//===- UnifyFunctionExitNodes.cpp - Make all functions have a single exit -===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass is used to ensure that functions have at most one return // instruction in them. Additionally, it keeps track of which node is the new // exit node of the CFG. If there are no exit nodes in the CFG, the getExitNode // method will return a null pointer. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h" #include "llvm/Transforms/Scalar.h" #include "llvm/BasicBlock.h" #include "llvm/Function.h" #include "llvm/Instructions.h" #include "llvm/Type.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" using namespace llvm; char UnifyFunctionExitNodes::ID = 0; static RegisterPass X("mergereturn", "Unify function exit nodes"); int UnifyFunctionExitNodes::stub; Pass *llvm::createUnifyFunctionExitNodesPass() { return new UnifyFunctionExitNodes(); } void UnifyFunctionExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{ // We preserve the non-critical-edgeness property AU.addPreservedID(BreakCriticalEdgesID); // This is a cluster of orthogonal Transforms AU.addPreservedID(PromoteMemoryToRegisterID); AU.addPreservedID(LowerSwitchID); } // UnifyAllExitNodes - Unify all exit nodes of the CFG by creating a new // BasicBlock, and converting all returns to unconditional branches to this // new basic block. The singular exit node is returned. // // If there are no return stmts in the Function, a null pointer is returned. // bool UnifyFunctionExitNodes::runOnFunction(Function &F) { // Loop over all of the blocks in a function, tracking all of the blocks that // return. // std::vector ReturningBlocks; std::vector UnwindingBlocks; std::vector UnreachableBlocks; for(Function::iterator I = F.begin(), E = F.end(); I != E; ++I) if (isa(I->getTerminator())) ReturningBlocks.push_back(I); else if (isa(I->getTerminator())) UnwindingBlocks.push_back(I); else if (isa(I->getTerminator())) UnreachableBlocks.push_back(I); // Handle unwinding blocks first. if (UnwindingBlocks.empty()) { UnwindBlock = 0; } else if (UnwindingBlocks.size() == 1) { UnwindBlock = UnwindingBlocks.front(); } else { UnwindBlock = BasicBlock::Create("UnifiedUnwindBlock", &F); new UnwindInst(UnwindBlock); for (std::vector::iterator I = UnwindingBlocks.begin(), E = UnwindingBlocks.end(); I != E; ++I) { BasicBlock *BB = *I; BB->getInstList().pop_back(); // Remove the unwind insn BranchInst::Create(UnwindBlock, BB); } } // Then unreachable blocks. if (UnreachableBlocks.empty()) { UnreachableBlock = 0; } else if (UnreachableBlocks.size() == 1) { UnreachableBlock = UnreachableBlocks.front(); } else { UnreachableBlock = BasicBlock::Create("UnifiedUnreachableBlock", &F); new UnreachableInst(UnreachableBlock); for (std::vector::iterator I = UnreachableBlocks.begin(), E = UnreachableBlocks.end(); I != E; ++I) { BasicBlock *BB = *I; BB->getInstList().pop_back(); // Remove the unreachable inst. BranchInst::Create(UnreachableBlock, BB); } } // Now handle return blocks. if (ReturningBlocks.empty()) { ReturnBlock = 0; return false; // No blocks return } else if (ReturningBlocks.size() == 1) { ReturnBlock = ReturningBlocks.front(); // Already has a single return block return false; } // Otherwise, we need to insert a new basic block into the function, add a PHI // nodes (if the function returns values), and convert all of the return // instructions into unconditional branches. // BasicBlock *NewRetBlock = BasicBlock::Create("UnifiedReturnBlock", &F); SmallVector Phis; unsigned NumRetVals = ReturningBlocks[0]->getTerminator()->getNumOperands(); if (NumRetVals == 0) ReturnInst::Create(NULL, NewRetBlock); else if (const StructType *STy = dyn_cast(F.getReturnType())) { Instruction *InsertPt = NULL; if (NumRetVals == 0) InsertPt = NewRetBlock->getFirstNonPHI(); PHINode *PN = NULL; for (unsigned i = 0; i < NumRetVals; ++i) { if (InsertPt) PN = PHINode::Create(STy->getElementType(i), "UnifiedRetVal." + utostr(i), InsertPt); else PN = PHINode::Create(STy->getElementType(i), "UnifiedRetVal." + utostr(i), NewRetBlock); Phis.push_back(PN); InsertPt = PN; } ReturnInst::Create(&Phis[0], NumRetVals, NewRetBlock); } else { // If the function doesn't return void... add a PHI node to the block... PHINode *PN = PHINode::Create(F.getReturnType(), "UnifiedRetVal"); NewRetBlock->getInstList().push_back(PN); Phis.push_back(PN); ReturnInst::Create(PN, NewRetBlock); } // Loop over all of the blocks, replacing the return instruction with an // unconditional branch. // for (std::vector::iterator I = ReturningBlocks.begin(), E = ReturningBlocks.end(); I != E; ++I) { BasicBlock *BB = *I; // Add an incoming element to the PHI node for every return instruction that // is merging into this new block... if (!Phis.empty()) { for (unsigned i = 0; i < NumRetVals; ++i) cast(Phis[i])->addIncoming(BB->getTerminator()->getOperand(i), BB); } BB->getInstList().pop_back(); // Remove the return insn BranchInst::Create(NewRetBlock, BB); } ReturnBlock = NewRetBlock; return true; }