // exist only in the entry block. // Inserting a statepoint before llvm.frameescape() may split the // entry block, and push the intrinsic out of the entry block. if (II->getIntrinsicID() == Intrinsic::frameescape) { continue; } } break; } } assert((hasNextInstruction(cursor) || cursor->isTerminator()) && "either we stopped because of a call, or because of terminator"); if (cursor->isTerminator()) { return cursor; } BasicBlock *BB = cursor->getParent(); SplitBlock(BB, cursor, &DT); // SplitBlock updates the DT DEBUG(DT.verifyDomTree()); return BB->getTerminator(); } /// Identify the list of call sites which need to be have parseable state static void findCallSafepoints(Function &F, std::vector &Found /*rval*/) { assert(Found.empty() && "must be empty!"); for (Instruction &I : inst_range(F)) { Instruction *inst = &I; if (isa(inst) || isa(inst)) { CallSite CS(inst); // No safepoint needed or wanted if (!needsStatepoint(CS)) { continue; } Found.push_back(CS); } } } /// Implement a unique function which doesn't require we sort the input /// vector. Doing so has the effect of changing the output of a couple of /// tests in ways which make them less useful in testing fused safepoints. template static void unique_unsorted(std::vector &vec) { std::set seen; std::vector tmp; vec.reserve(vec.size()); std::swap(tmp, vec); for (auto V : tmp) { if (seen.insert(V).second) { vec.push_back(V); } } } static std::string GCSafepointPollName("gc.safepoint_poll"); static bool isGCSafepointPoll(Function &F) { return F.getName().equals(GCSafepointPollName); } /// Returns true if this function should be rewritten to include safepoint /// polls and parseable call sites. The main point of this function is to be /// an extension point for custom logic. static bool shouldRewriteFunction(Function &F) { // TODO: This should check the GCStrategy if (F.hasGC()) { const std::string StatepointExampleName("statepoint-example"); return StatepointExampleName == F.getGC(); } else return false; } // TODO: These should become properties of the GCStrategy, possibly with // command line overrides. static bool enableEntrySafepoints(Function &F) { return !NoEntry; } static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; } static bool enableCallSafepoints(Function &F) { return !NoCall; } // Normalize basic block to make it ready to be target of invoke statepoint. // Ensure that 'BB' does not have phi nodes. It may require spliting it. static BasicBlock *normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent) { BasicBlock *ret = BB; if (!BB->getUniquePredecessor()) { ret = SplitBlockPredecessors(BB, InvokeParent, ""); } // Now that 'ret' has unique predecessor we can safely remove all phi nodes // from it FoldSingleEntryPHINodes(ret); assert(!isa(ret->begin())); return ret; } bool PlaceSafepoints::runOnFunction(Function &F) { if (F.isDeclaration() || F.empty()) { // This is a declaration, nothing to do. Must exit early to avoid crash in // dom tree calculation return false; } if (isGCSafepointPoll(F)) { // Given we're inlining this inside of safepoint poll insertion, this // doesn't make any sense. Note that we do make any contained calls // parseable after we inline a poll. return false; } if (!shouldRewriteFunction(F)) return false; bool modified = false; // In various bits below, we rely on the fact that uses are reachable from // defs. When there are basic blocks unreachable from the entry, dominance // and reachablity queries return non-sensical results. Thus, we preprocess // the function to ensure these properties hold. modified |= removeUnreachableBlocks(F); // STEP 1 - Insert the safepoint polling locations. We do not need to // actually insert parse points yet. That will be done for all polls and // calls in a single pass. DominatorTree DT; DT.recalculate(F); SmallVector PollsNeeded; std::vector ParsePointNeeded; if (enableBackedgeSafepoints(F)) { // Construct a pass manager to run the LoopPass backedge logic. We // need the pass manager to handle scheduling all the loop passes // appropriately. Doing this by hand is painful and just not worth messing // with for the moment. legacy::FunctionPassManager FPM(F.getParent()); bool CanAssumeCallSafepoints = enableCallSafepoints(F); PlaceBackedgeSafepointsImpl *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints); FPM.add(PBS); FPM.run(F); // We preserve dominance information when inserting the poll, otherwise // we'd have to recalculate this on every insert DT.recalculate(F); auto &PollLocations = PBS->PollLocations; auto OrderByBBName = [](Instruction *a, Instruction *b) { return a->getParent()->getName() < b->getParent()->getName(); }; // We need the order of list to be stable so that naming ends up stable // when we split edges. This makes test cases much easier to write. std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName); // We can sometimes end up with duplicate poll locations. This happens if // a single loop is visited more than once. The fact this happens seems // wrong, but it does happen for the split-backedge.ll test case. PollLocations.erase(std::unique(PollLocations.begin(), PollLocations.end()), PollLocations.end()); // Insert a poll at each point the analysis pass identified // The poll location must be the terminator of a loop latch block. for (TerminatorInst *Term : PollLocations) { // We are inserting a poll, the function is modified modified = true; if (SplitBackedge) { // Split the backedge of the loop and insert the poll within that new // basic block. This creates a loop with two latches per original // latch (which is non-ideal), but this appears to be easier to // optimize in practice than inserting the poll immediately before the // latch test. // Since this is a latch, at least one of the successors must dominate // it. Its possible that we have a) duplicate edges to the same header // and b) edges to distinct loop headers. We need to insert pools on // each. SetVector Headers; for (unsigned i = 0; i < Term->getNumSuccessors(); i++) { BasicBlock *Succ = Term->getSuccessor(i); if (DT.dominates(Succ, Term->getParent())) { Headers.insert(Succ); } } assert(!Headers.empty() && "poll location is not a loop latch?"); // The split loop structure here is so that we only need to recalculate // the dominator tree once. Alternatively, we could just keep it up to // date and use a more natural merged loop. SetVector SplitBackedges; for (BasicBlock *Header : Headers) { BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT); PollsNeeded.push_back(NewBB->getTerminator()); NumBackedgeSafepoints++; } } else { // Split the latch block itself, right before the terminator. PollsNeeded.push_back(Term); NumBackedgeSafepoints++; } } } if (enableEntrySafepoints(F)) { Instruction *Location = findLocationForEntrySafepoint(F, DT); if (!Location) { // policy choice not to insert? } else { PollsNeeded.push_back(Location); modified = true; NumEntrySafepoints++; } } // Now that we've identified all the needed safepoint poll locations, insert // safepoint polls themselves. for (Instruction *PollLocation : PollsNeeded) { std::vector RuntimeCalls; InsertSafepointPoll(PollLocation, RuntimeCalls); ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(), RuntimeCalls.end()); } PollsNeeded.clear(); // make sure we don't accidentally use // The dominator tree has been invalidated by the inlining performed in the // above loop. TODO: Teach the inliner how to update the dom tree? DT.recalculate(F); if (enableCallSafepoints(F)) { std::vector Calls; findCallSafepoints(F, Calls); NumCallSafepoints += Calls.size(); ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end()); } // Unique the vectors since we can end up with duplicates if we scan the call // site for call safepoints after we add it for entry or backedge. The // only reason we need tracking at all is that some functions might have // polls but not call safepoints and thus we might miss marking the runtime // calls for the polls. (This is useful in test cases!) unique_unsorted(ParsePointNeeded); // Any parse point (no matter what source) will be handled here // We're about to start modifying the function if (!ParsePointNeeded.empty()) modified = true; // Now run through and insert the safepoints, but do _NOT_ update or remove // any existing uses. We have references to live variables that need to // survive to the last iteration of this loop. std::vector Results; Results.reserve(ParsePointNeeded.size()); for (size_t i = 0; i < ParsePointNeeded.size(); i++) { CallSite &CS = ParsePointNeeded[i]; // For invoke statepoints we need to remove all phi nodes at the normal // destination block. // Reason for this is that we can place gc_result only after last phi node // in basic block. We will get malformed code after RAUW for the // gc_result if one of this phi nodes uses result from the invoke. if (InvokeInst *Invoke = dyn_cast(CS.getInstruction())) { normalizeForInvokeSafepoint(Invoke->getNormalDest(), Invoke->getParent()); } Value *GCResult = ReplaceWithStatepoint(CS, nullptr); Results.push_back(GCResult); } assert(Results.size() == ParsePointNeeded.size()); // Adjust all users of the old call sites to use the new ones instead for (size_t i = 0; i < ParsePointNeeded.size(); i++) { CallSite &CS = ParsePointNeeded[i]; Value *GCResult = Results[i]; if (GCResult) { // Can not RAUW for the invoke gc result in case of phi nodes preset. assert(CS.isCall() || !isa(cast(GCResult)->getParent()->begin())); // Replace all uses with the new call CS.getInstruction()->replaceAllUsesWith(GCResult); } // Now that we've handled all uses, remove the original call itself // Note: The insert point can't be the deleted instruction! CS.getInstruction()->eraseFromParent(); } return modified; } char PlaceBackedgeSafepointsImpl::ID = 0; char PlaceSafepoints::ID = 0; FunctionPass *llvm::createPlaceSafepointsPass() { return new PlaceSafepoints(); } INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl, "place-backedge-safepoints-impl", "Place Backedge Safepoints", false, false) INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl, "place-backedge-safepoints-impl", "Place Backedge Safepoints", false, false) INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints", false, false) INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints", false, false) static bool isGCLeafFunction(const CallSite &CS) { Instruction *inst = CS.getInstruction(); if (isa(inst)) { // Most LLVM intrinsics are things which can never take a safepoint. // As a result, we don't need to have the stack parsable at the // callsite. This is a highly useful optimization since intrinsic // calls are fairly prevelent, particularly in debug builds. return true; } // If this function is marked explicitly as a leaf call, we don't need to // place a safepoint of it. In fact, for correctness we *can't* in many // cases. Note: Indirect calls return Null for the called function, // these obviously aren't runtime functions with attributes // TODO: Support attributes on the call site as well. const Function *F = CS.getCalledFunction(); bool isLeaf = F && F->getFnAttribute("gc-leaf-function").getValueAsString().equals("true"); if (isLeaf) { return true; } return false; } static void InsertSafepointPoll(Instruction *term, std::vector &ParsePointsNeeded /*rval*/) { Module *M = term->getParent()->getParent()->getParent(); assert(M); // Inline the safepoint poll implementation - this will get all the branch, // control flow, etc.. Most importantly, it will introduce the actual slow // path call - where we need to insert a safepoint (parsepoint). FunctionType *ftype = FunctionType::get(Type::getVoidTy(M->getContext()), false); assert(ftype && "null?"); // Note: This cast can fail if there's a function of the same name with a // different type inserted previously Function *F = dyn_cast(M->getOrInsertFunction("gc.safepoint_poll", ftype)); assert(F && "void @gc.safepoint_poll() must be defined"); assert(!F->empty() && "gc.safepoint_poll must be a non-empty function"); CallInst *poll = CallInst::Create(F, "", term); // Record some information about the call site we're replacing BasicBlock *OrigBB = term->getParent(); BasicBlock::iterator before(poll), after(poll); bool isBegin(false); if (before == term->getParent()->begin()) { isBegin = true; } else { before--; } after++; assert(after != poll->getParent()->end() && "must have successor"); // do the actual inlining InlineFunctionInfo IFI; bool inlineStatus = InlineFunction(poll, IFI); assert(inlineStatus && "inline must succeed"); (void)inlineStatus; // suppress warning in release-asserts // Check post conditions assert(IFI.StaticAllocas.empty() && "can't have allocs"); std::vector calls; // new calls std::set BBs; // new BBs + insertee // Include only the newly inserted instructions, Note: begin may not be valid // if we inserted to the beginning of the basic block BasicBlock::iterator start; if (isBegin) { start = OrigBB->begin(); } else { start = before; start++; } // If your poll function includes an unreachable at the end, that's not // valid. Bugpoint likes to create this, so check for it. assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) && "malformed poll function"); scanInlinedCode(&*(start), &*(after), calls, BBs); assert(!calls.empty() && "slow path not found for safepoint poll"); // Record the fact we need a parsable state at the runtime call contained in // the poll function. This is required so that the runtime knows how to // parse the last frame when we actually take the safepoint (i.e. execute // the slow path) assert(ParsePointsNeeded.empty()); for (size_t i = 0; i < calls.size(); i++) { // No safepoint needed or wanted if (!needsStatepoint(calls[i])) { continue; } // These are likely runtime calls. Should we assert that via calling // convention or something? ParsePointsNeeded.push_back(CallSite(calls[i])); } assert(ParsePointsNeeded.size() <= calls.size()); } /// Replaces the given call site (Call or Invoke) with a gc.statepoint /// intrinsic with an empty deoptimization arguments list. This does /// NOT do explicit relocation for GC support. static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */ Pass *P) { assert(CS.getInstruction()->getParent()->getParent()->getParent() && "must be set"); // TODO: technically, a pass is not allowed to get functions from within a // function pass since it might trigger a new function addition. Refactor // this logic out to the initialization of the pass. Doesn't appear to // matter in practice. // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. IRBuilder<> Builder(CS.getInstruction()); // Note: The gc args are not filled in at this time, that's handled by // RewriteStatepointsForGC (which is currently under review). // Create the statepoint given all the arguments Instruction *Token = nullptr; uint64_t ID; uint32_t NumPatchBytes; AttributeSet OriginalAttrs = CS.getAttributes(); Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id"); Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute( AttributeSet::FunctionIndex, "statepoint-num-patch-bytes"); AttrBuilder AttrsToRemove; bool HasID = AttrID.isStringAttribute() && !AttrID.getValueAsString().getAsInteger(10, ID); if (HasID) AttrsToRemove.addAttribute("statepoint-id"); else ID = 0xABCDEF00; bool HasNumPatchBytes = AttrNumPatchBytes.isStringAttribute() && !AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes); if (HasNumPatchBytes) AttrsToRemove.addAttribute("statepoint-num-patch-bytes"); else NumPatchBytes = 0; OriginalAttrs = OriginalAttrs.removeAttributes( CS.getInstruction()->getContext(), AttributeSet::FunctionIndex, AttrsToRemove); Value *StatepointTarget = NumPatchBytes == 0 ? CS.getCalledValue() : ConstantPointerNull::get(cast( CS.getCalledValue()->getType())); if (CS.isCall()) { CallInst *ToReplace = cast(CS.getInstruction()); CallInst *Call = Builder.CreateGCStatepointCall( ID, NumPatchBytes, StatepointTarget, makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None, "safepoint_token"); Call->setTailCall(ToReplace->isTailCall()); Call->setCallingConv(ToReplace->getCallingConv()); // In case if we can handle this set of attributes - set up function // attributes directly on statepoint and return attributes later for // gc_result intrinsic. Call->setAttributes(OriginalAttrs.getFnAttributes()); Token = Call; // Put the following gc_result and gc_relocate calls immediately after the // the old call (which we're about to delete). assert(ToReplace->getNextNode() && "not a terminator, must have next"); Builder.SetInsertPoint(ToReplace->getNextNode()); Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc()); } else if (CS.isInvoke()) { InvokeInst *ToReplace = cast(CS.getInstruction()); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. Builder.SetInsertPoint(ToReplace->getParent()); InvokeInst *Invoke = Builder.CreateGCStatepointInvoke( ID, NumPatchBytes, StatepointTarget, ToReplace->getNormalDest(), ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None, "safepoint_token"); Invoke->setCallingConv(ToReplace->getCallingConv()); // In case if we can handle this set of attributes - set up function // attributes directly on statepoint and return attributes later for // gc_result intrinsic. Invoke->setAttributes(OriginalAttrs.getFnAttributes()); Token = Invoke; // We'll insert the gc.result into the normal block BasicBlock *NormalDest = ToReplace->getNormalDest(); // Can not insert gc.result in case of phi nodes preset. // Should have removed this cases prior to runnning this function assert(!isa(NormalDest->begin())); Instruction *IP = &*(NormalDest->getFirstInsertionPt()); Builder.SetInsertPoint(IP); } else { llvm_unreachable("unexpect type of CallSite"); } assert(Token); // Handle the return value of the original call - update all uses to use a // gc_result hanging off the statepoint node we just inserted // Only add the gc_result iff there is actually a used result if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) { std::string TakenName = CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : ""; CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName); GCResult->setAttributes(OriginalAttrs.getRetAttributes()); return GCResult; } else { // No return value for the call. return nullptr; } }